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A priori estimates for operational differential 
inclusions 

Introduction 

This paper is concerned with the multivalued operational equation (dif- 
ferential inclusion) 

where A is the infinitesimal generator of a Co-semigroup {G(t))tlo on a 
separable Banach space X and F : [O,T] x X -, X is a set-valued map. 
Such inclusion is a convenient tool to  investigate for instance the semilinear 
control system 

where U : [O,T] x X -, X is a set-valued map of controls (depending on 
the time and on the state). Setting F (t, z) = f (t, z ,  U (t, z)) we reduce the 
above control system to the inclusion (1). 

Differential inclusion 

in finite dimensional context was extensively studied in the literature since 
30% It was initiated by the Polish and F'rench mathematicians Zaremba 
in [28], [29] and Marchaud (201. They were mostly interested by existence 
results and also investigated some of their qualitative properties. While 
Zaremba studied the so-called paratingent solutions, Marchaud was mainly 
concerned with the contingent ones. Later on Waiewski (261 have shown that 
one may reduce his interest to  more "classicaln, Caratheodory type solutions, 
i.e., absolutely continuous functions verifying (2) almost everywhere. 

The interest to  the differential inclusion (2) was renewed in earlier sixties, 
when mathematicians got attracted by a new domain: control theory. Fil- 
ippov [lo] and Waiewski [27] have shown that under very mild assumptions 
the control system 

(3) z' = f (t, z ,  u(t)), u(t) E U is measurable 



may be reduced to the differential inclusion (2). This tremendously simpli- 
fied the study of the closure of trajectories to (3) and led to the celebrated 
Filippov-Waiewski relaxation theorem (see also 12, p.1231). 

Control system (3) with state-independent control subset U can be con- 
sidered as a family of differential equations: with every control u(.) (mea- 
surable selection of U) one can associate the ordinary differential equation 

where pu( t ,  z )  = f (t, z ,  u(t)). Differential inclusion also encompass much 
more sophisticated control systems: 

1. closed loop control systems 

2. implicit control systems 

3. systems with uncertainties 

where ~ ( t ,  2) is a function incorporating the errors of the model. 

Setting F(t ,  z) = f (t, z ,  U(t, 2)) in the first case, F( t ,  z) = {vJO E f (t, 2, u, U(t, 2))) 
in the second one and F(t ,  z )  = f (t, z(t), U (t, z)) + ~ ( t ,  2) B in the third one, 
we replace the control systems (4)-(6) by the differential inclusion (2). To 
proceed further a differential calculus of set-valued maps adequate for con- 
trol theory problems had to be developed. We refer to [2], [ l l ] ,  [4], 1131-1161 
for many results on differential inclusions and their applications to  control 
theory for finite dimensional control systems. 

The last years there were many attempts to get similar results for infinite 
dimensional differential inclusions (see for instance 1241, 161, [5] and the bib- 
liographies contained therein). In monograph 1241, it was shown that many 
results on (2) known in the finite dimensional context may be extended 
to  compact valued maps in infinite dimensional Banach spaces. However 
the field of applications of results obtained so far is very restrictive. On 
one hand the compactness hypothesis is too strong, on the other, (3) keep 
us far from the distributed parameter systems. Let us mention also that 



state-constraint problems for (1) were studied by Shi Shuzhong in [22] and 

~ ~ 

In this paper we study (1) and its mild trajectories, i.e., mild solutions 
of the Cauchy problem 

It is well known that in general the Cauchy problem 

does not have classical solutions and that a way to overcome this difficulty 
is to look for continuous solutions to the integral equation 

This is why the concept of the mild solution is so convenient for solving (1). 
We show here that many results which allow to apply differential inclu- 

sions t o  finite dimensional control systems are valid as well for (1). We start 
in Section 1 by a theorem analogous to the Filippov theorem (111, a kind 
of set-valued Gronwall's lemma (see also [2], [4]). This allows to  prove in 
Section 2 a relaxation theorem for (1). Namely, that under some technical 
assumptions, the mild trajectories of (1) are dense in the mild trajectories 
of the convexified inclusion: 

In Section 3 we investigate infinitesimal generators of the reachable map 
associated to (1) and in Section 4, the variational inclusion for (1). We prove 
in Section 5 a necessary condition for optimality for an infinite dimensional 
optimal control problem, obtained thanks to  the relaxation theorem. 

Some theorems similar to the one presented in Section 5 may be found in 
[8] and [9] for the Hilbert space X and in (171 for the separable Banach space 
X with the norm Giteaux differentiable away from zero. The main difficulty 
we overcome is the lack of such smoothness of the norm. In this way our 
result applies when X is for instance the space of essentially bounded maps 
or the space of continuous functions. 

I would like to thank M.Valadier and C.Hess for valuable suggestions 
which helped to  improve the earlier version of this paper. 



1 Quasitraj ect ories and trajectories 

Consider a separable Banach space X and a strongly continuous semigroup 
G(t)  E L(X,  X ) ,  t  2 0  of bounded linear operators from X to  X having the 
infinitesimal generator A. Let 0  5 to < T be given and F be a set-valued 
map from [to, TI x X into closed nonempty subsets of X. We associate with 
it the differential inclusion 

Denote by C(to, T ;  X )  the Banach space of continuous functions from [to, TI 
to X with the norm llzllc = BUPtE[to,~] I(Z(t)JI and by L' ( to ,T;X)  the Ba- 
nach space of Bochner's integrable functions (see for instance (19, ~ . 7 8 ] )  
from [to,T] to X with the norm llzlll = J: llz(t)lldt. Set L 1 ( t o , ~ )  = 
L1(to, T ;  R+). 

A continuous function z  E C (to, T ;  X )  is called a mild trajectory of (7) ,  if 
there exist zo E X and a Bochner integrable function f E L1(to,T;X) such 
that 

( 8 )  f ( t )  E F(t,  z ( t ) )  a.e. in [to, T ]  

i.e. f is a Bochner integrable selection of the set-valued map t  -, F(t,  z ( t ) )  
and z  is the mild solution of the initial value problem 

(10) 
z f ( t )  = Az(t)  + f ( t )  , t  E [to, TI 
z(to) = zo 

We shall call ( z ,  f )  E C(to, T ;  X )  x L1(to,T; X )  a trajectory-selection pair of 
(7) if f verifies ( 8 )  and z  is a mild solution of (10). This notion extends the 
definition of solution of differential inclusion for finite dimensional spaces 
because of the following 

Remark - When X is a finite dimensional space and G(- )  = Id, then 
every mild trajectory z  is an absolutely continuous function satisfying 

~ ' ( t )  E F(t,  z ( t ) )  a.e. in [to, TI 

Indeed in this case the function z  defined by (9)  is absolutely continuous 
and z f ( t )  = f ( t )  a.e. in [to, TI. 

We study here some qualitative properties of mild trajectories. 



A set-valued map Q : X -+ 2X is called L-Lipschitz on K c X if for all 
Z E  K ,  Q ( z )  # 0 and 

where B denotes the closed unit ball in X .  
Remark - An equivalent definition may be given using the Haus- 

dorff pseudometric. Namely let d(- ,  -) denote the Hausdorff pseudometric 
on nonempty subsets of X .  If for some M > 0 and all z , y  E K we 
have d(Q(z) ,Q(y) )  5 M J l z  - yJJ then for every L > M and z , y  E K ,  
Q ( z )  C Q ( Y )  + Lllz - yll B. 

Throughout the whole paper we shall consider the Lebesgue measure p 

on [to,Tl. 

Theorem 1.1 ([3]) Let U : [to,  TI -+ X be a set-valued map urith closed 
nonempty images. Then the following statements are equivalent 

i )  - U is measurable in the sense that for every open set 0 c X the 
set { t E [to,  TI 1 U ( t )  n 0 # 0 ) is measurable 

ii) - There ezist measurable selections u,(t) E U ( t )  such that for 
every t E [to, TI ,  U ( t )  = Un21 un(t) .  

Moreover i f  U is single-valued, then the above statements are equivalent 
to 

iii) There ezist measurable functions u ,  : [ to ,T]  -+ X assuming only fi- 
nite number of values such that for almost every t E [to, T I ,  liw,, u,(t) = 

U ( t )  
iv) There ezist a negligible set U c [to,T] and measurable functions 

u ,  : [to,T] -+ X assuming only countable number of values such that u ,  
converge to U uniformly on [to, T]\U. 

Consider the solution set of (7)  from the point zo E X on [to, TI: 

S l t o , T l ( ~ O )  = { Z  ( z is a rnild trajectory of (7)  on [to, T I ,  z(to) = 20) 

Let yo E X ,  g E L1(to, T ;  X )  and y E C(to, T ;  X )  be a mild solution of 
the Cauchy problem 



The aim of this section is to estimate the distance from y to the set S[ to ,T l (~o)  
under several assumptions on F: 

H I )  V z E X the set-valued map F(., z )  is measurable 
H z )  3 /3 > 0 ,  k E L 1 ( t o , ~ )  such that for almost all t E [to, TI 

the map F ( t ,  a )  is k ( t )  - Lipschitzian on ~ ( t )  + /3B 

Hs) The function t -+ d i ~ t ( ~ ( t ) ,  F ( t ,  y ( t ) ) )  belongs to  L1 (to,  T I  

Remark - From Lemmas 1.4 and 1.5 proved below follows that under 
the assumptions H I )  and H z )  the function t -+ dist ( g  ( t ) ,  F ( t ,  y ( t ) ) )  is always 
measurable. 

Theorem 1.2 Let 6 2 0 ,  M = suptE[o,T-tol IIG(t)I(. Assume that H I )  - H3) 

hold true and set 7 ( t )  = dist(g(t) ,  F ( t ,  y ( t ) ) ) ,  m ( t )  = M e z p  ( M  J; k(s )ds )  

If q ( T )  < /3, then for all zo E X with llyo - zoll I 6 and all E > 0 ,  there 
ezist z E S [ t o , T l ( ~ O )  and f E L 1 ( t o , ~ ;  X )  eatisfying (8), (9) such that for all 
t E [ to ,T]  

llz(t) -y(t) l l  I d t ) +  & ( t - t o ) m ( t )  

and for almost every t E [to, T ]  

Remark - When X is a finite dimensional space, the above estimation 
holds true with E = 0. This follows from the celebrated Filippov theorem 
[l l]  (see also [2] ,  [4]) .  

The proof reminds in many sspects the one from [2] for the finite dimen- 
sional case. We need three following lemmas. 

Lemma 1.3 Let U : [ to ,T]  -+ X be a measurable set-valued map with 
closed nonempty images and g : [to, TI -+ X ,  k : [to, TI -+ R+ be measurable 
single-valued maps. Assume that 

where B denotes the closed unit ball in  X .  Then there ezists a measurable 
function u : [to, TI -+ X such that u ( t )  E W ( t )  almost everywhere. 

The proof follows from [3, pp.87, 881. 



Lemma 1.4 Let F and y be as in Theorem 1.2 and z E C ( t o , T ; X )  be such 
that llz - Y ) l c  5 p. Then the map t + F(t ,  z ( t ) )  is measurable. 

Proof - By Theorem 1.1 i v )  there exist a negligible set U C [to, TI 
and measurable functions z ,  : [to,T] + X ,  kn : [to,T] + R+, n 2 1 
assuming only a countable number of values and converging to  z (respec- 
tively k )  uniformly on [to,T]\U. It is not restrictive to  assume that k, > k 
on [to, T]\U and that for every t E [to, T]\U, F( t ,  -) is k ( t ) -  Lipschitz on 
y( t )  + pB. Set q, = sup t~[t , , ,=]\U ) ) ~ n ( t )  - z(t)ll. Let O c X be an open set. 
For all n 2 1, t E [to, T]\U define the open sets 

Since k, are measurable and assume only countable number of values, so 
does V,. From H I )  we deduce that for all n 2 1 the set-valued map t + 

F(t,z,(t))  is measurable. Hence, by the definition of V,, the sets { t  E 
[to, T]\U I F ( t ,  z,(t)) n Vn( t )  # 0) are measurable. This yields that the set 

is measurable. To end the proof it is enough to  show that 

Fix t E [to,T]\U, v E F( t ,  z ( t ) )  n O and set p = dist(v,X\O) > 0. By the 
Lipschitz continuity of F( t ,  -), for every n 2 1 v E F( t ,  z,(t)) + k( t ) ( (z , ( t )  - 
~ ( t )  1 1  B C F(t ,  zn ( t ) )  + kn(t)qnB. Hence there exist v, E F(t ,  z,(t)) satisfy- 
ing )(on - vll < kn(t)qn. But k,(t)q, -+ O+ as n -+ oo and therefore for all 
large n, dist(v,,X\O) I dist(v,X\O) - Ilv, - vll 2 p - kn(t)qn > kn(t)qn. 
Thus for all large n ,  v, E V,(t). 

Conversely assume that t E [to,  T]\U is such that for all large n the set 
F ( t ,  z,(t)) n Vn(t)  # 0. Pick V ,  E F ( t ,  z,(t)) n Vn( t )  and w, E F(t ,  z ( t ) )  
such that Ilvn - wnl( < k(t)llzn(t) - ~ ( t )  1 1  5 kn(t)qn. Thus dist(w,, X\O) 2 
dist(v,, X\O) - Ilw, - v,ll > kn(t)qn - k,(t)q, = 0 and therefore w, E 0.  
This proves (11) and ends the proof. 

Lemma 1.5 Let U : [to,T] + X be a measurable set-valued map &th 
closed nonempty images and u : [to,T] + X be a measurable function. Then 
the function t + dist (u( t ) ,  U ( t ) )  is measurable. 



Proof - By Theorem 1.1 i i )  there exist measurable selections un(t) E 
U ( t )  such that for all t E [to, T ]  , UnL1Un(t) = U ( t )  . Set 

Then limi,, g,(t) = dist(u(t), U ( t ) ) .  Thus the map t + dist(u(t), U( t ) )  is 
the pointwise limit of measurable functions gi and from [3, p.611 follows that 
g is measurable. 0 

Observe that the two last lemmas yield that the function 7 defined in 
Theorem 1.2 is measurable. 

Proof of Theorem 1.2 - It is not restrictive to assume that to = 0. 
Let E > 0 be so small that q(T)+rTm(T) 5 8. Set ~ ( t )  = M 6 + I,' 7(s)ds + r t )  . 

We claim that it is enough to  construct sequences zn E C 
11(0,  T ;  X ) ,  n = 0,1,  ... such that 

(14) fo = 9,  Ilfl(t) - g(t)ll 5 7 ( t )  + & a.e. in [O,  TI 

(15) fn(t) E F(t ,  ~ , - ~ ( t ) )  for n _> 1 and t E (0, TI 

(16) IIfn+l(t) - fn(t)ll 5 k( t )  ( ( zn ( t )  - zn-l(t)ll for n 2 1 a.e. in (0, TI 

Indeed observe that (12), (16) and (13) together imply that for almost every 

t E [to,Tl 

Thus (2,) is a Cauchy sequence in the Banach space C(0 ,T;X) .  Hence, 
by (16), for almost every t E [0, T ]  the sequence { fn(t)) is Cauchy in X .  



Moreover from (13) and the last inequality we get 

and, by the choice of E ,  

Furthermore from (16), (14) and from the sequence of inequalities (17) fol- 
lows that 

Ilfn(t) - g(t)ll L C1~1' Ilfi+l(t) - fi(t)ll + Ilfl(t) - g(t)ll L 
k( t )  Crif IIzi ( t )  - ~ i - 1  ( t )  1 1  + ~ ( t )  + E i 
k( t )  (q ( t )  + ~ t m ( t ) )  + y(t)  + E a.e. in [0, T ]  

Since the sequence (2,) is Cauchy we define z E C(0, T ;  X )  as the limit of 
2,. By (19) the sequence ifn) is integrably bounded and we have already 
seen that for almost all t  E [0, TI ,  { f n ( t ) )  is Cauchy. Thus we may define 
f E L1(O,T;X)  by f ( t )  = limn,, fn(t) .  

From (18) and the assumption Hz) follows that for almost every t  E [0, TI 
the set 

Q ( t )  := { ( 2 ,  v )  I v  E F ( t , z ) ;  112 - ~ ( t l l l  L B ) 
is closed. Moreover from (15) and (18) for all n 1 1 and all t  E [0, TI ,  
( ~ n - ~ ( t ) ,  fn(t)) E Q(t ) .  Taking the limit we obtain that (8)  holds true 
a.e. in [0, TI. Furthermore taking the limit in (12) and using the Lebesgue 
dominated convergence theorem we get z E S[o,Tl(zo). Passing to the limits 
in (17) and (19) yields the desired estimations on z and f (to = O ! ) .  

To construct zn,  f n  as above we proceed by the induction. From Lemma 
1.4 the set-valued map t  --+ F(t, y( t))  is measurable and has closed images. 
Furthermore for almost every t  E [to, TI ,  F(t ,  y(t)) n{g( t )  + ( ~ ( t )  + E )  B )  # 0. 
Hence by the Lemma 1.3 applied with k( t )  = ~ ( t )  + E the set-valued map 

admits a measurable selection f ( t )  E Ul ( t )  . Clearly f satisfies (14). Define 
zl by (12). Then 



Assume that we already have constructed zn E C(0, T ;  X )  and f n  E t l ( O ,  T ;  X ) ,  
n = 0 ,  ..., N verifying (12) - (16). Define the set-valued map [O,T] 3 t -+ 

UN + 1 ( t ) by 

By Lemma 1.4 the set-valued map t -+ F ( t ,  z N ( t ) )  is measurable. Moreover 
t -+ k ( t )  ) ) z N ( t )  - ~ ~ - ~ ( t ) ( l  is a measurable function. By the Lipschitz con- 
tinuity of F ( t ,  .) for almost every t E [0, TI, U N + ~  ( t )  # @. From Lemma 1.3 
we deduce that there exists a measurable selection f N + 1 ( t )  E F ( t ,  z ~ ( t ) )  
satisfying I ) f ~ + l ( t )  - f ~ ( t ) ) l  5 k ( t ) I l z ~ ( t )  - 2 ~ - i ( t ) ( (  on [O,T]. Define ~ N + I  
by (12) with n = N + 1. Then for almost all t E 10, TI 

Thus {f ,) ,  (2,) verify (12)-(16) with n = N + 1. 

Consider the following norm on C(0, T ;  X) x t l ( O ,  T ;  X ) :  

Corol lary 1.6 (Lipschitz dependence o n  t h e  init ial  condition) Let 
( y ,  g )  be a trajectory-selection pair of (7) on [to, TI and assume that F, y 
satisfy H I )  - H3).  Then there ezists L > 0 such that for all q near ~ ( 0 )  we 
have 

distcxe ( ( y ,  g ) ,  { ( z ,  f )  is a trajectory-selection pair of ( 7 )  on [ to ,  T ]  )) 
5 L 1 1 ~  - ~ ( 0 ) l l  

Proof  - Let m be defined as in the proof of Theorem 1.2. Fix 0 < E 5 1 
and set L = m ( T ) ( T  - to + k(s )ds  + 1).  By Theorem 1.2 we can find 
6 > 0 such that for all q E B a ( y ( t o ) )  there exists a trajectory selection pair 
(z , ,  f,) of (7 )  satisfying z,(to) = q and such that 

llzc - yllc 5 m(T)(IIq - y(t0))l + &(T - to))  
L Lllq - y(t0)ll + L&(T - t o )  

and 

I l fc  - 9111 L Lllq - y(to)(l + &(T - + 1)  

Since E. > 0 is arbitrary, the proof follows. 

We define next the reachable set of ( 7 )  from (to, zo )  a t  time to + h: 



Theorem 1.7 Let zo E X .  Assume that F : [to, TI x X + X is continuous, 
has closed nonempty images and for some 6 > 0,  K > 0 and for every 
t E [to, TI, F(t ,  .) is K-Lipechitr on zo + 6B. Then for every u E F(to, zo) 

dist (G(h)zo + hu, R(to + h, to)zo) = o(h) 

where limh,O+ o(h)/h = 0. 

Proof - Fix u E F(to, zo) and set  to + h) = G(h)zo + %+h  t to + h - 
s)uds = G(h)zo+ hu+o(h). Set ~ ( h )  = sup8E[o,hj dist(u, F(to+s,  to+ 8 ) ) ) .  

Then, by continuity of F, limh,o+ ~ ( h )  = 0. This and Theorem 1.2 yield 
that for some C > 0,  and all small h > 0,  there exist zh E Slto,to+hl (zo) such 
that Ily(to + h )  - zh(to + h(J  _< C E ( ~ )  h. Therefore dist(G (h)zo + hu, R(to + 
h,  to).o)) = o(h). 

2 Relaxation of differential inclusions 

In this section we compare trajectories of (7) and of the convexified (relaxed) 
differential inclusion: 

Recall that a set-valued map U : [to,T] -+ X is called integrably bounded 
if there exists m E l l ( t o , T )  such that for almost every t E   to,^], ~ ( t )  c 
m ( t )  B. 

Theorem 2.1 Let ( y , g )  be a trajectory-selection pair of the relazed inclu- 
sion (20) on [ to ,T] .  Assume that F and y satisfy all the aeeumptione of 
Theorem 1.2 and that the map t -+ F(t ,y( t ) )  is integrably bounded on 
[ to ,T] .  Let TI(-) be defined as in Theorem 1.2. If r,(T) < then for every 
6 > 0 there ezists a mild trajectory z of (7) on [to,T] satisfying llz-yJlc 5 6 .  

To prove the above we shall use 

Theorem 2.2 ( [ 1 8 ] )  Let U : [to, TI + X be a measurable, integrably bounded 
set-valued map with closed nonempty images. Then 

We also need the following two lemmas. 



Lemma 2.3 Consider a measurable, integrably bounded set-valued map U : 
[to,T] + X with closed nonempty images and let   to,^] 3 8 + g(s) E 
G(T - s)U(s)  be a measurable selection. Then there ezists a measurable 
selection u ( s )  E U ( s )  such that g(s) = G(T - s)u(s)  almost everywhere in 
[to, TI.  

Proof - Define the continuous function f : [to, T ]  x X + X by 

Then g(s) E f ( 8 ,  U ( s ) ) .  From [3, p.851 we deduce the existence of a mea- 
surable selection u(.)  as in the claim of the lemma. 

Lemma 2.4 Consider a measurable, integrably bounded set-valued map U : 
[to, TI + X with closed nonempty images. Then 

Proof - Since U is integrably bounded, also the map s + G(T - s)U(s)  
is integrably bounded. By Theorem 1.1 ii) there exist measurable selec- 
tions un( t )  E U ( t )  such that for all t E [ to ,T] ,  U ( t )  = U,>lu,o. Set 
Un(t) = uzy u,(t) and observe that for every t E [to, TI ,  G(T  - t )Un(t)  
is closed. Let w(t)  E G(T - t )U( t )  be an integrable selection and set 
en(t)  = dist (w( t ) ,G(T - t )Un(t)) .  Then the sequence - is inte- 
grably bounded. From Lemma 1.2 there exist integrable selections wn(t)  E 
G(T - t)Un(t) such that 11s: wn(t)dt - Jc w(t)dtll 5 JE rn(t)dt + i. It re- 
mains to  show that for every t E (to, TI ,  limn,, en(t)  = 0. But this follows 
immediately from the choice of u,. 

Proof of Theorem 2.1 - It is not restrictive to assume that to = 0 
and that J: k(t)dt > 0. Fix 6 > 0. We use the main idea from [4, p.1171 for 
the finite dimensional case. Let M, m be defined as in Theorem 1.2 for to = 0 
and $J E l l ( O , T )  be such that for almost all t E (O,T], F( t ,  y ( t ) )  C $J(t)B.  
Let 

Let n 2 1 be so large, that for any measurable I c [0, TI of p ( I )  5 we 
have 



Denote by I, the interval [G, !I, j = 1, ..., n. h o m  Lemma 1.4 the map 
t  -, F ( t ,  y ( t ) )  is measurable. By Lemma 2.4 for every j 

Observe that G ( t ,  - r )  F(r ,  ~ ( 7 ) )  = G ( t j  - r ) z  F(r ,  y ( r ) ) .  Hence from 
(21) and Theorem 2.2 we deduce that 

This and Lemma 2.3 imply that for every j there exists a measurable selec- 
tion f,(t) E F ( t , y ( t ) )  such that 

Let f be the function equal to  f ,  on I ,  and set zo ( t )  = G ( ~ ) Y ( o )  + j,f G( t  - 
S )  f ( r )dr .  Then for every t  E [0, TI there exists j such that t  E I, and 

Observe that for all t  E [0, TI, F ( t  , .) is k( t )  - Li~schitz on z0 ( t )  + $ B.  Hence 

Furthermore, by the choice of 7 ,  Mczp ( M  JT k(s)ds)  JT k(t)ydt < 812. By 
Theorem 1.2 applied with 8 = 7 there exists a trajectory z of (7) satisfying 
z ( 0 )  = zo (0)  = y(0) and 

In this way we obtain that 112 - yllc I 112 - zollc + llzo - yll < f + f = 6. 
The proof is complete. 



Theorem 2.5 (Relaxation theorem) Let F : [to,T] x X -+ X be a set- 
valued map with closed nonempty images. Assume that there eaists k E 
t l ( t o , T )  such that for almost every t E [ to ,T] ,  F(t ,  -) is k(t)-Lipschitx and 
for all z E X ,  F( t ,  z )  c k( t )B.  Then the mild trajectories of (7) are dense 
in the mild trajectories of the relazed inclusion (20) in the metric of uniform 
convergence. 

Corollary 2.6 Under all assumptions of Theorem 2.5 assume that X is 
reflezive and that at least one of the following three conditions is satisfied 

i)  The semigroup G(.) is compact 
ii) The semigroup G(.) is uniformly continuous 
iii) There ezists a compact K c X such that for every ( t , z )  E [to,T] x 

X ,  F ( t , z )  c K .  
Let Si:,Tl(() denote the set of mild trajectories of (20) on [to,T] with 

z ( to)  = (. Then for every ( E X ,  the closure of S[to,T1(() in the metric of 
uniform convergence is equal to S K I T I ( ( ) .  

The above corollary follows from Theorem 2.5 and 

Theorem 2.7 Assume that X is reflezive and let F : [to,T] x X -+ X be 
a set-valued map with nonempty closed convez images. Assume that there 
ezists k E t l ( t o ,  T )  such that for almost every t E [ to ,T] ,  F( t ,  .) is k ( t ) -  
Lipschitx and for all z E X ,  F( t ,  z) c k ( t )  B. If at least one of the following 
three conditions is satisfied 

i)  The semigroup G(.)  is compact 
ii) The semigroup G( . )  is uniformly continuous 
iii) There ezists a compact K c X such that for every ( t ,  z )  E [to,T] x 

X ,  F ( t , z )  c K .  
Then for every ( E X the set Slto,T](() C C ( 0 , T ; X )  is sequentially 

compact. 

Proof  - Fix ( E X and let ( z n ,  f n )  be trajectory-selection pairs of (7) 
with zn(to) = (. Thus 

Set M = S U p , E ~ O , ~ - t o ]  IIG(s)ll. We prove first that the family {z,),>~ is 
equicontinuous. Indeed for every n 2 1 and for all t o  < t 5 t' 5 T 



Since f n  are integrably bounded by k for every e > 0 there exists 6 > 0 such 
that 0 j t < t' j t + 6 < T yields stt' 11 fn(s) lids 5 r .  It remains to show 
that 

t 
im (G(tl  - t )  - Id)  G(t  - s )  fn(s)ds = 0 uniformly in n and t (23)  :L t+  to  

We shall use the assumptions on the semigroup G.  Assume first tha tG(- )  
is compact. Fix tl E]O,T - to] and let Q c X be a compact convex set 
containing G ( t l )  B. Then 

tl E [ t l , T  - to], G ( s ) B  = G(t l )G(s  - t l ) B  c G ( t l ) M B  C MQ 

Thus for all tl > 0 verifying to 5 t - t l  

The set M $: k(s)dsQ being compact and the semigroup G being strongly 
continuous we deduce that for every E > 0 there exists 6 > 0 such that 

Consequently for every t 5 t' j t + 6 and all n, (G(tl  - t )  - Id) $;o-tl G ( t  - 
s )  fn(s)ds E r B .  Since G(t  - s) fn(s)ds + 0 when t1 + O+ uniformly 
in t and n we proved (23). 

I f  G(.)  is uniformly continuous, then IIG(h) - Id11 + 0 when h + 0+ 
and, again we derive (23). 

If the assumption iii) holds true, then there exists a compact Q c X 
such that for every n, fn([to, TI) c Q. Therefore (G(t l  - t )  - Id)  $to G(t  - 
s )  fn(a)ds c G(t  - s)(G(tl  - t )  - Id)Qds. The set Q being compact, for 
every r > 0 and all sufficiently small h > 0, (G(h)  - Id)Q c eB.  This 
completes the proof of (23). 

Hence the sequence (2,) is equicontinuous. Clearly it is also bounded. 
From the Ascoli-Arzela theorem, taking a subsequence and keeping the same 
notations we may assume that it converge uniformly to  some z E C(0, T;  X ) .  
We prove next that z E SltosT1(<). 

The sequence {fn)nll being integrably bounded and X being reflexive, 
by the Danford-Pettis theorem, we may assume that it converge weakly in 
L1(O,T; X )  to  some f E L1(O, T;  X). By the Mazur lemma, there exist 



AT 2 0, i = n, ..., k(n) such that c:$,) AT = 1 and the sequence gn := 

x:$,) A; 1, converge to f in L1(O, T ;  X ) .  Then from [7, ~. l5O] a subsequence 
gn j  converge to f almost everywhere. Hence for every t E [to, TI 

and, since (2,) converge uniformly to z ,  using (22 ) ,  we get 
r t  

To end the proof it is enough to show that f (s )  E F(s, ~ ( 8 ) )  almost every- 
where in [to, TI. 

k ( n  .) Observe that for almost every t E [ to,T],  gn j ( t )  E xi,:, A? ~ ( t ,  Zi(t)) C 

( t  ( t ) )  + k t )  A t )  - z ( t ) B  Using that limi-., zi(t) = z ( t )  
we deduce that for almost every t E [to, TI, f ( t )  E F(t,  z ( t ) ) .  The proof is 
complete. 

3 Infinitesimal generator of reachable map 

Consider a set-valued map F : [to,T] x X -, X with closed images, where 
0 5 to 5 T .  For all t E [to,T[and t < t' < T ,  ( E X  set 

This is the so-called reachable set of (7) from (t, () at time t'. It was proved in 
[12], [16] that when the dimension of X is finite, G = Id and F is sufficiently 
regular, then the set EL5 F(t ,  () is the infinitesimal generator of the semigroup 
R(- ,  t ) (  in the sense that the difference quotients R(t+y"-' converge to 
i3 F (t , () . In this section we extend this result to the infinite dimensional 
case. 

Theorem 3.1 Under all assumptions of Theorem 1.7 

F ( to,  zo) c lim inf 
R(to + h, to)zo - G(h).o 

h+O+ h 

Consequently, i f  zo E Dom A, then we have 

Azo + F(to, zo) c liminf 
R(t0 + h, to)zo - zo 

h-+O+ h 

If moreover F(to, zo) is bounded, then F(to, zo) in the above formulas may 
be replaced b y  its closed convez hull E F(to, 20). 



Proof - The first claim follows from Theorem 1.7. I f  F(to, zo) is bounded 
then F is bounded on a neighborhood of (to,  20 ) .  By the proof of Theorem 
1.7 and Theorem 2.1 we may replace F by E F .  

When F has compact images the following "upper" estimate holds true: 

Theorem 3.2 Let zo E X .  Assume that F : [to,T] x X + X is bounded, 
upper semicontinuous at ( to ,zo)  and that either the semigroup G(.) is. uni- 
formly continuous or F(to,zo)  is compact. Then 

lim sup R ( t ~  + h,  t ~ ) ( z ~ )  - G(h)zo 
F ( to ,  zo) 

h+O+ h 

Consequently i f  zo E Dom A then 

w E limsup R(tO + h, - z0 - w - Azo E E F(to, zO) 
h+O+ h 

Proof - Let M = suptElo,rr-to~ IIG(t)ll, K > 0 be such that for all ( t ,  z ) ,  

F( t ,  z )  c K B.  Fix u E lim s ~ p ~ + ~ +  R(to+h,to)zo-C(h)zo 
h and let ( zh ,  f h )  be 

trajectory-selection pairs such that zh(tO) = zo and (zh(tO + h )  - z ( to ) ) /h  + 

u. Then Jlzh(to + s )  - G(h)zoll 5 M K S  and, by the upper semicontinuity 
of F ,  there exist e (h )  -, O+ such that for all h > 0 and all s E [0, h ] ,  F(to + 
s, zh(tO + s) )  c F(tO, zO)  + c(h)B.  Hence, by the assumptions on G ,  

where limh+o+ l ( h )  = 0. But ~ i : + ~  F(to, zo)dt c h E F(to, zo)  and our 
claim follows. 

Theorem 3.3 Let t l  E [to, TI ,  zl E X and assume that for some p > 0,  F 
is continuous on [tl - p,  tl + p] n [to, TI x B,(z l)  and has bounded nonempty 
images. Further assume that for some L > 0 and all t E [tl - p ,  tl+p] n[ to ,  TI 
the set-valued map F( t ,  .) is L-Lipschitz on B p ( z l ) .  Then for all ( t ,  () near 
( t l ,  z l )  and all small h > 0 

where lim(t,f)+(tl,~l),h+o+ o(t,  (, h ) / h  = 0. Consequently i f  F ( t l ,  z l )  is 
compact or i f  the semigroup {G(t))t>o - is uniformly continuous, then 



Remark - Equality (25) has to be understood in the following way 

Proof - Set M = sup,,,, ,=-* IIG(t)ll. Since F is continuous and has 
bounded images we may assume that for some MI 2 1 such that for all 
It - tll I p ,  ( E zl + pB we have F(t, [) c MIB.  Define 

and observe that for all ( t ,  () E U and t' E [to, T] satisfying \It' - t(l < p/2 
and every trajectory-selection pair (2,  f )  of (7)  with z ( t )  = ( defined on the 
time interval [t ,  t'] and verifying z ( [ t ,  t ']) c zl + pB, we have IJz(tf) - zll( I 
Ilz1 - € 1 1  + I / €  - G(t f  - t)€ll + llG(t' - t ) €  - z(tf)Il < IlG(tf - t ) €  - € 1 1  + 
I:' IIG(tf - s)11 llf(s)llds+ P/2 5 IIG(tf - t)C - € 1 1  + MMl(t' - t )  + P/2. BY 
Theorem 1.7 for all small h > 0 and all t  near tl the set S[t,t+hl(() # 8. 
Moreover for all h E [0, p/4MMl], ( t ,  () E U ,  and for every z E 

(26) V s E [t , t  + h ] ,  Ilz(s) - G ( s  - t )( l(  I MMl(s  - t )  

Since F is continuous at  ( t l ,  z l )  for every E > 0 there exists 6 > 0 such that 

V z E  zl + 6 B ,  t E  [ti - 6,ti + 6 ] ,  h E  [0,6], F( t+ h , z )  c F ( t l , z l ) + ~ B  

Using (26) we obtain that for all 0 c h < min{b/MMl,p/4MMl),  ( t ,  () E 

U n [tl - 6,tl + 61 x B6(z l )  and trajectory-selection pair ( z ,  f )  of (7)  on 
It, t  + hl 

This implies that 

for all sufficiently small h > 0 and all ( t ,  f )  E U n [tl - 6 ,  tl + 61 x B6(z l ) .  
Since E > 0 is arbitrary we proved that for all ( t ,  () near ( t l ,  z l )  and small 
h > O  



To prove the opposite inclusion, observe that by Theorem 2.1, for all ( t ,  () 
near ( t l ,  z l )  and all small h > 0 reachable sets R(t + h ,  t ) (  of (7)  are dense 
in the reachable sets RcO(t + h ,  t ) (  of the convexified inclusion (20). Thus 
we may assume that F has convex images. Fix u E F( t l ,  z l )  and set 

G(t,s, (, u )  := dist u ,  F(t  + s ,G(s)(  + G ( s  - r)udr) I' 
Then from the continuity of F ,  6( t ,  s ,  (, u )  + 0 when t + t l ,  8 + 0+, ( + 

z l  uniformly in u. By Theorem 1.2 there exist 61 > 0 ,  Mz > 0 which depend 
only on L and MI such that for all h E [O, 611 

h 
dist ( G ( h ) ( +  / * ~ ( h  - d ( t  + t ) )  6 M2 (1 6 ( t , ~ ,  € ,u)ds+ h2 

0 

This proves our claim. 

4 Variational inclusion 

This section is devoted to  an analog of the variational equation of ODE for 
differential inclusions. For this we need to  extend the notion of derivative 
to  set-valued maps. 

Definition 4.1 Let 3 be a set-valued map from a Banach space X to an- 
other Y and let y € 3 ( 2 ) .  The derivative d T ( z , y )  is the set-valued map 
from X to Y defined b y  

d ( u ,  ' ( z  + huh) )- y 
h 

= 0 for some uh + u 

When 3 is locally Lipschitz at z then the above definition may be rewritten 

We refer to  [13], [12], [14] and [15] for the applications of set-valued deriva- 
tives in the finite dimensional context. 

Below we denote by dF(t ,  z ,  y) the derivative of the set-valued map 
F ( t ,  ., .), i.e. its partial derivative with respect to  the state variable. 

Let (y ,g)  be a trajectory-selection pair of the differential inclusion (7)  
defined on the time interval [to, TI.  We "linearize" (7)  along ( y ,  g) replacing 
it  by the "variational inclusion": 



where u E X .  
In the theorem stated below we consider the solution map Sc,e from X 

to  the space C (0 ,  T ;  X )  x t l ( O ,  T ;  X )  defined by 

Sc,r ( u )  = { (2, f )  is a trajectory-selection pair of ( 7 )  on [to, T ]  ) 

Theorem 4.2 (Variat ional  inclus ion)  If F, y verify the crssumptionr, H I )  
- Hs),  then for a11 u E X I  every trajectory-selection pair ( w ,  x )  of the lin- 
earized inclusion (27) on [to, T ]  satisfies ( w ,  x )  E dSC,e(y(0),  ( y ,  g ) ) ( ~ ) .  In 
the other words, 

{ ( w ,  x )  is a trajectory-selection pair of (27) on [to,T] ) C d S c , r ( ~ ( O ) ,  ( ~ , g ) ) ( u )  

Proof - Let ( w ,  x )  E C(to, T ;  X )  x t l ( O ,  T ;  X )  be a trajectory- 
selection pair of (27).  By the definition of derivative and local Lipschitz 
continuity of F ( t ,  .), for almost all t E [to, T I ,  

Moreover, since g( t )  E F( t ,  y ( t ) )  a.e. in [to, T I ,  by H3),  for all sufficiently 
small h > 0 and for almost all t E [to, T ]  

From Lemmas 1.4 and 1.5 the function 

is measurable. This, (28) and the Lebesgue dominated convergence theorem 
yield 

where lirnh+o+ o ( h ) / h  = 0. By Theorem 1.2 applied with E = h2 and by (29) 
there exist M I  2 0 and trajectory-selection pairs (yh,gh) of ( 7 )  satisfying 

This implies that 

Yh - Y lim - = w in C(0 ,T;  X ) ;  lim 0"-(I = x in L'(o,T; X )  
h+O+ h h+O+ h 



Hence 
Sc,r(y(O) + h u )  - ( y , g )  

h 
) = o  

Since u and ( w ,  n )  are arbitrary the proof is complete. 
A stronger result may be proved when we assume in addition that the 

map t -+ F ( t ,  y ( t ) )  is integrably bounded. 
Consider the "convexn linearization of (7) along ( y ,  g ) :  

where u E X .  In the theorem stated below we consider the solution map 
S c ( ( )  = Slt,,T1(() as the set-valued map from X to the space C(0, T ;  X ) .  

Theorem 4.3 Under all assumptions of Theorem 1.2 assume that F ( t ,  ~ ( t ) )  
is  integrably bounded. Then for all u E X I  every mild trajectory w to the 
linearized inclusion (30) defined on [to,  TI satisfies w E d Sc (y (0) ,  y ) ( u ) .  In 
the other words, 

{w( . )  I w is a trajectory of (30) on [to,T] ) c dSc(y(O),y)(u)  

Proof - From Theorem 2.1 we may replace F by S F .  Then the result 
follows from Theorem 4.2. 

The derivative of the set-valued map F ( t ,  z )  has the following useful 
property: 

If F(t , . )  is locally Lipschitz on a neighborhood of z ,  then for every 
Y E F ( t , z )  
(31) d F ( t ,  z ,  Y )  + T = F ( ~ , ~ ) ( Y )  c d F ( t ,  z ,  Y )  

where T E F ( t , z ) ( ~ )  denote the tangent cone of convex analysis t o  S F ( t ,  z )  at  
y. This follows from a more general 

Theorem 4.4 Let 3 be a set-valued map from a Banach space X to another 
Y having convez images and assume that it is Lipschitz continuous at z .  
Then for every y E 3 ( z )  

d?(z, y)(O) = U A(?(=) - y) (tangent cone to ? ( z )  a t  y) 
A20 

and 

V u E X with d?(z, y ) ( u )  # 0, d?(z, y ) ( u )  + d?(z, Y ) ( O )  = d?(z, Y ) ( u )  



Proof - The first statement follows immediately from Definition 4.1 and 
the Lipschitz continuity of 7 .  Fix u E X such that d7(z,  y)(u) # 0 and any 
v E d7(z,  y)(u), w E d7(z,  y)(O). Let vh + v be such that y + hvh E 
7 ( z  + hu) and wh + w be such that y + 6 w h  E 7(z) .  Then, by the 
Lipschitz continuity of 7 ,  for all small h > 0 and for some wS, we have 

where k denotes a Lipschitz constant of 7. Using that 7 has convex images 
we get (1 -fi)(~ + hvh) +f i(~ +fiwL) = y + h(vh + wL) -fi hvh = 
y + h(v + w) + o(h) E 7 ( z  + hu). Hence 

Consequently d7(z,  y)(u) + d7(z,  y)(O) c d?(z, y)(u). On the other hand 
0 E d7(z,  y)(O) and therefore d7(z ,  y)(u) + d7(z,  y)(O) 3 dy(z,  y)(u). This 
ends the proof. 

5 Application: semilinear optimal control prob- 
lem with end point constraints 

Let Z be a complete separable metric space, X be a separable Banach 
space and f : [0, TI x X x Z + X be such that for all (z, u) E X x Z the 
function f (., z,  u) is measurable, for every t E [0, TI, f (t, -, .) is continuous, 
for every (t, u) E [0, TI x Z the function f (t, -, u) is differentiable. 

Consider a measurable set-valued map U : [0, TI + Z with closed 
nonempty images. We assume that there exists k E C1(O, T )  such that 

a) For almost every t E [O,T] and for all u E U(t), f (t, ., u) is k(t)- 
Lipschitz, i.e., 

v z', z" E X ,  V U E  U(t), Ilf(t,zl,u) - f(t,z",u)ll 5 k(t) llz' - z"ll 

b) For almost all t E [0, T ]  and for all z E X the set f (t, z ,  U(t)) is closed 
and is contained in k(t) B 

Let K c X.  Recall that the contingent cone and the Dubovitskij- 
Miljutine tangent cone to K at  z E K are defined by 

K - z  dist(z + hv, K )  
TK(z) = limsup - = { V E X  I liminf 

h h 
= 0 )  

h+O+ h+O+ 



D K ( z )  = { w  E X 13 E > 0 such that V h  E [ o , E ] ,  z +  h ~ , ( w )  c K) 

respectively. 
Set UT = { u : [0, TI -, Z I u( t )  E U(t )  is measurable). 
Consider a differentiable function (p : X x X -, R, T > 0 and closed 

subsets KO, KT c X .  We study the optimal control problem 

(32) minimize (p(z(O), z ( T ) )  

over mild solutions of the semilinear control system 

where A is the infinitesimal generator of a strongly continuous semigroup 
{G(t)) t>o of continuous linear operators on X. 

Our aim is to  prove necessary conditions satisfied by the optimal solu- 
tions of problem (32)) (33). 

Let ( z ,  Ti) be a trajectory-control pair of (33)) i.e., for every t E [0, TI 

z ( t )  = G(t)z(O) + G(t - s )  f ( s ,  z(s), i i(s))ds l 
We associate with it the linear equation 

(34) 
a f  Z1( t )  = A Z ( t )  + - ( t ,  z ( t ) ,  Ti(t))Z(t) a z  

Denote by SE(t; s )  the solution operator of (34). That is the only strongly 
continuous solution of the operator equation 

where 0 5 s 5 t 5 T 

Theorem 5.1 Let ( z ,  a) be an optimal trajectory-control pair of the problem 
(32)-(33) and let Q c DKT(z (T) )  be a convez cone with nonempty interior 
and P c TK,(z(0)) be a convez cone. Then there ezist X 1 0,  €0 E P- ,  cT E 
Q- not vanishing simultaneously such that the function 



satisfies the mazimum principle 

(36) c p(t), f ( z ( t )  , i i(t))  > = max < p(t) , f ( z ( t )  , u )  > a.e. in [0, TI 
u € U ( t )  

and the traneversality condition 

Proof - Define the set-valued map F : [0, TI x X -, X by 

Fix z E X .  From Theorem 1.1 ii) there exist measurable selections un(t) E 
U(t )  such that for every t  E [O,T], U( t )  = m. Set vn(t) = f ( t ,  z ,  un(t)) .  
Then v,(-) is measurable and from continuity of f ( t ,  z ,  -), F(t ,  z )  = U,Llv,(t). 
Thus from Theorem 1.1 we deduce that for every z E X ,  F(., z )  is measur- 
able and, by the assumptions on f ,  for almost every t  E [ to ,T] ,  F ( t , - )  is 
k(t)-Lipschitz and for every z E X, F(t ,  z )  c k( t )B .  Consider the differ- 
ential inclusion 

(38) z f ( t )  E Az( t )  + F ( t , z ( t ) )  

We claim that solutions of differential inclusion (38) and of the control sys- 
tem (33) defined on the time interval [0, TI do coincide. To prove that, it is 
enough to  consider a trajectory-selection pair ( z , g )  of (38) defined on the 
time interval [O,T] and to  prove that there exists u E UT such that 

Define the function $( t ,  u )  = f ( t  , z ( t ) ,  u) .  Then $ is measurable in t  and con- 
inuous in u.  Moreover for almost every t  € [0, TI ,  g( t)  € f ( t ,  z ( t ) ,  U ( t ) )  = 
$( t ,  U ( t ) ) .  Hence from [3, p.851 we deduce the existence of u E UT verify- 
ing (39). Thus we may replace the control system (40) by the differential 
inclusion (38). 

Consider the linear control system 

The reachable set RL(€) of (40) by the mild trajectories from ( at  time T 
is given by 



Case 1. Assume that In t  Q n R ~ ( P )  = 0. Since Q has a nonempty 
interior, by the separation theorem, there exists a nonzero CT E X* such 
that 

inf < C T , e > L  su < C T , e >  
eERL(T) e E 8  

Because Q is a cone we deduce that CT E Q9-. Moreover the last inequality 
yield that for every measurable selection y(t) E z f (t, z(t), U(t)) and every 
p E we have 

Setting y(t) = f (t, z(t),C(t)) in the above we get p(0) = S=(T;O)*(-(T) E 
P-. On the other hand applying (41) with p = 0 we get: for every measur- 
able selection y(t) E i 5  f (t, z(t), U (t)) 

Hence  SUP,^^(^) < p(t), f (t, z(t), u) >=< p(t), f (t, z(t), U(t)) > almost ev- 
erywhere in [0, TI. Therefore the maximum principle (36) and the transver- 
sality condition (37) hold true with X = 0, to = p(0). 

Case 2. We assume here that In t  Q n R ~ ( P )  # 0. Let F be a mild 
trajectory of (40) on [O,T] satisfying 

(42) F (T)  E In t  Q 

From Theorem 4.3 we deduce that that every mild trajectory w E C(0, T; X )  
of the "linearn differential inclusion 

on [O, TI verifies w E dSc(z(0), z)(w(O)). From the definition of the deriva- 
tive for almost every t E [0, TI 

Hence, using (31) we deduce that every solution w E C(0, T; X)  of the linear 
control system (40) verifies w E dSc(z(0), z)(w(O)). We claim that for every 
trajectory w of (40) satisfying w(T) E g w e  have pf(z(0), z(T))(w(O), w(T)) 2 
0. Indeed pick such w and assume first that w(T) E In t  Q. Let hi + 



0+, y, + w(0) be such that z(0) + hi y; E KO. Theorems 4.3 and 1.2 imply 
that for every i > 1 there exists z; E SIO,Tl(~(0) + hiyi) such that 

On the other hand, by definition of DK,(z(T)), there exists 6 > 0 such that 
for all h E [O, €1, z(T) + hB, (w(T)) c KT. Therefore for all sufficiently large 
i, z(T) + ~ W ; ( T )  E KT. 

Since z is an optimal solution we get p(z(0) + hiwi(O), z(T) + hiwi(T)) 1 
p(z(O), z(T)) and, consequently, pl(z(0), z(T))(w(O), w(T)) 1 0. To prove 
the same statement in the general case define wx := XE+ (1 - X)w , where 0 < 
X < 1. Then wx is a trajectory of the linear system (40). Since w(T) E Q,  by 
(42), we also have wx(T) E Int Q. Thus pf(z(0), z(T))(wx(0), wx(T)) > 0. 
Taking the limit when X + O+ we end the proof of our claim. 

We proved that the following relation holds true: 

Since F (T)  E Int Q we get 

UP, RL(p)) I P E X )  - P x a = {(P, RL(p)) 1 p E X)+ 
( ~ ( o ) ,  E(T)) - x a 3 {(p, RL(p)) I p E X )  + (F(O), X )  = X x X 

and from a well known result of convex analysis we deduce that 

{(p, R L ( ~ ) )  I p E X)- + P- x Q- is closed 

Therefore, by (43), there exist (ao,p(T)) E {(p, R ~ ( ~ ) )  I p E X)- and 
(€0, (T) E P- x 4- such that (-ao, -P(T)) = Vp(z(O), z(T)) + (€0, (T). 
Thus p(T) E RL(0)-. Define p by (35). Exactly as in the Case 1 we 
deduce that p verifies the maximum priciple (36). Furthermore for every 
z E X, < (ao,p(T)),  (z, S d T ;  0)z) >=< a 0  - p(O), z >I 0. Consequently 
a 0  = p(0). Which completes the proof. 0 
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