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FOREWORD

The paper deals with the numerical techniques for finding the special type of
parameter estimates based on the minimization of L 4-norm of error. More specifi-
cally, these estimates are derived by minimization of the upper bound of the error,
which is evaluated similarly to the upper bounds on the solution of stochastic op-
timization problem in WP-86-72. The ressarch reported in this paper was per-
formed in the Adaptation and Optimization Project of the System and Decision Sci-
ences Program.
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NUMERICAL TECHNIQUES FOR FINDING ESTIMATES
WHICH MINIMIZE THE UPPER BOUND OF THE
ABSOLUTE DEVIATION

A. Caivoronski

1. INTRODUCTION

We are concerned here with the problem of determining the value of the

parameter a € ®™ when the information about it comes in the form of observations
of = ¢T(z%)a +nf 1.1)

where ¢(z) is a known vector function, zJ are fixed points from finite subset Z of

R™, Zz =z ..., z!): and n{ are identically distributed for the same j, random

variables "71111 could depend on 1;':: for j, # j, but should be independent for the

same j,. Some additional information is available in the form of inclusion a € 4
where 4 is a compact subset of R™. In the simplest case when n =1 and the values

of the parameter a are observed directly (1.1) becomes
w;=a +7y 1.2)

In this latest case the L -norm estimate a; is obtained by minimization with respect

to z of the sum
1 <
Flz,s)== Y lo, -zl 1.3)
si=1

where s is the total number of observations. The properties of this estimate (the

sample median) are defined by the properties of the function
F(z) = flz - wldH(w) (1.4)

namely, if F(a) =ming ¢ 4 F(z) then under fairly mild conditions a; — a with pro-

bability 1 [3, 16, 23].
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If we knew the distribution H of observations « then the actual value of
parameter a can be found from minimization of F(z). This is not the case, howev-
er, and we can think of the sampling procedure as means of obtaining information
on H. Observations are used to estimate the distribution function # and use this
estimate in (1.4) to determine the estimate of a. If we take empirical distribution
function of observations and substitute it instead of # in (1.4) we would obtain the

function F(x, s) from (1.3) and estimates a,. The different L, -estimates would be

obtained if different estimates of distribution # are used.

In this paper the numerical techniques for finding the worst-case L ;-estimates
are proposed. These estimales minimize the largest possible L;-error which
corresponds to the worst distribution consistent in some sense with observations.
The resulis rely on the techniques developed in [12], which are summarized in sec-
tion 2. Section 3 is devoted to the algorithm for finding estimates in the simplest
case (1.2). More complicated sampling scheme (1.1) is considered in section 3. It
should be noted that numerical techniques for finding L,-estimate was considered
in [1-3]. Stochastic optimization techniques and estimation techniques with uncer-
tain noise structure relevant to this problem was discussed in [5-8, 9-15, 17, 21,

24].

2. BOUNDS FOR INTEGRAL FUNCTIONALS

The results from [12] which are relevant to the estimation problem (1.4) are
reviewed in this section.

Suppose that we have observations w,,... @ with unknown distribution func-
tion #. Our aim is to construct the set @ of distributions which are in some sense

consistent with the set of observations.

Let us assume that w; belong to some set @ ¢ R™ with Borel field B; probabili-
ty measure H is defined on this field, thus we have a probability space (2, B, #).
For each fixed s let us consider the sample probability space ((—2, 1—3, -l-’) which is a
Cartesian product of s spaces (Q, B, #). The space (ﬁ, B. -15) is the smallest space
which contain all (0%, B¥, P¥). In what follows the "convergence with probability
1" will mean the "convergence with probability 1 in the space (Qf, B¥, P*)". With
the set of observations {wy, ..., wg{ the set of distribution G will be associated

in the following way.
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Let us fix the confidence level a:0 < a < 1. We shall consider events with
probability P® less than a "improbable’ events and discard them. Let us consider
arbitrary set 4 ¢ B. Among s observations [wi, C ey, ms{ there are 1 4 Observa-
tions which belong to set 4, 0 5 iy < s. The random variable iy is distributed bi-
nominally and its values can be used to estimate H(4) (Mainland [19]). To do this

let us consider the following functions

S s!

_ - s. 1 - -1
d(s, k,z) = 124""(8 T 1 -2z)°
(2.1)
& ! -
‘P(s,k,z)=i§o‘“(ss—_i)!zt(l—z) t
observe that
$(s, k,z)=V¥(s,s —-k,1—2)
(2.2)

PS(iy = k) = ¢ (s, k, H(4))
PS(iy s k) = ¥(s, k, H(4))

The function ¢ (s, &, z) is a monotonically increasing function of z on the interval
[0, 1], ¢(s, k,0) =0, ¢(s, k,1) =1, £ # 0. Therefore the solution of equation
$(s,k,z)=cexistforanyO<c <1. Let us take

di(s, k):¢(s, k,d(s, k))=a,k #0 2.3)
b(s, k):¥(s, k,b(s, k) =a,k £s
d{(s,0) =0, b(s,s)=1

The values d(s, £) and b (s, k) are the lower and upper bounds for the probability
H(A) in the following sense.

LEMMA 1. For any fized set A C B the bound d (s, k) defined in (5) possess the

Sollowing properties

1. PSf{d(s, ig) > H(4)] = a for any measure H.

2. If for some function c{(i),i=0:s5s, c(i +1)>c(i) we have
PSfc(iy) > H(A)] < a for any H thenc(i) s d(s, i)
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This lemma shows that d(s, iy) is in a certain sense the best lower bound for the

probability H(4). The similar result holds for the upper bound & (s, iy):

LEMMA 1°. For any fized set A C B b (s, k) defined in (O) possess the following

properties:’
1. PSla(s, i) < HA)] < a

2. If for some [function c¢(i), 1 =0:s, c(i +1)>c(i) we have
Pflc(iy) < H(A)] < a for any H thenc(i) 2 b(s, i).

These lemmas are proved in [12].

DEFINITION  The set G of the distributions consistent with the set of observa-

tions “"1' cae, Wg | for fized confidence level a is defined as follows:
G, = [H:d(s, i) SH(A)Sb(s, iy)] (2.4)

SJor any measurable A, where d(s, iy) and b(s, iy) are defined in 2.3).

Now let us consider the problem of finding upper and lower bounds of func-
tional fg(w)dh'(w) on the set G;. This problem will be used in later sections for
defining the special class of L j-estimates. In this section we are interested in solv-

ing the following problem:

minimize (or maximize) with respect to ¥
S o (@)af(w) (2.5)
subject to constraints

d(s, i) SH(A)=<b(s,iy), A €B (2.6)

Let us assume that g(«?) = mit;‘g(ca) and g(o® *1) = ma}c‘g(w) exist and ar-
WE weE

range the set of observations [c.:i, Ce ey msf in order of increasing values of the

function g (w):

Here and elsewhere the original order of observations is indicated by subscript
and arrangement in increasing order of the values of g is indicated by super-
script. The first element of new arrangement will always be the point with the
minimal value of the objective function on the set @ and the last element (with

number s + 1) will be the point with maximal value. This arrangement depends on
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the number s of the time interval, but this dependence will not be explicitly indi-

cated for the simplicity of notations.

The solution of the problem (2.5)-(2.6) is given by the following theorem:

THEOREM 1 Suppose that exist points W' and o*! such that

s+1)=

g (&%) = min g(w), g(w max g (w). Then
wefl wef

1. The solution of the problem @.5)-(2.6) exist and among extremal measures

always exist discrete one which is concentirated in s + 1 points:

_ s+1
§e = max [g(w)df(w) = [g(w)af (w) = Y pig(a?) (2.7)
HEG’ {=1
ge = min [g(@)dH(@) = [g(@)d (@) = 3 glg(at) 2.8)
HeG, 1=0
H = (&% p3) ..., (&% *Y, B 1))
Es = [(won Q(s))t L) (ms +1- QSS+‘1)!
pf=d(s, i) —d(s,i —1),i =1:s (2.9)

gi =d(s,s —i +1) ~d(s,s —-1i),i =1:s

Po =45 +1 =0,D05+q4 =gf =b(s,0)

- Zﬁn al
gs —9s < 4y s

where Ay = max g{(w) — min g(w)
wefl wef

gs — [ g()dH (w)

gs — [ 9(0)dH(w)

with probability 1 as s — e,

The proof is contained in [12].
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3. THE CASE OF ONE-DIMENSIONAL PARAMETER

Using the results of the previous section we shall obtain estimates of the
parameter a € R1from observations (1.2). 1t is assumed that apriori bounds a and

a are known

a<sa<a

For the purpose of convergence analysis it is irrelevant how far are the
bound @ and a from actual value of a, it is only necessary that ~» <a < a < .
For computational purposes it is preferable of course to have a and a as close to
a as possible. We shall assume for simplicity that g < w; < a for all i. The dif-
ferent case can be treated in the same manner, but requires more complicated no-
tation.

Let us take some confidence level a and define the admissible set of distribu-
tions G from (2.4). It is possible to utilize this information in two different ways.
One approach is associated with the case when not only the value of parameter it-
self is of interest but it is also important to guarantee the smallest possible values
of error functional f lz — wlag (»). In this case the estimate is constructed which
minimize the worst in the set G; value of the error functional. The second ap-
proach is to define the region to which the actual parameter belongs provided the
distribution & can take arbitrary values from admissible set @;. We shall consider
both approaches for one-~dimensional case starting with the worst-case estimate.

The worst-case approximation F(z, s) to the function F(z ) based on the set of

distributions &, consistent with observations is defined as follows:

I'T'(:c, s) = }ng f|z —aJ|dH(m) (3.1)

The values of this function can be computed using the Theorem 1.

DEFINITION The worst-case L -estimale c'i.'s of parameter a is defined by
minimization of the function F(z, s) from 3.1):

F(@g, s)= min _F(z,s) (3.2)
gsr<sa

This estimate depends on the confidence level a. It follows from the part 3 of the
theorem 1 that F—(z, s) — fl:t: - m|dH(a>) with probability 1 for fixed x. The defin-
ition of the function f(z, s) and bondedness of the regions to which @ and = belong

implies that the function F (x, s) is convex and uniformly continuous with respect
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to s. Therefore all limit points of the sequence &'s belong to the set

x* = iz:*:flz* - wldH(w) = min _f|z - wldH(w), a <z" <al
gSzsd

Therefore a; — a if x* = {a]

The function F_(z. s) is convex function and for any fixed z it is possible to
compute the values of this function and its subgradients. The convex programming
techniques [18, 22] can be used to minimize this function and obtain the estimate
a."s. However, it is more convenient to develop special algorithm which utilizes the
properties of the function F (z, s).

Let us start with defining sufficient condition for a point £ to minimize the

function F_(z:, s). Take arbitrary z :@ <z < a and define

1 ifz>w
2=, @) = -lif z=sw

_ 1 ifzaw
TE =1 ifz<w
Let us arrange observations iml, cee, msl in two orderings. Members of the first

ordering will be denoted by g‘(z) and of the second ordering by Bi(z), it =1:s.

For each i exist 7, & such that &t(z) = @y, ol(z) = w, and

. ) |z —Ei(z)|z|z —Ej(z)|
127 = C @)z — o @)

|z —Qi(z)|=|z —gj(z)l
z < al(z), z > @(z)

lz — o¥z)| =1z — & (z)

- _ ;< 7
z<wi(z),z>mj(z:) teJ

In other words both orderings arrange observations in nondecreasing order
of the values lz — wl. They differ only for the observations equidistant from z.
Ordering with the members w,(z) places first the observations which are to the
left of z while ordering with the members 51(::) places first the observations

which are to the right of z.

Let us define

wi(z) =lz - ai(z)l



Dencte for alla <z <a

o1 aif a—z2z—a
£ (z) = a otherwise

aif a—-z>z —ga
—=s +1 - =
w (=) = { a otherwise

THEOREM 2 Suppose that ag is the solution of the problem (3.2) and
a <a <a. Then

s +1
A=Y pfy@;, w'(@)) =0 (3.3)
i=1
and
- 41 ey i,
A= ) piydg, & (dg)) =20 (3.4)
i=1
where

pf=d(s, i) —d(s —1,i), i=1:s
p§+1 =1—-a(s,s) (see (2.9))

Conversely, if for some z = @ conditions (3.3) and (3.4) are satisfied then a, is

the solution of the problem (3.2).

The proof of the theorem follows directly from the results of the previous
section and from the necessary condition for minima of convex function, namely

0 € 8F(x, s) where 8 denotes the subdifferential of the convex function.

It is clear from the theorem that one of the solutions of the problem (3.2) will

be among points where the sums (3.3) and (3.4) change sign. This can occur either

. . .. a+a
in points w, or wherexz —w; =wy; —z forsome i, j or at z = . This obser-
1 i J 2

vation leads to the following algorithm:

ALGORITHM 1.

1. Start with selecting arbitrary point z% such that as z%=< @ and exist 1, 7

with w; =< z9, wy = 0. Arrange initial orderings h (2% and 0t (z%
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Suppose that we obtained the point z%. Then the method proceeds as follows.
2a. Compute A and A from (3.3), (3.4). Now there could be three possibilities:

if A=sO0, AZ0 then go to step 2e
if A<0, A<O thengo tostep2b

if A >0, A>0 then go to step 2¢

wl(zt) — wi(zt)lot(zk) < z*,

=min =
TN G =minftll > 4, Bhzt) > =4
{

£p =m}n fw, ~zlw, > 2k}

_a+a

53—

—z:“, €420

If some £, does not exist take ¢, =a — a. Obtain z* *1:

&
zktl=gzk 4 min{-z—, £, £ai

go to step 24

2c. Find

| wik) —wiz®)let(z®) > =¥,
£1 —m:n J =m;'nllll >i, wlz*) <zk)
o

&= mtin{z" —wyley <z

k_E‘l'ﬂ.
2

&g =z .€3>0

If some £, does not exist, take &, =a —g. Obtain z* *1;

£
zk t1 = ok —min[?, &2, 53]
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go to step 2d

k£ +1

2d. Obtain new orderings @' (zf *1), w!(zf *1) for the new point z and new

W‘(zk H‘). Go to the step 2a.

2e. The estimate c'i's is found: &'s =z¥* Terminate the execution.

This method finds the estimate &.'s. in a finite number of steps.

Now let us consider the problem of constructing the confidence region which

contain all the solutions of the problem

min _flz - oldf(w)
g<srsa

for H € G.

Let us consider the ordering with elements w:, 1 =0:5 +1
fo;,i=0:s +1} = fw,, i =1:s} Y le} U l&} ,
m:+12 m:, i =0:s

and define two distributions each concentrated in & + 1 points

L 3
H:* = ((“"1‘» Pi): R (wi p‘ls)* crc (Q:+1, pss+1))

He =g @8 -0 (@, @) oo (g, g5)

where pf and qf are defined in (2.9). It appears that minimum of the functions
F*™@, s) = [z — olaf, (w) (3.5)

F*(z, s) = f|z - m|dH:(w)

define right and left end points of the confidence interval [a.* ) a."] where

e = inf fy:f|y - wldH(w) = min fl:x: —m'dH(m){
osy<¥ axsz=T
HeG,
a®™ = sup fy:f'y - wldH(w) = min fl:: - wldi (w)}
g sy <sd gEr<a
Hea,

more specifically, the following result holds:
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THEOREM 3 Suppose that

=min {1 :6(s, i) 2 0.5} (3.6)
1x0

Then for any = such that

L L 3 L 3 3 L ] L 3 L 3 3 [
a Sz sSa ,a =uw.,a =W 49k 3.7

exist H € G, such that

min _f|z - w|dﬁ(w) = f|z‘ - mldﬁ(m) (3.8)

gsr=d

and if for some He G; and some z" condition 3.8) is satisfied then

* = L
a Sr sSa

PROOF According to the necessary and sufficient conditions the point

z" ‘a < z” < & is the minima of the function f|z - wldﬁ(u) if and only if

S ats [ ad(w)

g £o<z z*susE
and
[ dE@= [ dH(w) (3.9)
_qsus:‘ % cusq

It was assumed for simplicity of notation that f cosd dA(w) = 1 thus (3.8) implies
asw

z* zinfly: [ dH=205
y aswsy

which gives

a” 2inf Yy : sup f dd =20.5
y €l gcusy

and therefore a” = w: where k is defined in (3.6). On the other hand ca: is the
minimum of the function F‘(z, s) defined in (3.5). Therefore a” = u:. Similarly

. L 20 *
we obtain that @ = wg .1 .
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From convexity of the set G¢ and function f|z - m|dH(c.J) now follows that for
any point = TiaT =z <sa™ exists H € ¢ such that (3.8) is satisfied. The proof is
completed.

The same results can be obtained in the totally similar fashion for the case

when the set  is bounded, but not coincide with 4 = {z:a <z <a].

4. THE CASE OF VECTOR PARAMETER

Let us consider a more complicated case when the estimated parameter a be-
longs to BR™. It will be assumed that additional input parameters z are present,
z €R™ and some finite set Z = Izl, c e, zl{ is selected. The information comes

with observations
w{ = (pT(zj)a + 77{ (4.1)

where ¢(z) is a known vector-function, 7;,{ are independent identically distributed
for the same 7 observations errors. Using the same type of argument as in intro-
duction observe that various types of L j-estimates can be obtained by minimizing

the following function

i

F(z)= ) B4 Sle¥(z)z — oI laH (o) (4.2)
J=1

where ﬁj are the weights assinged to the points z3. Suppose that sy is the number

of observations performed at the point zJ. Substitution of empirical distributions

in (4.2) gives the following functional

s
Fz,s) = zl) —SL 2," leT(z7)z — afl (4.3)
y=1°7 1 =1

The minimization of this functional is the most common way of obtaining L y-estimate
a¥ in this case. The worst-case L j-estimates will be obtained similar to the
simpler case in section 3, namely by minimizing the upper bound of the L ;-error in

(4.2):

- i
F(x,s)= jgl 51 H;_n?gj f|an(zj)z s |de(CJ) (4.4)
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Here the admissible sets of distributions G-s’j are defined similar to (2.4) after

fixing the confidence level a.

DEFINITION The worst-case Li-estimale a; of parameters a from (4.1) is de-
Sfined as follows

F-(&'s.s)=minf(z,s), ag €4 {4.5)
r €4

In fact this estimate depends on all 54, not only on s, but this will be skipped in no-
tatié:ns. The values of the function f‘(s, z) can be computed using results of the
Theorem 1 and the problem of its minimization can be formulated as a linear pro-
gramming problem in case the set 4 is defined by linear constraints., This problem,
however, can be of very large scale. Therefore the method based on generalized
linear programming [4] will be described here. This method requires the solution
of the linear programming problem of comparatively small dimension to be per-
formed at each iteration. In what follows it will be assumed that the set 4 is defined

by linear constraints and it is bounded. The observations o belong to the set 0

which may or may not coincide with 4.

ALGORITHM 2.

1. At the beginning select initial point zl € 4. For each J make ordering
i(k, J):

1skssy+1, leT@Nzt - of . glsleT@Nzt —of g 5

ik +1,7)=s;leT(zN)zt - 0f|= gtgﬁlwr(zf)zi - ol

Compute

_ 3 SJ'+1 s

Fels)= 3 8 T plleT@hzt —ofy 4
J=1 k=1

_ L sy +1 s

Fp(zls)= X Bye(z?) T pfsign(e’ @)zt ~0fy 4y)
=1 k=1

where p:j is defined according to (2.9)

2. Suppose that the method arrived at point 7. We have a collection of points
fzl,...,z7} and values F(zl, s),...,F(z", 5), Fo(z! s) ..., F.(z", s).

At this point the algorithm proceeds as follows:
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2a. Solve linear programming problem

min o (4.6)

F_(z‘, s) +<F_z(xt,s).:z: -zl><eo i=1:r
z €A

and obtain the point zT *1 as a solution of this problem and ¢" as its optimal
value.

2b. For each j make ordering i(k, 7):
1<k = Sj +1, |¢T(Zj)zf+1 - ml(k,”| =
lT(zf)zT +1 - m{(k'j)l

ik +1,7) = Sg, |¢T(zj)zr 1. wsjj| = :121&'901'(21)21 —w

Compute

sy +1

_ 4 s
Fz™*1s)= Y 8 L peisign(ef(zN)z” — wf, 5
J=1 k=1

2c. If F(zT *1, s) = o7 then assign &, =z *! and stop, the estimate has been

found. Otherwise go to step 2a.

This technique produces estimate Es in a finite number of steps because the

function F-(z, s) is piecewise linear.
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