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Under incomplete information about the parameters of the true distribution of the 
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ed. This paper extends the previous results of the author t o  the case when strict com- 
plementarity conditions need not to  be assumed. 
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1. INTRODUCTION 

In stochastic programming problems, we are supposed to  get optimal solutions of the 

program 

minimize E{f(z, 0 )  = I f(z,  E)P(dE) - - - 
on a given set S C R n  

or, a t  least, to  get their approximation. The later situation appears in cases of incomplete 

knowledge of the probability measure P ,  when our decisions are based mostly on sample 

information only, or it can arise when P has to  be approximated in course of numerical 

procedure, see e.g. Birge and Wets (1986), Kall (1987). Under the both mentioned cir- 

cumstances, the properties of the approximate solutions are of great interest. Similar 

problems are treated in statistical estimation theory mostly for small n and under as- 

sumption of S open. 

In this paper we shall study the asymptotic distribution of the approximate optimal 

solutions for the case when the incomplete information concerns the parameters of the 

probability measure P ;  we refer to  DupaZovd and Wets (1986, 1987, 1988), King and 

Rockafellar (1986), King (1986, 1987) for the nonparametric approach. 

Let P in (1) be a probability measure that is known to  belong to  a given parametric 

family {PY, y E Y) of probability measures on (E, A ) ,  B c R3 and Y c R4 is a given 

open set. Denote by 9 the true, unknown vector parameter and put 



Using this notation, program (1) becomes 

minimize g (2, q) on a given set S . (3) 

Assume that the true parameter vector q has been estimated by yY, u = 1, 2,. . using 

sample information; the index u reflects the dependence on the (increasing) sample size. 

Accordingly, we use the optimal solution 

to  estimate (or to  approximate) the true optimal solution 

of the stochastic program (3) and the value of min g(z,  yY) = g(z( yY), yY) to  estimate (or 
z E S  

to  approximate) the optimal value of the objective function g(z, q) in (3)). 

In a common situation, y v  enjoys "good" properties such as consistency, asymptotic 

normality, asymptotic efficiency. The question is how far are these properties inherited by 

z(y") and by min g(z, y"). The relatively easy case is connected with differentiability 
zE S  

property of the optimal solutions z(y) E argmin g(z, Y )  and of the optimal value g ( z ( ~ ) ,  
z E S  

min g(z,  y)  for y belonging to a neighborhood of q: If z(y) (resp. g(z(y) ,  y)) is 
Y )  = z E S  

differentiable on O(q) and if y Y  is asymptotically normal, 

then the well known results on smooth transformations of multinormal variables (see e.g. 

Serfling 1980) can be used to  get asymptotic normality of z(yv) (resp. of g(z(yv), yV)) - 

see e.g. Dupatov 6 (1984)) (1987), Shapiro (1985). 

We shall use results of parametric programming to get asymptotic behavior of z(yv) 

and of g(z(y"), y"). We shall concentrate to the results that are devoted to the 

differentiability property and we shall summarize them for S defined by explicitely given 

constraints 

For y E Y consider the parametric program 

minimize gO(z, Y) on the set S(y) . P ( ~ )  

Let 



be the corresponding Lagrange function defined on R n  x R+m x RP and denote u ( y )  the 

vector of Lagrange multipliers that correspond to the optimal solution z ( y )  of P ( y ) ,  i.e., 

holds true for the pair [ z ( y ) ,  u ( y ) ] .  We assume that P ( y )  has an optimal solution for the 

true parameter q .  The basic method for analyzing P ( y )  can be found already in Fiacco 

and Mc Cormick (1968) .  It uses the following assumptions: 

A1 - Diferentiability 

The functions g ( z ,  y ) ,  i = 0 ,  1,.  . . , m + p are twice continuously differentiable with 

respect to  ( 2 ,  y)  on a neighborhood of [ z ( q ) ,  q ] .  

A8 - Linear independence condition 

Let I (q)  c ( 1 , .  . . , m )  contains indices of active inequality constraints, i.e., 

g ; ( z ( v ) ,  v )  = 0 ,  i c I ( v )  9 

then 

are linearly independent. 

A 3  - Strict complementarity conditions 

For i =  1, ..., m ,  

u;(q) = 0 e i $ I (q )  . 

Ad - The second order suficient  condition 

The inequality 

z T v L ~ ( z ( t 7 ) ,  u(rl) ,  1712 > 0 



holds true for each z # 0 such that 

zT~,gi(z(r)) ,  r)) = 0 V i E I(q) for which ui(r)) > 0 , 

zT~,gi(z(r)) ,  r)) 2 0 V i  E I(r)) for which ui(r)) = 0 . 

Assertion 1 (Fiacco 1976, 1983) Under assumptions A1-A4 

a) For all y in a neighborhood of r), there is a unique optimal solution z(y) of P(y) 

and a unique vector of Lagrange multipliers u(y) such that (6) holds true. 

b) The functions z(y) and u(y) are continuously differentiable a t  r). 

c) The optimal value function go(z(y), y) is twice continuously differentiable a t  r). 

The differentiability property b) depends heavily on the assumed strict complemen- 

tarity conditions A3. At the same time, A3 is related to the "true" program P(r)) and in 

our context, it can be hardly fully verified. In optimization problems of mathematical 

statistics, assumptions A2 and A3 are mostly respected by assuming that S is open or 

that z(q) is an interior point of S. (It means, that no constraints are taken into account.) 

If the assumptions of strict complementarity are dropped, one uses the strengthened 

form of the second order sufficient condition introduced by Robinson (1980): 

A 5  - The strong second order suficient condition 

The inequality (8) holds true for each z # 0 such that 

zT~,gi(z(r)) ,  r)) = 0 i E I(q) for which ui(r)) > 0 . 

Assertion 2 (Robinson 1980) Under assumptions Al ,  A2, AS, the optimal solution z(y) 

and the vector of Lagrange multipliers exist, are unique and Lipschitz continuous on 

a neighborhood of r). 

Assertion 3 (Jittorntrum 1984) Under assumptions A l ,  A2, AS, the optimal solution Z(Y) 

and the vector of Lagrange multipliers are directionally differentiable a t  the point r). 

Assertion 4 (Rockafellar 1984) Under assumptions A l ,  A2, AS, the optimal value function 

gO(z(y), y) is continuously differentiable a t  r). 

Very often, the differentiability assumption A1 can be weakened slightly by d r o p  

ping the assumption on the existence of the second order derivatives with respect to  y. An 

essential relaxation makes use of Lipschitz continuity of the first order derivatives only. In 



this case, it is possible to prove Lipschitz continuity of the optimal solution; see e.g. Ro- 

binson (1974) and in the context of stochastic programming Wang (1985). As to the 

linear independence assumption A2, it can be replaced by Mangasarian-Fromowitz con- 

straint qualification, see e.g. Fiacco and Kyparisis (1985) and Shapiro (1985). 

We shall follow the detailed analysis by Robinson (1986) according to which the 

desired differentiability property of the optimal solutions of P(y) cannot hold true 

without the strict complementarity conditions A3, whereas in the general case we have 

only 

h e r t i o n  5 (Robinson 1986) Under assumptions Al ,  A2, A5, the optimal solutions z(y) of 

P(y) are Bouligand differentiable a t  q. 

2. BOULIGAND DIFFERENTIABILITY OF OPTIMAL SOLUTIONS 

We shall apply the results by Robinson (1986) for to  get asymptotic behavior of 

z ( y 7  under assumptions A l ,  A2, A5. To simplify the explanations we shall concentrate 

to  the case when no explicite constraints are spelled out in P(y);  it is fully in line with 

our original problem (1). Moreover, the reasonings of Robinson (1984) show that in local 

stability studies of the parametric program P(y) one can get rid of the explicite con- 

straints provided that the assumption A2 (or the more general nondegeneracy assump 

tion) holds true. We shall briefly delineate Robinson's approach for the parametric pro- 

gram 

minimize g(z, Y) on a set S (9) 

where g : Rn x Rq --t R' and S c Rn under the following assumptions: 

B1 - There exist continuous derivatives 

on a neighborhood of [z(q), q] and the matrix 

is positive definite. 



B2 - The set S is convex, polyhedral with int S # 0. 

To avoid trivial situations, we shall assume that program (9) has an optimal solu- 

tion z(q) for y = q and that z(q) $ int S. 

Under assumption B2, the set S - z(q) can be replaced near the origin by its 

tangent cone T a t  the origin. It means that the optimality condition 

for the "true" program 

minimize g(z ,  q) on the set S 

can be replaced by 

0 E V,G(O, r)) + NT(O) 

where 

and NT(ZO) denotes the normal cone to T at  the point zo, i.e., NT(zo) = 

{P: (z  - z ~ ) ~ ~  5 0 VZ E T). 

Consider now the generalized equation 

that expresses the necessary optimality condition for the program 

minimize G(z,  y) on T . (14) 

To get a solution of (13), we use the linearization technique of Robinson (1980) that leads 

to  the linear generalized equation 

whose solution for y near q is near to the solution of the nonlinear generalized equation 

(13). (See Robinson 1980, Theor. 2.3). 

For small perturbations y - q we have approximately 

The solution of (13) can be thus further approximated by the solution of the generalized 

equation 



with 

or, equivalently, by the solution of the quadratic program 

1 minimize zT(v,G(O, q) - w) + - z T v & ~ ( O ,  q)z 
2 

on T. 

Thanks to B1, the quadratic program (18) has a unique, locally Lipschitzian solution 

X(w) that equals for w near to  0 (i.e., for y near to q) to  the Bouligand derivative 

Az(q; y - q) of the optimal solution of (9) a t  the true parameter value q applied to y - q 

(see Robinson 1986, Theor. 3.5). It means that 

where w is defined by (17), what explains the word "approximated" used in connection 

with solutions of (16) or (18) and their relationship to  the solutions of generalized equa- 

tions (13) or (15) for y near to  q. 

The necessary and sufficient condition for to  get affine Bouligand derivative (i.e., to 

get differentiability of z(y) at the point y = q) reads 

For a polyhedral set S defined through explicitely given (linear) constraints, condition 

(20) is fulfilled if and only if the corresponding strict complementarity conditions A3 hold 

true. (Robinson 1986). In the context of our paper it means that in the general case, the 

asymptotic distribution of G [ Z ( ~ " )  - z(q)] need not be normal in spite of asymptotic 

normality of G ( y Y  - q). We have only 

THEOREM 1 Let assumptions B1 and Bd hold true for the program P(y)  and let yY be 

an asymptotically normal estimate of q, i.e., 

Then the asymptotic distribution of &(z (~" )  - z(q)) is that of G x ( w Y ) ,  where X(wY) is 

the optimal solution of the quadratic program (18) corresponding to an asymptotically nor- 

mal perturbation wY = - v ~ ~ G ( o ,  q)(yY - q) in the linear part of the objective junction. 



3. THE PERTURBED QUADRATIC PROGRAM 

To develop the asymptotic result in detail we have to  study the perturbed quadratic 

program (18). We shall modify the results of Guddat (1976) to  our case. To simplify the 

notation, put 

c = vf ~ ( o ,  q), B = V&G(O, 7) and p = V,G(O, r)) . (22) 

Assume that z(r)) $ int S so that the tangent cone T # Rn. It can be written as 

T = {z E Rn:Az = 0, z 2 0) where A is an (m, n) matrix . 

According to  B1, the quadratic program 

T 1  minimize (p - w) z + - z T c z  
2 

subject to  Az = 0, z > 0 

that corresponds to  (18) has a unique optimal solution X(w) for an arbitrary w E R n  and 

X(w) is a Lipschitz continuous vector function on Rn. 

The set T can be decomposed into its vertex (if any), its interior and into finitely 

many relatively open faces of T. Each face, say C, is determined by a subset 

J c {I,. . ., n) in the following way: 

To each of the faces, the stability set u(J)  can be constructed. It is by definition the set of 

all parameter vectors p - w for which the optimal solution X(w) of (23) belongs to  C(J) .  

According to  Guddat (1976), the stability sets form a decomposition of the parameter 

space R n  for which, inter alia, the following properties hold true: 

(i) For any of subsets J c {I,. . ., n), the function X(w) is linear on clo u(J).  

(ii) If C(J )  is the vertex of T, then X(w) is constant on clo u(J).  

Let us compute the optimal solution X(w) of (23) directly assuming that 

p - w E u(J).  The necessary and sufficient conditions for z E C(J)  to  be the optimal solu- 

tion of (23) can be written as 

Az = 0, z, > 0 for j $ J, z j  = 0 for j E J 

C Z + A ~ U - v = w - p , ~ ~ > O f o r j ~ J , v = O f o r j $  J J . 

Through conditions (25), the set u (J )  is defined. 



Choose now an arbitrary index set J c (1, ..., n) and consider the system of equa- 

tions 

Let k be the rank of the matrix of the system (26), i.e., the rank of 

where Z j  denotes the reduced n dimensional identity matrix In that contains only the 

rows corresponding to  indices j E J. It means that the system (25) can be equivalently 

written as 

2' = A jy, y E R n -  ', z' E R~ with a (k, n - k) matrix A . 

Assume that z' consists of first k components of z,  z' = (zl,. . ., zk) and substitute 

into the objective function of (23): 

Denote 

and instead of minimizing the original objective function of (23) subject to  (26), solve the 

unconstrained quadratic program 

1 T minimize pJy + +y Cjy . 

Evidently, CJ is positive definite again, so that there is a unique optimal solution of (28) 

for an arbitrary p ~ ,  namely, 

~I(PJ) = - CF 'PJ . 

Accordingly, the optimal solution 4(w) of the program 

1 T minimize (p - w) Tz + -z Cz 
2 



subject to Az = 0, z, = 0 for j E J 

has the form (see (27)) 

Formula (30) gives the general form of optimal solutions of (29) for an arbitrary w E Rn. 

According to the notion of stability sets u, (30) is the general form of optimal solutions of 

the program 

T 1 T  minimize ( p  - w) z + -z Cz 
2 (31) 

on the set 

for all p - w E clo u(J). As a result, we have 

THEOREM 2 The optimal solution X(w) of (23) i s  a piecewise linear continuous vector 

function on Rn. For p - w E clo u(J), it has the form (SO). Moreover, for all 

J c {I , .  . . , n )  X(w) i s  differentiable if p - w E int u(J). 

4. THE ASYMPTOTIC DISTRIBUTION 

Let yY, u = I, .  a ,  be asymptotically normal estimates of the true parameter vector 

9, la'?., 

&(yY - 9) - N(0, C) . (32) 

We shall use the results of Sections 2 and 3 to get the asymptotic distribution of the a p  

proximate optimal solutions z(yY) of the "true" program 

minimize g(z,  9) 

on a given convex polyhedral set S c R n  



under assumption B1 only. 

As we already know (see 19), G[Z(~")- z(q)] is asymptotically equivalent to  

G X ( w " ) ,  where X(w") denotes the (unique) optimal solution of the quadratic program 

1 T minimize (p - w") Tz + -z Cz 
2 

subject to Az = 0, z 2 0 

with wY = - B(yY - q). 

According to (30), X(w") can be written for p - wY E clo a ( J )  as 

We are going to  use X(wY) for to approximate z(q) in case that yY is near to  q, i.e., wY is 

near to 0. Our reference point is thus the optimal solution of the quadratic program 

1 minimize p Tz + -zTcz  
2 

subject to  Az = 0, z 1 0 . 

Let us distinguish two cases: 

(i) p E int a ( J )  for an index set J c (1 , .  . ., n). Then there is a neighborhood 0 of zero 

such that for w E 0, p - w E int a ( J )  holds true. In this case, X is differentiable a t  0 and 

Notice that in this case, strict complementarity conditions are fulfilled for (35). 

(ii) p E bound a ( J )  for an index set J c (1 , .  .., n). It means that p E bound o(J') for 

J' # J, J' c (1 ,..., n),  too. Let 

p E n bound o(Jh) . 
h = l  

Then for each of index sets Jh, h = 1 , .  . ., H, there is a different representation (34) of the 

optimal solutions. For w near to  0, 

and we can compute the distribution function according to 



For wY asymptotically normal we thus get an asymptotic distribution of X(wY) that is a 

mizture of normal distributions conditioned by convez polyhedral sets. Notice that one of 

these distributions can be degenerated if the optimal solution of (35) is in the vertex of 

thecone T =  { Z E  R n : A z = O , z >  0). 

5. DISCUSSION 

Our result is in full agreement with that given by King and Rockafellar (1986) and 

King (1986) for linear-quadratic stochastic programs and nonparametric approach. More- 

over, it indicates that their special assumption about the objective function might be re- 

laxed. 

As t o  the asymptotic behavior of the optimal value function g(z(yY), yY), the situa- 

tion is much simpler. Thanks to  Assertion 4 of Section 1, it is asymptotically normal for 

asymptotically normal estimates yY of 7 and, on the top of it one can get additional 

results on its bias, see Shapiro (1985). 

One can consider the probability measure P to be a parameter in program (1); for 

continuity results on the optimal value function and on the optimal solution set see Kall 

(1987), Robinson and Wets (1987), Romisch and Schulz (1987). 
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