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A priori estimates for operational differential
inclusions

Halina Frankowska

Introduction

This paper is concerned with the multivalued operational equation (dif-
ferential inclusion)

(1) ' € Az + F(t,z), z(0) = =0

where A is the infinitesimal generator of a Cy-semigroup {G(t)}:>o on a
separable Banach space X and F : [0,T] x X — X is a set-valued map.
Such inclusion is a convenient tool to investigate for instance the semilinear
control system

' € Az + f(t,z,u), u € U(t,z), z(0) = =z

where U : [0,T] x X — X is a set-valued map of controls (depending on
the time and on the state). Setting F(t,z) = f(t,z,U(t, z)) we reduce the
above control system to the inclusion (1).

Differential inclusion

(2) z(t) € F(t,=(t)

in finite dimensional context was extensively studied in the literature since
30%¢2, It was initiated by the Polish and French mathematicians Zaremba
in [28], [29] and Marchaud [20]. They were mostly interested by existence
results and also investigated some of their qualitative properties. While
Zaremba studied the so-called paratingent solutions, Marchaud was mainly
concerned with the contingent ones. Later on Wazewski [26] have shown that
one may reduce his interest to more “classical”, Caratheodory type solutions,
i.e., absolutely continuous functions verifying (2) almost everywhere.

The interest to the differential inclusion (2) was renewed in earlier sixties,
when mathematicians got attracted by a new domain: control theory. Fil-
ippov [10] and Wazewski [27] have shown that under very mild assumptions
the control system

(3) ' = f(t,z,u(t)), u(t) € U is measurable



may be reduced to the differential inclusion (2). This tremendously simpli-
fied the study of the closure of trajectories to (3) and led to the celebrated
Filippov-Wazewski relaxation theorem (see also |2, p.123]).

Control system (3) with state-independent control subset U can be con-
sidered as a family of differential equations: with every control u(-) (mea-
surable selection of U) one can associate the ordinary differential equation

Z(t) = eult, (1))

where @y(t, z) = f(t,z,u(t)). Differential inclusion also encompass much
more sophisticated control systems:

1. closed loop control systems
(4) '(t) = f(t,z(t),u(?), ult) € Ut =z(t))
2. implicit control systems
(5) f(,2(2), 2'(8), u(t)) = O, u(t) € U(t,=(t)
3. systems with uncertainties
(6) '(t) € f(t,z(t),ut)) + e(t,z)B, u(t) € U(t,z(t))
where ¢(t, z) is a function incorporating the errors of the model.

Setting F(t,z) = f(t,z,U(t, z))in the first case, F(t,z) = {v|0 € f(¢,z,v,U(t, z))}
in the second one and F(t,z) = f(t,z(t),U(t, z)) +€(t,z) B in the third one,

we replace the control systems (4)-(6) by the differential inclusion (2). To
proceed further a differential calculus of set-valued maps adequate for con-

trol theory problems had to be developed. We refer to [2], [11], [4], [13]-[16]

for many results on differential inclusions and their applications to control
theory for finite dimensional control systems.

The last years there were many attempts to get similar results for infinite
dimensional differential inclusions (see for instance [24], [6], [5] and the bib-
liographies contained therein). In monograph [24], it was shown that many
results on (2) known in the finite dimensional context may be extended
to compact valued maps in infinite dimensional Banach spaces. However
the field of applications of results obtained so far is very restrictive. On
one hand the compactness hypothesis is too strong, on the other, (3) keep
us far from the distributed parameter systems. Let us mention also that



state-constraint problems for (1) were studied by Shi Shuzhong in [22] and
[23].

In this paper we study (1) and its mild trajectories, i.e., mild solutions
of the Cauchy problem

{ = Az + f(t,z), f(t,z) € F(t,z)
20) = ¢

It is well known that in general the Cauchy problem

7 = Az + f(t,2)
z(0) = =zo

does not have classical solutions and that a way to overcome this difficulty
is to look for continuous solutions to the integral equation

z(t) = G(t)zo + /otG(t—-s)f(s, z(s))ds

This is why the concept of the mild solution is so convenient for solving (1).

We show here that many results which allow to apply differential inclu-
sions to finite dimensional control systems are valid as well for (1). We start
in Section 1 by a theorem analogous to the Filippov theorem [11], a kind
of set-valued Gronwall’s lemma (see also [2], [4]). This allows to prove in
Section 2 a relaxation theorem for (1). Namely, that under some technical
assumptions, the mild trajectories of (1) are dense in the mild trajectories
of the convexified inclusion:

7z € Az + ¢ F(t,z), z(0) = zo

In Section 3 we investigate infinitesimal generators of the reachable map
associated to (1) and in Section 4, the variational inclusion for (1). We prove
in Section 5 a necessary condition for optimality for an infinite dimensional
optimal control problem, obtained thanks to the relaxation theorem.

Some theorems similar to the one presented in Section 5 may be found in
[8] and [9] for the Hilbert space X and in [17] for the separable Banach space
X with the norm Gateaux differentiable away from zero. The main difficulty
we overcome is the lack of such smoothness of the norm. In this way our
result applies when X is for instance the space of essentially bounded maps
or the space of continuous functions.

I would like to thank M.Valadier and C.Hess for valuable suggestions
which helped to improve the earlier version of this paper.



1 Quasitrajectories and trajectories

Consider a separable Banach space X and a strongly continuous semigroup
G(t) € L(X,X), t > 0 of bounded linear operators from X to X having the
infinitesimal generator A. Let 0 < ty < T be given and F be a set-valued
map from [tg, T| X X into closed nonempty subsets of X. We associate with
it the differential inclusion

(N T'(t) € Az(t) + F(t,z(t))

Denote by C(to, T; X) the Banach space of continuous functions from {to, T'|
to X with the norm ||z||c = supyeps, ) llz(t)|| and by L!(to,T; X) the Ba-
nach space of Bochner’s integrable functions (see for instance (19, p.78|)
from [ty,T] to X with the norm ||z||; = ftf llz(t)||dt. Set L(to,T) =
ﬂl(to, T, R+)

A continuous function z € C(tp, T; X) is called a mild trajectory of (7), if
there exist o € X and a Bochner integrable function f € £1(to, T; X) such
that

(8) f(t) € F(t,z(t)) ae. in [to,T]
(9) Vte(t,T], z(t) = G(t —to)zo + /t‘G(t—s)f(s)ds

i.e. f is a Bochner integrable selection of the set-valued map t — F(t, z(t))
and z is the mild solution of the initial value problem

(10) { Z(t) = Az(t)+ f(t), t € [to,T]

I(to) = 1z

We shall call (z, f) € C(to, T; X) x L(to, T; X) a trajectory-selection pair of
(7) if f verifies (8) and z is a mild solution of (10). This notion extends the
definition of solution of differential inclusion for finite dimensional spaces
because of the following

Remark — When X is a finite dimensional space and G(-) = Id, then
every mild trajectory z is an absolutely continuous function satisfying

Z'(t) € F(t,z(t)) ae. in [to,T]

Indeed in this case the function z defined by (9) is absolutely continuous
and z'(t) = f(t) a.e. in [to, T]. O
We study here some qualitative properties of mild trajectories.



A set-valued map ® : X — 2% is called L-Lipschitz on K c X if for all
z€ K, ®(z) # @ and

Vz,yec K, ®(z) ¢ ®(y) + Ll|lz-y|| B

where B denotes the closed unit ball in X.

Remark — An equivalent definition may be given using the Haus-
dorff pseudometric. Namely let d(-,-) denote the Hausdorff pseudometric
on nonempty subsets of X. If for some M > 0 and all z,y € K we
have d(®(z),®(y)) < M|z — y|| then for every L > M and z,y € K,
P(z) c 2(y)+ Llz-y|| B. O

Throughout the whole paper we shall consider the Lebesgue measure u
on [to, T].

Theorem 1.1 ([3]) Let U : [t,,T] — X be a set-valued map with closed
nonempty tmages. Then the following statements are equivalent

1) — U s measurable in the sense that for every open set O C X the
set {t€[to,T||U(t)N O # 0} is measurable
#t) — There ezist measurable selections u,(t) € U(t) such that for

every t € [to, T, U(t) = Un>; unl(t).

Moreover if U is single-valued, then the above statements are equivalent
to

111) There ezist measurable functions u, : [to,T] — X assuming only fi-
nite number of values such that for almost everyt € [to, T], limy oo un(t) =
U(t)

tv) There exist a negligible set N C [tg,T| and measurable functions
Uy : [to,T] — X assuming only countable number of values such that u,
converge to U uniformly on [to, T|\N.

Consider the solution set of (7) from the point zo € X on [to, T|:
Sito,7](20) = {z | z is a mild trajectory of (7) on [to, T, z(to) = zo}

Let yo € X, g € L (to,T; X) and y € C(to, T; X) be a mild solution of
the Cauchy problem

y(to) = wo

{ y'(t) = Ay(t) + g(2)



The aim of this section is to estimate the distance from y to the set Sj¢, 7}(zo)
under several assumptions on F:

Hy) Vz € X the set-valued map F(:,z) is measurable

H;) 38 >0, k€ L to,T) such that for almost all t € [to, T]
the map F(t,:) is k(t) — Lipschitzian on y(t) + 8B

Hj3) The function t — dist(g(t), F(t,y(t))) belongs to L!(to,T)

Remark — From Lemmas 1.4 and 1.5 proved below follows that under
the assumptions H;) and Hj) the function t — dist(g(t), F(t,y(t)))is always
measurable. 0O

Theorem 1.2 Let § > 0, M = sup,cjo 7_¢,] IG(t)||. Assume that H;)— Hs)
hold true and set y(t) = dist(g(t), F(t,y(t))), m(t) = Mezp (M ffo k(s)ds)

n(t) = m(t) (5 + /t: '7(3)ds)

If n(T) < B, then for all zo € X with |lyo — zo|| < & and all e > O, there
exist T € S[go'T](zo) and f € LY(to,T; X) satisfying (8), (9) such that for all
te [to,T]

12(t) = y(®)l| < n(t) + e(t - to)m(t)

and for almost every t € [to, T)

1£(t) — g (@)l < E(&)(n(2) + £(t - to)m(t)) + v(t) + ¢

Remark — When X is a finite dimensional space, the above estimation
holds true with ¢ = 0. This follows from the celebrated Filippov theorem
[11] (see also [2], [4]). O '

The proof reminds in many aspects the one from [2] for the finite dimen-
sional case. We need three following lemmas.

Lemma 1.3 Let U : [to,T] — X be a measurable set-valued map with
closed nonempty tmages and g : [to, T| — X, k : [to, T| — R4 be measurable
single-valued maps. Assume that

W(t) := U(t) N (g(t) + k(t)B) # @ ae. in [to, T]

where B denotes the closed unit ball in X. Then there exists a measurable
function u : [to, T| — X such that u(t) € W(t) almost everywhere.

The proof follows from (3, pp.87, 88|.



Lemma 1.4 Let F and y be as in Theorem 1.2 and z € C(to,T; X) be such
that ||z — y|lc < B. Then the map t — F(t,z(t)) is measurable.

Proof — By Theorem 1.1 1v) there exist a negligible set N C [to, T
and measurable functions z, : [t0,T] — X, kn : [to,T] = Ry, n > 1
assuming only a countable number of values and converging to z (respec-
tively k) uniformly on [to,T|\N. It is not restrictive to assume that k, > k
on [to, T|\N and that for every t € [to, T|\N, F(t,-) is k(t)— Lipschitz on
y(t) + BB. Set gn = supyey, T\ ||Zn(t) — 2(t)||- Let O C X be an open set.
Foralln > 1, t € [to, T|\N define the open sets

Va(t) = {z €0 |dist(z, X\O) > ka(t)gn}

Since k,, are measurable and assume only countable number of values, so
does V,,. From H;) we deduce that for all n > 1 the set-valued map t —
F(t,z,(t)) is measurable. Hence, by the definition of V,, the sets {t €
[to, TI\N | F(t,za(t)) N Vp(t) # 0} are measurable. This yields that the set

U [ {telte, TI\ N | F(t,za(t)) N Va(t) # 0}

N21n>N

is measurable. To end the proof it is enough to show that

(11) Un>i Moy {tE€ [0, TI\ N | F(t,za(t)) N Va(t) # 0} =
{te[to, T|\ N | F(t,z(t))nO # @}

Fix t € [to, T]\N, v € F(t,z(t)) N O and set p = dist(v, X\O) > 0. By the
Lipschitz continuity of F(t,-), for every n > 1 v € F(t,zn(t)) + k(t)||zn(t) —
z(t)||B C F(t,zn(t)) + kn(t)gnB. Hence there exist v, € F(t,z,(t)) satisfy-
ing |lun — v|| < kn(t)gn. But kn(t)g, — 0+ as n — oo and therefore for all
large n, dist(vn, X\0) > dist(v, X\O) — ||va — v|| 2 p — kn(t)gn > kn(t)gn.
Thus for all large n, v, € V,(2).

Conversely assume that t € [to, T|\ N is such that for all large n the set
F(t,z,(t)) N Vo(t) # 0. Pick v, € F(t,zna(t)) NVa(t) and w, € F(t, z(t))
such that ||v, — wn|| < k(t)||zn(t) — z(t)|| < kn(t)gn. Thus dist(w,, X\O) >
dist(vn, X\O) — ||wn — vn|| > kn(t)gn ~ kn(t)gn = O and therefore w, € 0.
This proves (11) and ends the proof. O

Lemma 1.5 Let U : [to,T] — X be a measurable set-valued map with
closed nonempty images and u : [to, T| — X be a measurable function. Then
the function t — dist(u(t),U(t)) is measurable.




Proof — By Theorem 1.1 i) there exist measurable selections u,(t) €
U(t) such that for all t € [to, T], Un>; un(t) = U(t). Set

n=t
gi(t) = dist (u(t), U u,,(t))
n=1
Then lim;_.o ¢i(t) = dist(u(t),U(t)). Thus the map ¢t — dist(u(t),U(t)) is
the pointwise limit of measurable functions g; and from (3, p.61] follows that
g is measurable. O

Observe that the two last lemmas yield that the function v defined in
Theorem 1.2 is measurable.

Proof of Theorem 1.2 — It is not restrictive to assume that o = 0.
Let € > 0 be so small that (T)+eTm(T) < 8. Set x(t) = M (6 + [5 v(s)ds + et).

We claim that it is enough to construct sequences z,, € C(0,T; X), fn €
£1(0,T;X), n=0,1,... such that

(12) Vte[0,T], za(t) = G(t)zo + L‘G(t—s)fn(s)ds

(13) Ve [0,T], [lza(t) - v(®)ll < x(t)

(14) fo=g, f1(e) —g(t)ll < ~(t) + € ae. in [0,T]

(15) f,,(t) € F(t,zn-1(t)) for n>1 and t€(0,7]

(16) fns1 (8) = Fa)]] < K(2)n(t) — 2ns(§)] forn > Lac. in [0, 7]

Indeed observe that (12), (16) and (13) together imply that for almost every
te [to, T]

lznta(®) = za (]| < L IG(E =~ 1)l Ifas1(t2) = Salta)lldtr <
Mfo (tl) ”xn(tl) — Tn- l(tl)” dtl <
M [o k(t1) [5* 1G(ts = t2)]| [|fn(t2) — fn-1(t2)ldtzdt: <
M2 [§ k(t1) o' k(ts) ||Za-1(t2) ~ zn-2(t2)| dt2dts < ... <
M™ [ k(t1) Jo' k(t2)... J5°7" k(tn) lza(tn) — y(tn) dtn...dts <
X()M™ [Ek(t2) 32 k(t2)... [30 K(tn)dtn...dty = x(t) [M J§ k(r)dr]” /n!

Thus {z,} is a Cauchy sequence in the Banach space C(0,T; X). Hence,
by (16), for almost every t € [0,T] the sequence {f,(t)} is Cauchy in X.



Moreover from (13) and the last inequality we get

lza(t) =y < llz2(t) -yl + 5 lziaa () = z:(8)]] <
a7 { x() {1 + M [§k(r)dr + [Mfo‘ k(r)dr]z/Z! + } <
x(t)ezp {M [3 k(r)dr} = n(t) + etm(t)
and, by the choice of ¢,
(18) Vn20, |lzn -yl < 8

Furthermore from (16), (14) and from the sequence of inequalities (17) fol-
lows that

1£a(t) =g < 25 S () = L@ + [1£2(2) - 9(@)]] <
(19) ¢ k(1) TR (lzi(t) — zica(®))| +(t) + € <
k(t) (n(t) + etm(t)) + ~4(t) + € a.e. in [0,T]

Since the sequence {z,} is Cauchy we define z € C(0,T; X) as the limit of
z,. By (19) the sequence {fn} is integrably bounded and we have already
seen that for almost all t € [0,T], {fn(t)} is Cauchy. Thus we may define
f € L£Y0,T; X) by f(t) = limp—co fn(t).

From (18) and the assumption Hy) follows that for almost every t € [0, T'|
the set

Q) = {(zv)| ve Ft,z); llz-y()l| < B}

is closed. Moreover from (15) and (18) for all n > 1 and all t € [0,T],
(zn-1(t), fa(t)) € Q(t). Taking the limit we obtain that (8) holds true
a.e. in [0,T]. Furthermore taking the limit in (12) and using the Lebesgue
dominated convergence theorem we get z € S[O'T](:z:o). Passing to the limits
in (17) and (19) yields the desired estimations on z and f (to = 0!).

To construct z,, f,, as above we proceed by the induction. From Lemma
1.4 the set-valued map t — F(t,y(t)) is measurable and has closed images.
Furthermore for almost every t € [to, T|, F(t, y(t))N{g(t)+(~(t)+€) B} # 0.
Hence by the Lemma 1.3 applied with k(t) = v(t) + € the set-valued map

[0,T] > t = Us(t) := F(t,y(t)) N {g(t) + (+(t) + £) B}

admits a measurable selection fi(t) € Uy(t). Clearly f; satisfies (14). Define
z; by (12). Then

lz3(8) = v < 116 (8) (=0 = o)l + | f§ Gt = )(fa(s) - 9(s))ds| <
M6 + M [{(v(s) +e)ds < n(t) + Met < B



Assume that we already have constructed z,, € C(0,T; X) and f,, € £L1(0,T; X),
n = 0, ..., N verifying (12) - (16). Define the set-valued map [0,T] >t —
Un+1(t) by

Un+1(t) = F(t,zn(t)) N {fn(t) + k(t) ||zn(t) — zv-1(t)|| B}

By Lemma 1.4 the set-valued map t — F(t,zn(t)) is measurable. Moreover
t — k(t) ||z~ (t) — zn-1(t)|| is a measurable function. By the Lipschitz con-
tinuity of F(t,-) for almost every t € [0, T], Un41(t) # 0. From Lemma 1.3
we deduce that there exists a measurable selection fn41(t) € F(t,zn(t))
satisfying || fn+1(2) — v (2)]] < k(t)||zn(t) — zn-1(t)|| on [0,T]. Define zn 41
by (12) with n = N + 1. Then for almost all t € [0, T]

Ifw41(t) = In(@) < k() llzn(2) = zv-1(2)l
Thus {fn}, {zn} verify (12)-(16) withn=N+1. O
Consider the following norm on C(0,T; X) x £1(0,T; X):
v (z)f) € C(O,T;X)X ‘El(OaT;X)a ||(1:, f)“Cxﬂ = ”z”C t “f“]-

Corollary 1.6 (Lipschitz dependence on the initial condition) Let
(y,9) be a trajectory-selection pair of (7) on [to,T] and assume that F, y
satisfy Hy1) — H3). Then there exists L > O such that for all n near y(0) we

have

distcxr ((v,9), {(z, f) is a trajectory-selection pair of (7) on [to,T] })
< Liln - y(0)

Proof — Let m be defined as in the proof of Theorem 1.2. Fix0 < e <1
and set L = m(T)(T — to + ftf k(s)ds + 1). By Theorem 1.2 we can find
8 > 0 such that for all n € Bs(y(to)) there exists a trajectory selection pair
(ze, fe) of (7) satisfying z.(to) = n and such that

lize = ylle < m(T)(lln ~ y(to)|l + &(T — o))
< Liln - y(to)ll + Le(T - to)

and
1fe = glls < Llln = y(to)l| + (T —to)(L +1)

Since € > 0 is arbitrary, the proof follows. O

We define next the reachable set of (7) from (2o, z0) at time ¢y + h:

R(to+ h,to)zo = { z(to+h) | = € Sitgo+n)(20) }

10




Theorem 1.7 Let zo € X. Assume that F : [tg,T] X X — X 1s continuous,
has closed nonempty images and for some § > 0, K > 0 and for every
t € [to,T), F(t,-) is K-Lipschitz on zo + 6 B. Then for every u € F(to, zo)

dsst (G(h)zo + hu, R(to +h,t0)xo) = O(h)
where limp_.o4 o(h)/h =0.

Proof — Fix u € F(to,zo) and set y(to + h) = G(h)zo + f,‘o‘ﬁh G(to+h -
s)uds = G(h)zo+hu+o(h). Set £(h) = sup,¢jo 5 dist(u, F(to+s, y(to+))).
Then, by continuity of F, lim,_,o4 £(h) = 0. This and Theorem 1.2 yield
that for some C > 0, and all small A > 0, there exist zx € Sjt,,¢,+4](Z0) such
that |ly(to+ h) — zn(to + h|| < Ce(h)h. Therefore dist(G(h)zo + hu, R(to +
h to)z0}) = o(h).

2 Relaxation of differential inclusions

In this section we compare trajectories of (7) and of the convexified (relaxed)
differential inclusion:

(20) Z'(t) € Az(t) + co F(t,z(t))

Recall that a set-valued map U : [tg,T] — X is called integrably bounded
if there exists m € £(to,T) such that for almost every t € [to, T], U(t) C
m(t)B.

Theorem 2.1 Let (y,g) be a trajectory-selection pair of the relazed inclu-
sion (20) on [to,T|. Assume that F and y satisfy all the assumptions of
Theorem 1.2 and that the map t — F(t,y(t)) is integrably bounded on
[to,T]. Let n(-) be defined as in Theorem 1.2. If n(T) < B then for every
8 > 0 there ezists a mild trajectory x of (7) on [to, T] satisfying ||z—yl||c < 8.

To prove the above we shall use

Theorem 2.2 ([18]) LetU : [to,T] — X be a measurable, integrably bounded
set-valued map with closed nonempty images. Then

/tT S U(t)dt = /‘T U(t)dt

We also need the following two lemmas.

11



Lemma 2.3 Consider a measurable, integrably bounded set-valued map U :
[to,T] — X with closed nonempty images and let [tg,T] > s — g(s) €
G(T - s)U(s) be a measurable selection. Then there exists a measurable
selection u(s) € U(s) such that g(s) = G(T — s)u(s) almost everywhere in
[to,T].

Proof — Define the continuous function f : [t5, T] x X — X by
f(s,u) = G(T - s)u

Then g(8) € f(s,U(s)). From [3, p.85] we deduce the existence of a mea-
surable selection u(:) as in the claim of the lemma. O

Lemma 2.4 Constder a measurable, integrably bounded set-valued map U :
[to, T]| = X with closed nonempty images. Then

/ "G - yu(dt = / e cniior

to

Proof — Since U is integrably bounded, also the map s — G(T - s)U (s)
is integrably bounded. By Theorem 1.1 1%) there exist measurable selec-
tions un(t) € U(t) such that for all t € [t5,T], U(t) = Un>1 un(t). Set
Un(t) = UIZT ui(t) and observe that for every t € [to,T], G(T — t)Un(t)
is closed. Let w(t) € G(T —t)U(t) be an integrable selection and set
en(t) = dist (w(t),G(T —t)Un(t)). Then the sequence {€,}n>1 is inte-
grably bounded. From Lemma 1.2 there exist integrable selections w,(t) €
G(T — t)Un(t) such that | [T wa(t)dt — [T w(t)dt| < [ ea(t)dt + L. It re-
mains to show that for every t € [to, T|, limu o0 €n(t) = 0. But this follows
immediately from the choice of v,,. O

Proof of Theorem 2.1 — [t is not restrictive to assume that t; = 0
and that fJ k(t)dt > 0. Fix § > 0. We use the main idea from [4, p.117] for
the finite dimensional case. Let M, m be defined as in Theorem 1.2 fortg =0

and ¢ € £1(0,T) be such that for almost all t € [0,T], F(t,y(t)) C ¥(t)B.

Let

8

"2
Let n > 1 be so large, that for any measurable I C [0,T] of p(I) < 1 we
have

B 5
2m(T) [T k(t)dt’ 2m(T)(JT k(t)dt +T)’

0™

0<a<'7<min{



Denote by I; the interval [J%l, J';], 7 =1,..,n. From Lemma 1.4 the map
t — F(t,y(t)) is measurable. By Lemma 2.4 for every j

[, Gl ~ e Fir,y(M)dr = [, G(G — r)eo F(r, y(1))dr

(21)

Ji;Glt; — ) F(r,y(r))dr = [, G(t; —r) Fr,y(r))dr

Observe that €6 G(t; — 7)F(r,y(r)) = G(t; — r)¢o F(r,y(7)). Hence from
(21) and Theorem 2.2 we deduce that

/I,~ G(tj — r)eo F(r,y(r))dr = /I- G(t;— 1) F(r,y(r))dr

:
This and Lemma 2.3 imply that for every 7 there exists a measurable selec-
tion f;(t) € F(t,y(t)) such that

Let f be the function equal to f; on I; and set zo(t) = G(t)y(0) + f; G(t—
8)f(r)dr. Then for every t € [0, T] there exists j such that t € I; and

lzo(t) — y(®)ll = |5 (Gt - )1(r) - G(e—r)g(r))ar| <

|Zizi G - ) 11,6 - 1)(£(r) - g())dr || + 1, Gt - )(F(7) - 9(r)) dr
< M £, Gt - () - gdr| + ML (£ + lla(r)) dr <
T—a + 2Mf,j1,b(r)dr <v-at+a=°9< min{%,%}

ha—

<
- Mn

[, ot =ost0a - [ 6t; - o(ar

J

Observe that for all t € [0,T], F(t,-) is k(t)—Lipschitz on zo(t) + 2 B. Hence
dist (f(t), F(t,zo(t))) < k(t)llzo(t) — y(e)ll < k(t)y

Furthermore, by the choice of v, Mezp (M Jr k(s)ds) ST k(t)ydt < B/2. By
Theorem 1.2 applied with € = 4 there exists a trajectory z of (7) satisfying
z(0) = zo(0) = y(0) and

||z — zol||c £ Mezp (M/OT k(r)dr) (/OT k(t)~ydt + '7T) < g

In this way we obtain that ||z — ylc < ||z — zollc + lzo —yll < §+ § = 6.
The proof is complete. O
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Theorem 2.5 (Relaxation theorem) Let F : [to,T] X X — X be a set-
valued map with closed nonempty images. Assume that there ezists k €
LY(to, T) such that for almost every t € [to, T, F(t,-) is k(t)-Lipschitz and
for allz € X, F(t,z) C k(t)B. Then the mild trajectories of (7) are dense
in the mild trajectories of the relazed inclusion (20) in the metric of uniform
convergence.

Corollary 2.6 Under all assumptions of Theorem 2.5 assume that X 1s
reflezive and that at least one of the following three conditions is satisfied

i) The semigroup G(-) 18 compact

11) The semigroup G(-) 18 uniformly continuous

111) There exists a compact K C X such that for every (t,z) € [to, T| x
X, F(t,z) c K.

Let S[‘;Z’T](f) denote the set of mild trajectories of (20) on [to,T| with
z(to) = §. Then for every £ € X, the closure of S, 11(§) in the metric of
uniform convergence is equal to S[ioo.T](f)'

The above corollary follows from Theorem 2.5 and

Theorem 2.7 Assume that X is reflexive and let F : [t5,T] x X — X be
a set-valued map with nonempty closed convez images. Assume that there
exists k € L1(to,T) such that for almost every t € [to,T], F(t,-) is k(t)-
Lipschitz and for all z € X, F(t,z) C k(t)B. If at least one of the following
three conditions is satisfied

1) The semigroup G(-) 1s compact

1) The semigroup G(-) is uniformly continvous

i1i) There ezists a compact K C X such that for every (t,z) € [to, T] x
X, F(t,z) C K.

Then for every £ € X the set Sy, 1)(§) C C(0,T;X) is sequentially

compact.

Proof — Fix £ € X and let (z,, fn) be trajectory-selection pairs of (7)
with z,(¢0) = €. Thus

(22) Vte to,T|, za(t) = G(t—tr)€ + /;‘G(t—s)f,.(s)ds

Set M = sup,¢[or_t,| |G(s)|. We prove first that the family {zn}n>1 is
equicontinuous. Indeed for every n > 1 andfor allto <t <t'<T

t’
+ M [ 11als)lds

lan(®) = 2} < (60 =)~ 1) [ Gt = s)n(s)ds

14



Since f,, are integrably bounded by k fo'r every € > 0 there exists § > 0 such
that 0 <t <t' <t+6 < T yields [} ||fa(s)||ds < . It remains to show
that

t
(23) t'lir§1+(G(t' —t) - Id)/ G(t — 8)fa(s)ds = O uniformly in n and ¢
— to

We shall use the assumptions on the semigroup G. Assume first that G(:)
is compact. Fix t; €]0,T — to] and let Q@ C X be a compact convex set
containing G(t1)B. Then

Vse(ty, T —to], G(s)B=G(t)G(s - t;)B C G(t;)MB c MQ

Thus for all t; > O verifying to <t -t

/‘ :_" G(t—s)fn(s)ds € /t

t—t
0 0

The set M ftz k(s)dsQ being compact and the semigroup G being strongly
continuous we deduce that for every € > 0 there exists § > O such that

T
Vh e (0,8, (G(h) - Id) [0, M /: k(s)ds] Q C ¢B

Consequently for every t < t' <t+§ and all n, (G(t' — t) — Id) f:o_“ G(t -
s)fn(8)ds € €B. Since f:_t1 G(t — 8)fu(s)ds — O when t; — 0+ uniformly
in ¢t and n we proved (23).

If G(-) is uniformly continuous, then ||G(h) — Id|| — O when h — O+
and, again we derive (23).

If the assumption iit) holds true, then there exists a compact Q € X
such that for every n, fu((to,T]) C Q. Therefore (G(t' —t) — Id) [ G(t -
8)fn(8)ds C f:o G(t — s)(G(t' — t) — 1d)Qds. The set Q being compact, for
every € > 0 and all sufficiently small h > 0, (G(h) — Id)Q C ¢B. This
completes the proof of (23).

Hence the sequence {z,} is equicontinuous. Clearly it is also bounded.
From the Ascoli-Arzela theorem, taking a subsequence and keeping the same
notations we may assume that it converge uniformly to some z € C(0, T'; X).
We prove next that z € S}, 7(§)-

The sequence {fn}n>1 being integrably bounded and X being reflexive,
by the Danford-Pettis theorem, we may assume that it converge weakly in
L£Y(0,T; X) to some f € £}(0,T;X). By the Mazur lemma, there exist

15
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A" > 0, i = n,..,k(n) such that Ek(") A" = 1 and the sequence g, :=

Ek(" AP f; converge to f in £1(0,T; X). Then from [7, p.150] a subsequence
gn; converge to f almost everywhere Hence for every t € [to, T

jllr’go t G(t—s)g,.j(s)ds = /t G(t— 8)f(s)ds

and, since {z,} converge uniformly to z, using (22), we get

z(t) = G(t—to)€ + /t-‘G(t—s)f(s)ds

To end the proof it is enough to show that f(s) € F(s,z(s)) almost every-
where in [to, T).
Observe that for almost every t € [to, T, gn;(t) € D) ) ATF(t,zi(t)) ©

=n,
P(t,2() + k(&) Ticd) A |l2(2) — z:(t)]| B. Using that limi—o zi(t) = =(t)
we deduce that for almost every t € [to, T|, f(t) € F(t,z(t)). The proof is
complete.

3 Infinitesimal generator of reachable map

Consider a set-valued map F : [tp,T] x X — X with closed images, where
0<to<T.Forallte [t;,T[andt < t'< T, £€ X set

(24) R(t"t)f = {-""(t’) |z € S[t,t'](f)}

This is the so-called reachable set of (7) from (¢, £) at time t'. It was proved in
[12], [16] that when the dimension of X is finite, G = Id and F is sufficiently
regular, then the set ¢o F(t, £) is the infinitesimal generator of the semigroup
R(-,t)€ in the sense that the difference quotients E(%EM converge to
to F(t,£). In this section we extend this result to the infinite dimensional
case.

Theorem 3.1 Under all assumptions of Theorem 1.7
R(to + h,to)zo — G(h)2o
h

F(to,z0) C l}g‘.éﬂf

Consequently, if o € Dom A, then we have
R(to ~+ h, to).’l:o - Zp
h

If moreover F(to,zo) is bounded, then F(to,zo) tn the above formulas may
be replaced by its closed convez hull To F(to, zo).

A F C liminf
zo + F(to, o) l}g}é&
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Proof — The first claim follows from Theorem 1.7. If F(to, zo) is bounded
then F is bounded on a neighborhood of (g, zp). By the proof of Theorem
1.7 and Theorem 2.1 we may replace F by ¢6F. O

When F has compact images the following “upper” estimate holds true:

Theorem 3.2 Let zo € X. Assume that F : [tg,T] x X — X s bounded,
upper semicontinuous at (t9,zo) and that either the semigroup G(-) is uni-
Jormly continuous or F(ty,zo) s compact. Then

llm sup R(to + h, to)(zo) - G(h)zo
h—0+ h

C ©o F(to, o)

Consequently if zo € Dom A then

t t —
w € limsup Rfto + h, to)(z0) — 7o
h—0+ h

Proof — Let M = supg(o,1-¢,[IG(t)|l, K > O be such that for all (¢, z),
F(t,z) ¢ KB. Fix u € limsup,_,q, R(t°+h’t°)hz°_c(h)z° and let (zp, fn) be
trajectory-selection pairs such that z,(to) = zo and (zn(to + k) —z(t0))/h —
u. Then ||za(to + s) — G(h)zo|| £ MKs and, by the upper semicontinuity
of F, there exist €(h) — 0+ such that for all h > 0 and all s € [0, k], F(to+
s,zn(to + s)) C F(to,zo0) + €(h)B. Hence, by the assumptions on G,

:c;.(to + h) = G(h)zo + ft2°+hc(to + h— s)f;.(s)ds €
G(h)zo + [/°**G(to+ h — s)F(to, zo)ds + e(h)hMB C
G(h)zo + [°*" F(to, zo)dt + é(h)hB

<< w — Azxg € EBF(to,zo)

where limj_o4 £(h) = 0. But f,'0°+h F(to,z0)dt C h € F(to,zo) and our
claim follows. O

Theorem 3.3 Let t, € [to,T], z1 € X and assume that for some p >0, F
is continuous on [ty — p,t1 + p| N [tg, T] X B,(z1) and has bounded nonempty
images. Further assume that for some L > 0 and allt € [ty —p,t1+p|N[t, T
the set-valued map F(t,:) is L— Lipschitz on B,(z1). Then for all (t,£) near
(t1,21) and all small h >0

(25) R(t+ h,t)€ = G(h)E + /()hc(h—s)w F(ty,z1)ds + oft, &, h)

where limg ) _(t,,z,),0—~0+ o(t,&,h)/h = 0. Consequently if F(t1,z;) ts
compact or if the semigroup {G(t)}¢>0 18 uniformly continuous, then

R(t+h’t)€ = G(h)€ + hEF(tlazl) + O(t,f,h)

17



Remark — Equality (25) has to be understood in the following way

R(t+ h,t)é C G(R)E+ J3 G(h - 8)e5 F(t1,z1)ds + |lo(t, €, h)|| B and
G(h)E+ J} G(h - 8) T F(ty, z1)ds C R(t + h,t)€ + ||o(t, &, h)|| B

Proof — Set M =sup,,,_, [|G(t)]|. Since F is continuous and has
bounded images we may assume that for some M; > 1 such that for all

|t —t1| < p, £ € 21 + pB we have F(t, §) C M, B. Define

N={t8] [t-tl<p/2, IE-zl[<p/2}

and observe that for all (t,£) € N and t' € [to, T| satisfying ||t' — ¢|| < p/2
and every trajectory-selection pair (z, f) of (7) with z(t) = £ defined on the
time interval [¢,¢'] and verifying z([t,t]) C z; + pB, we have ||z(t') — z;|| <
Iz - €1l + I - G(¢ ~ €] + |G - D€ - =) < G - )€ - €] +
JONGE = ) 11£(s)llds + p/2 < IG(t' — )€ — €Il + MMy (' - t) + p/2. By
Theorem 1.7 for all small A > 0 and all ¢ near t; the set Sj;;,4(£) # 0.
Moreover for all h € [0,p/4MM,], (t,£) € N, and for every z € Sj; ;4 4)(£)

(26) Vselt,t+h]|, ||z(s) - G(s—t)¢|| < MM(s - t)
Since F is continuous at (t;,z;) for every € > O there exists § > 0 such that
Vze€z,+ 6B, te [ty —6,t1+6], he[0,8], F(t+ h,z) C F(t1,z1) +€B

Using (26) we obtain that for all 0 < h < min{§/MM;, p/4AMM;}, (t,§€) €
NNty — 6,t; + 8] x Bs(z1) and trajectory-selection pair (z, f) of (7) on
[t,t+ B]

z(t+h) € G(h)E + [T G(t4 h—s)F(s,z(s))ds C
G(R)E + [IThG(t+ h —s)(F(t1,z1) + €B)ds C
G(h)E+ J G(h - s)eo F(ty,z,)ds + ehM B

This implies that
h
R(t+ h,t)¢ Cc G(R)E+ / G(h - s)co F(t1,z1)ds + ehMB
0

for all sufficiently small A > 0 and all (¢,£) € N N [t1 — §,t1 + 6] x Bs(z1).
Since € > 0 is arbitrary we proved that for all (¢, ) near (¢;,z;) and small
h>0

h
R(t+ h,t)€ C G(R)E + /0 G(h - 8)25 F(t1,z1)ds + [Jolt, &, h)|| B
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To prove the opposite inclusion, observe that by Theorem 2.1, for all (¢, €)
near (t;,z;) and all small h > 0 reachable sets R(t + h,t)£ of (7) are dense
in the reachable sets R°°(t + h,t)€ of the convexified inclusion (20). Thus
we may assume that F has convex images. Fix u € F(t;,z,) and set

5(t,8,€,u) = dist (u,F(t+ 8,G(s)€ + /O’G(s - r)udr))

Then from the continuity of F, §(t,s, £,u) — O when t — t;, 8 — 0+, £ —
z; uniformly in u. By Theorem 1.2 there exist §; > 0, M; > 0 which depend
only on L and M, such that for all k € [0, §]

h h
dist (G(h)£+/0 G(h — r)udr, R(t+h,t)5) <M, (/0 6(t,s,& u)ds+ hz)

This proves our claim.

4 Variational inclusion

This section is devoted to an analog of the variational equation of ODE for
differential inclusions. For this we need to extend the notion of derivative
to set-valued maps.

Definition 4.1 Let 7 be a set-valued map from a Banach space X to an-

other Y and let y € F(z). The derivative d¥(z,y) is the set-valued map

from X toY defined by

F(z+ hup) —y
h

When 7 1s locally Lipschitz at x then the above definition may be rewritten

as
F(z + hu) - y)
TR " 9Y o
h
We refer to [13], [12], [14] and [15] for the applications of set-valued deriva-
tives in the finite dimensional context.
Below we denote by dF(t,z,y) the derivative of the set-valued map
F(t,-,-), i.e. its partial derivative with respect to the state variable.
Let (y,g) be a trajectory-selection pair of the differential inclusion (7)
defined on the time interval [to, T|. We “linearize” (7) along (y, g) replacing
it by the “variational inclusion”:

{ w'(t) € Aw(t) + dF(t,y(t),9(t))(w(t))

w(to) = u

vedF(z,y)(u) < hli%]+ d (v, ) =0 for some up, — u

ve dF(z,y)(u) < hl_l.r(’()1+ dist (v,

(27)
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where u € X.

In the theorem stated below we consider the solution map S¢ ¢ from X
to the space C(0,T; X) x L£1(0,T; X) defined by

Sc,c(v) = { (z, f) is a trajectory-selection pair of (7) on [tg, T| }

Theorem 4.2 (Variational inclusion) If F,y verify the assumptions H;)
- Hg), then for all u € X, every trajectory-selection pair (w,x) of the lin-
earized inclusion (27) on [to, T satisfies (w,x) € dSc¢,2(y(0),(y,9))(v). In
the other words,

{(w, 7) is a trajectory-selection pair of (27) on [to, T] } C dS¢,¢(y(0), (v, 9))(u)

Proof — Let (w,x) € C(to,T; X) x L}(0,T;X) be a trajectory-
selection pair of (27). By the definition of derivative and local Lipschitz
continuity of F(t,-), for almost all t € [to, T},

(28) l_l.m dist ( (t) (t: y(t) + ’;lw(t)) - g(t)) =0

Moreover, since g(t) € F(t,y(t)) a.e. in [to,T], by Hs), for all sufficiently
small h > 0 and for almost all t € [to, T]

dist (g(t) + hn(t), F(t,y(t) + hw(t))) < h(||x ()| + k(t) |lw(B)]))
From Lemmas 1.4 and 1.5 the function
t — dist (g(t) + hn(t), F(t,y(t) + hw(t)))

is measurable. This, (28) and the Lebesgue dominated convergence theorem
yield

(29) / dist (g(t) + hr(t), F(¢, y(t) + hw(t))) dt = o(k)

where limy_,04 o(h)/h = 0. By Theorem 1.2 applied with ¢ = h? and by (29)
there exist M; > 0 and trajectory-selection pairs (ya, gn) of (7) satisfying

lyn—y—hwllc + llgn — g = hxlly < Mi(o(h)+h?); ya(te) = y(to)+hw(to)

This implies that

. oYY . XY Ym JRT9 ol .
h1—1-1(1)1+ p— = win Cc(0,T; X), hl_l.rcr)1+ 5 x in L7(0,T; X)
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Hence

0) + hu) —
((w’”), Sc,e(y( )+h u) (y,g)) —0
Since u and (w, x) are arbitrary the proof is complete. O
A stronger result may be proved when we assume in addition that the
map t — F(t,y(t)) is integrably bounded.
Consider the “convex” linearization of (7) along (y,9):

g ) S A E R0

lim dist
h—0+ CxL

where u € X. In the theorem stated below we consider the solution map
5¢c(€) = Sit,,1)(£) as the set-valued map from X to the space C(0,T; X).

Theorem 4.3 Under all assumptions of Theorem 1.2 assume that F(t, y(t))
1s integrably bounded. Then for all u € X, every mild trajectory w to the
linearized inclusion (30) defined on [to,T| satisfies w € d Sc(y(0),y)(u). In
the other words,

{w(:) | w is a trajectory of (30)on [to,T]} C dSc(y(0),y)(u)

Proof — From Theorem 2.1 we may replace F by ¢6 F. Then the result
follows from Theorem 4.2. O

The derivative of the set-valued map co F(t, z) has the following useful
property:

If F(t,-) is locally Lipschitz on a neighborhood of z, then for every
ye F(tz)
(31) dF(t,z,y) + T rz)(y) C 4T F(t, z,y)

where TeF (¢,2)(y) denote the tangent cone of convex analysis to ¢6F (¢, z) at
y. This follows from a more general

Theorem 4.4 Let 7 be a set-valued map from a Banach space X to another
Y having convezr tmages and assume that it 1s Lipschitz continuous at z.
Then for every y € 7(z)

d7(z,y9)(0) = |J A(F(z) - y) (tangent cone to F(z) at y)
220

and

Vue X with d7(z,y)(u) #0, dF(z,y)(uv) + dF(z,y)(0) = dF(z,y)(u)
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Proof — The first statement follows immediately from Definition 4.1 and
the Lipschitz continuity of ¥. Fix u € X such that d7(z,y)(u) # @ and any
v € d¥(z,y)(u), w € dF(z,y)(0). Let v, — v be such that y + hv, €
F(z + hu) and wp — w be such that y +vhwy, € F(z). Then, by the
Lipschitz continuity of ¥, for all small h > 0 and for some wj, we have

y + Vhwh € F(z+ hu) ; |wh — wa| < kVR|u||

where k denotes a Lipschitz constant of #. Using that ¥ has convex images
we get (1 —vh)(y + hvn) +Vh(y -h/ﬁw;') = y+ h(vp + w}) VA hy, =

y + h(v+ w) + o(h) € F(z+ hu). Hence

lim dist (v+w,M)_—y) =0
h—0+ h

Consequently d¥(z,y)(u) + d¥(z,y)(0) C d¥(z,y)(u). On the other hand
0 € d7(z,y)(0) and therefore d¥(z,y)(u) + d7(z,y)(0) D d¥(z,y)(u). This
ends the proof. O

5 Application: semilinear optimal control prob-
lem with end point constraints

Let Z be a complete separable metric space, X be a separable Banach
space and f : [0,T] x X x Z — X be such that for all (z,u) € X x Z the
function f(:,z,u) is measurable, for every t € [0,T], f(¢,-,-) is continuous,
for every (t,u) € [0,T] x Z the function f(t,-, u) is differentiable.

Consider a measurable set-valued map U : [0,T] — Z with closed
nonempty images. We assume that there exists k € £1(0, T) such that

a) For almost every t € [0,T] and for all u € U(t), f(t,-,u) is k(t)-
Lipschitz, i.e.,

v, 2" e X, YueU(t), ||f(t,z',u) — f(t,2",u)|| < Kk(t)|z' - ="

b) For almost all ¢ € [0, T] and for all z € X the set f(t,z,U(t)) is closed
and is contained in k(t)B

Let K c X. Recall that the contingent cone and the Dubovitskij-
Miljutine tangent cone to K at z € K are defined by

diat(a:-’i-lhv,K) =0}

-z

Tk(z) = limsup

= X | liminf
wor Th - (e Xl imgy
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and
Dk(z) = {we X |3e>0 such that Vh € [0,¢], z+ hB,(w) C K}

respectively.

Set Ur = { u:[0,T] — Z| u(t) € U(t) is measurable}.

Consider a differentiable function ¢ : X x X — R, T > 0 and closed
subsets Ky, K1 C X. We study the optimal control problem '

(32) minimize ©(z(0), z(T))
over mild solutions of the semilinear control system

Z'(t) = Az(t) + f(t,z(t),u(t)), ue l
(33) { z(0) € Ko, z(T)eKT() i

where A is the infinitesimal generator of a strongly continuous semigroup
{G(t)}+>0 of continuous linear operators on X.

Our aim is to prove necessary conditions satisfied by the optimal solu-
tions of problem (32), (33).

Let (z,1) be a trajectory-control pair of (33), i.e., for every t € [0, T

2(t) = G(t)z(0) + /()tG(t—-s)f(s,z(s),ﬁ(s))ds
We associate with it the linear equation
(34) Z'(t) = AZ(t) + %(t, 2(t),u(t)) Z(t)

Denote by Sg(t; s) the solution operator of (34). That is the only strongly
continuous solution of the operator equation

t
VpeX, Su(t;s)p = S(t—s)p + f S(t—a)g—i(v,Z(v), U(0))Sa(o; s)p do
where 0 < s <t<T.

Theorem 5.1 Let (z,u) be an optimal trajectory-control pair of the problem
(82)-(38) and let Q C Dk,.(2(T)) be a convez cone with nonempty interior
and P C Tk,(2(0)) be a convez cone. Then there ezist A > 0, §g € P, &ér €
Q™ not vanishing simultaneously such that the function

(35) p) = Sa(T3)" (-2 32(:(0), (7)) - ér)
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satisfies the mazimum principle
(36)< p(t), (=(0, 7)) > = max <p(t), 1(0)w) > se.in [0,7)

and the transversality condition

(37) (p(0), —p(T)) = AVp(2(0),2(T)) + (o, ér)

Proof — Define the set-valued map F : [0,T] x X — X by
F(t,z) = f(t,z,U(t))

Fix z € X. From Theorem 1.1 1) there exist measurable selections u,(t) €
U(t) such that forevery t € [0, T], U(t) = Un>) un(t). Set va(t) = f(t,z, un(t)).
Then v,(+) is measurable and from continuity of f(t, z,-), F(t,z) = Up>1 vn(t)-
Thus from Theorem 1.1 we deduce that for every z € X, F(-,z) is measur-
able and, by the assumptions on f, for almost every t € [to,T|, F(¢,-) is
k(t)—Lipschitz and for every z € X, F(t,z) C k(t)B. Consider the differ-
ential inclusion

(38) z'(t) € Az(t) + F(t,z(t))

We claim that solutions of differential inclusion (38) and of the control sys-
tem (33) defined on the time interval [0, T] do coincide. To prove that, it is
enough to consider a trajectory-selection pair (z,g) of (38) defined on the
time interval [0,7T] and to prove that there exists u € Ur such that

(39) g(t) = f(t,z(t),u(t)) ae. in [0,T]

Define the function #(t, u) = f(t,z(t), u). Then ¢ is measurable in t and con-
inuous in u. Moreover for almost every t € [0,T], g(t) € f(t,z(t),U(t)) =
¥(t,U(t)). Hence from [3, p.85] we deduce the existence of u € Ur verify-
ing (39). Thus we may replace the control system (40) by the differential
inclusion (38).

Consider the linear control system

w'(t) = Aw(t) + 3L(t, 2(8),8()w(t) + y(t)
(40) y(t) € Te g0 (f(t, 2(2),ut)))
y(0) = ¢

The reachable set RL(€) of (40) by the mild trajectories from ¢ at time T
is given by

Ri(e) = {Sa(T; 0)¢ + _/OT Sa(T; s)y(s)ds| y(s) € Ts f(s,2(s),U(s)) (F (5, Z(~‘3),ﬁ(8)))}
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Case 1. Assume that Int @ N RE(P) = 0. Since Q has a nonempty
interior, by the separation theorem, there exists a nonzero {r € X* such
that

inf < e> > sup < e>
¢€RL(T) fT) = eeg fT,
Because Q is a cone we deduce that ér € Q. Moreover the last inequality
yield that for every measurable selection y(t) € %o f(t, z(t),U(t)) and every
p € P we have

(41) < ér,Sa(T;0)p+ /OT Sz(T;t) (w(t) — f(¢t, 2(t),u(t)))dt > >0

Setting y(t) = f(t,2(t),u(t)) in the above we get p(0) = Sg(T;0)*(—ér) €
P~. On the other hand applying (41) with p = 0 we get: for every measur-
able selection y(t) € co f(¢, 2(t), U(t))

T T
/0 (Sa(T; O)*er, y(O)) dt > /0 (Sa(T38)*€r, £(2, 2(2), T(t))) dt

Hence sup,ep () < p(t), f(t, 2(t),u) >=< p(t), f(t, 2(t),u(t)) > almost ev-
erywhere in [0,T]. Therefore the maximum principle (36) and the transver-
sality condition (37) hold true with A = 0, & = p(0).

Case 2. We assume here that Int Q N RL(P) # 0. Let w be a mild
trajectory of (40) on [0, T] satisfying

(42) w(T) € IntQ

From Theorem 4.3 we deduce that that every mild trajectory w € C(0,T; X)
of the “linear” differential inclusion

w'(t) € Aw(t) + dco F(t,=(t))

on [0, T| verifies w € dS¢(2(0),2)(w(0)). From the definition of the deriva-
tive for almost every t € [0, T]
af = -
VweX, —é-;(t, 2(t),u(t))w c dF(t,z(t), f(2, 2(t),u(t)))w

Hence, using (31) we deduce that every solution w € C(0, T; X) of the linear
control system (40) verifies w € dS¢(z(0), z)(w(0)). We claim that for every
trajectory w of (40) satisfying w(T') € Q we have '(2(0), 2(T))(w(0), w(T)) >
0. Indeed pick such w and assume first that w(T) € Int Q. Let h; —
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0+, yi — w(0) be such that 2(0) + h;y; € Ko. Theorems 4.3 and 1.2 imply
that for every ¢ > 1 there exists z; € Sjo )(2(0) + hiyi) such that

wi=2 % ,win ¢(0,T; X)
hi
On the other hand, by definition of Dg,.(z(T)), there exists € > 0 such that
for all h € [0,¢€], 2(T)+hB(w(T)) C Kr. Therefore for all sufficiently large
i, z(T)+ hiwi(T) € Kr.

Since z is an optimal solution we get ©(2(0) + h;w;(0), 2(T) + hjwi(T)) >
©(2(0), z2(T)) and, consequently, ¢'(2(0), 2(T))(w(0),w(T)) > 0. To prove
the same statement in the general case define w), := Aw+(1—A)w, where 0 <
A < 1. Then wj is a trajectory of the linear system (40). Since w(T) € Q, by
(42), we also have wr(T) € Int Q. Thus ¢©'(2(0), z(T))(wa(0), wA(T)) > O.
Taking the limit when A — 04 we end the proof of our claim.

We proved that the following relation holds true:

(43) { ~Vp(2(0),2(T)) € ({(p,RX(p)) [p€X}NP xQ) <
{(p, RX(P) [PE X}~ + P~ x Q"

Since W(T') € Int Q we get

{(p, R (p)) Ip€ X} - PxQ = {(p, R*(p)) | p € X}+
(@(0),W(T)) - P x Q@ > {(p, R¥(p)) | p € X} + (¥(0), X) = X x X

and from a well known result of convex analysis we deduce that
{(p, RE(p)) |pE€E X}~ + P~ x Q™ isclosed

Therefore, by (43), there exist (ao,p(T)) € {(p, RX(p)) | p € X}~ and
(o0, &r) € P~ x Q™ such that (—ap, —p(T)) = Ve(z(0), 2(T)) + (éo, éT)-
Thus p(T) € REL(0)~. Define p by (35). Exactly as in the Case 1 we
deduce that p verifies the maximum priciple (36). Furthermore for every
z e X, < (a,p(T)),(z,Sa(T;0)z) >=< ag — p(0),z >< 0. Consequently
ap = p(0). Which completes the proof. O
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