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Multiregional Population Projection

Population projections illuminate the impacts of current schedules of

births, deaths and migration by drawing out the future consequences of the

maintenance of present rates. Methods for developing population projections

for single regions are well known, and the mathematics of such exercises

have been documented in countless articles, and more recently, in several

texts (e.g., Keyfitz, 1968; Pollard, 1973). The mathematics of population

projection for multiregional systems that experience internal migration,

however, are less known, and it is only recently that concepts such as the

multiregional life table have given them a methodological consistency with

the conventional mechanics of single-region population projection.

This paper is an exposition of the mathematics of multiregional

population projection. We begin by outlining the notion of a multiregional

life table. Next, we show how the stationary regional populations of such

a life table serve as inputs to numerical calculations carried out with the

multiregional versions of the discrete and continuous models of demographic growth

[e.g., Leslie, 1945, and Sharpe and Lotka, 1911, respectively].

We then conclude with a brief consideration of some of the spatial consequences

of zero population growth.

Although some mathematics is inevitable in an article such as this

we have attempted to relegate as much of the mathematical details as possible

to the Appendix. Further details also may be found in the text by Rogers (1975).

Finally, an important ingredient of effective strategies to understand and

resolve complex problems of a mathematical nature is a powerful notational

system. In extending the principal results of single-region population

mathematics to multiregional population systems, we generalize conventional



,.

notation as set out, for example, in Keyfitz (1968); although we do not

distinguish notationally between continuous and discrete functions. The

regional dimension is introduced by means of two subscripts which refer to

regions of birth and residence. As in the single-region theory, the argument

of a variable usually refers to age, and the right superscript, also enclosed

in parentheses, refers to time. The Glossary below brings together most of

the variables used in this paper.
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GLOSSARY

Observed Population

3

F. (x)
~

= Number of individuals aged x to x+4 years at last birthday
in region i at time t who were born in region j.

Annual rate of childbearing in region i among individuals
aged x to x+4 years at last birthday.

Stationary (Life Table) Population

.J" (x)
J ~

q. (x)
~

Pij(x)

. L, (x)
J ~

,T, (x)
J ~

,e, (x)
J ~

,R, (0)
J ~

B.
~

= Number of individuals at exact age x in region i who were
born in region j.

= Probability of dying within the next 5 years for individuals
in region i at exact age x.

= Probability of residing in region j at exact age x+5 for
individuals in region i at exact age x.

Probability of residing in region i at exact age x for
individuals born in region j.

Proportion of x-to-(x+4)-year old residents of region i
alive and x+S to x+9 years in region j 5 years later •

= Number of individuals aged x to x+4 years at last birthday
in region i who were born in region j. (Also interpretable
as the number of person-years lived in region i by j-born
individuals between ages x to x+4 years.)

Total person-years lived in region i from age x to the end
of life by j-born individuals.

Expectation of remaining life in region i for j-born
individuals at age x.

Net reproduction rate in region i of j-born individuals.

= Number of births in the stationary population of region i.

Stable Population

Stable S-year growth ratio.

r Intrinsic rate of growth.



o.
J

i.
J

(%).
J

=

=

=

=

=

=

=

Intrinsic birth rate in region j.

Intrinsic death rate in region j.

Intrinsic outmigration rate in region j.

Intrinsic inmigration rate in region j.

Intrinsic net migration rate in region j.

Proportion of the total stable population in region j that is
x-to-(x+4)-years old.

Proportion of the total multiregional stable population that
is in region j.

Stable equivalent of region j.

Number of births in the stable population of region j.
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1. The Multiregional Life Table

A multiregional life table exhibits the mortality and migration history of

an artificial population, called a cohort, as it gradually decreases in size

until all of its members have died. Normally it is assumed that the age-specific

mortality and migration experience to which this cohort is exp.osed remains

constant and that the cohort is undisturbed by emigration and immigration.

Consequently, changes in the cohort's membership can only occur in the form of

a decrease due to deaths.

The data set out in a multiregional life table originate from a set of

m

probabilities of outmigrating and of dying within each interval of age, p .. (x)
~J

and q.(x), respectively, where ~ p .. (x) + q. (x) = 1. Life tables that deal
~ . 1 ~J ~

J=
with age intervals of a year are frequently referred to as complete life tables,

whereas those using longer intervals are called abridged life tables. We,

however, shall ignore this somewhat spurious distinction and for convenience

will, without loss of generality, deal only with 5-year age intervals throughout.

Let the regional radix 1.(0)
~

. ... h . th .
~nstant ~n t~me ~n t e ~ reg~on

denote the number of babies born at a given

of an m-region multiregional population system.

Subjecting these regional cohorts to the age-specific mortality and mobility of

an observed population, we may obtain 1.(x), the expected number of individuals
~

who survive to exact age x in region i. However, we need to keep track of where

these survivors were born. Consequently, let us introduce an additional subscript

on the left-hand side of the variable to designate the region of birth, such that

.1.(x) denotes the expected number of survivors alive in region i at age x who
J ~

were born in region j.

m
They are survivors of the r .fh(x) j-born individuals who at age

h-l J

Consider the .1. (x+5) residents of region i at age x+5 who were born in
J ~

region j.
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x resided in anyone of the m regions (h = 1, 2, ... , m). Denoting by Phi (x)

the probability that an individual in region h at age x will survive and be

in region i 5 years later, we have the relationship:
m

It has beeQ estimated that the probability that a female at age 10 and

(1)

residing in California in 1958 would be living in the rest of the United States

5 years later is 0.058749, and the probability that a female resident of the

rest of the United States at the same age in 1958 would still be living

there in 1963 is 0.985997. Thus the number of California-born life table

survivors at age 15 in the rest of the United States is

85,751 (0.058749) + 11,544 (0.985997)

5,038 + 11,382

16,420 ,

a quantity that appears in the second row-first column position in the lower

half of the array set out in Table 1. The regional radices for that table

were both arbitrarily set to 100,000.

Let ,L.(x) denote the total person-years lived in region i, during the
J ~

5-year age interval (x, x+5) by individuals who were born in region j.

Assuming a uniform distribution of outmigrations and deaths over the 5-year

unit interval of age, we may define the following multiregional generalization

of the single-region linear integration formula for deriving L(x):

.L. (x) = 2.2 [.J,. (x) + .J" (X+5)]
J ~ J ~ J ~

(2)



TABLE 1- STATIONARY LIFE TABLE POPULATION, REGIONAL FERTILITY RATES, AND MULTIREGIONAL NET

MATERNITY FUNCTION: UNITED STATES FEMALES, 1958, TWO-REGION MODEL

Region Age 1.e1 (x) 2f,1 (x) lLl (x)/.e 1 (0) 2L1 (x)/.e 2(0) F
1

(x) 1~ 1 (x) 2~ 1 (x)
x

10 85,751 2,291 4.16220 0.14050 0.00032 0.00134 0.00004
15 80,737 3,329 3.92220 0.18953 0.04959 0.19451 0.00940
20 76,151 4,252 3.65597 0.25690 0.12323 0.45052 0.03166
25 70,088 6,023 3.33854 0.33460 0.08945 0.29862 0.02993

California 30 63,454 7,360 3.06113 0.39018 0.05262 0.16109 0.02053
35 58,991 8,247 2.86151 0.42907 0.02387 0.06831 0.01024
40 55,469 8,916 2.70519 0.45559 0.00606 0.01640 0.00276
45 52,738 9,308 2.57330 0.47038 0.00030 0.00078 0.00014
50 50,194 9,507 2.44204 0.47586 0.00002 0.00004 0.00001

Region Age 1.e2 (x) 2.e 2(x) 1L2(x)/.e1 (0) 2L2(x)/.e2(0) F
2

(x) 19i2(x) 2~ 2(x)
x

10 11,544 94,672 0.69909 4.70382 0.00048 0.00034 0.00225
15 16,420 93,481 0.92960 4.64493 0.04584 0.04261 0.21291
20 20,764 92,316 1.18150 4.56260 0.12567 0.14848 0.57338
25 26,496 90,188 1.48124 4.46573 0.09311 0.13792 0.41582

Rest of U.S. 30 32,754 88,441 1. 73468 4.38419 0.05477 0.09502 0.24014
35 36,634 86,926 1. 90037 4.30997 0.02825 0.05369 0.12177
40 39,381 85,473 2.00486 4.22927 0.00819 0.01642 0.03463
45 40,813 83,698 2.05530 4.12971 0.00048 0.00100 0.00200
50 41,399 81,490 2.06703 4.00307 0.00001 0.00003 0.00005
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We have estimated the number of California-born life table survivors at age 15

in the rest of the United States to be 16,420. Table 1 gives 11,544 as the

corresponding total for those 5 years younger. Hence the total number of

person-years lived in the rest of the United States between ages 10 and 15 by

the 100,000 California-born females is

= 69,909 •

or 0.69909 years per California-born female.

The remainder of the multiregional life table follows directly. First, we

complete the survivorship and migration history of the mu1tiregiona1 cohort of

babies. Next, we compute the total person-years in prospect beyond age x by

The

.T(x)
J

.~ (x)
J

=
,T, (x)
J 1

,~. (x)
J 1

beyond age x for j-born individuals then follows directly as:

y=x

life
m

t
i=l= m
I:

i=l

of residence,.T,(x) say. for each birth cohort ~.(O), where
J 1 J

z
.T.(x) = t ,L.(y), z being the last age interval of life.
J ~ J 1

region

,e(x)
J

expectation of

and
. T. (x)

= J 1

m
I: ,1,. (x)

. 1 J 11=

= (4)

Thus, we conclude that a j-born individual currently at age x can expect

to live a total of je(x) more years, of which ,e. (x) years will be spent in
J J

region j and .e.(x) years will be spent in region i, i=l, 2, ••• , m, (i~j).
J 1
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Summing the various columns of person-years lived in Table 1 and adding

to these totals the person-years lived by those under age 10 and over age 55,

we may find the total person-years lived beyond each age, by region of

residence and birth, and the corresponding expectations of remaining life at

each age. From such calculations we conclude, for example, that a

California-born baby girl,under the regional mobility and mortality schedules

that prevailed in the United States in 1958~has an expectation of life at

birth of 73.86 years of which 24.90 years, on the average, will be lived in the

rest of the United States. A baby girl born in the rest of the United States,

on the other hand, has a life expectancy of 73.11 years, of which only 5.75

years, on the average, will be lived in California.

Table 2 presents the regional expectations of life at birth by region of

residence for the same 1958 data that generated Table 1 but disaggregates

California into four regions: the San Francisco, Los Angeles, and San Diego

Standard Metropolitan Statistical Areas, and the rest of California. For

purposes of comparison, the corresponding expectations of life at birth for

males are also included.

The data in Table 2 indicate that the migration patterns of males and

females are remarkably similar, with males exhibiting slightly higher levels

of geographical mobility. (The proportions of expected lifetimes to be lived

in the regions of birth are higher for females born in all but the rest of

California region.) The heaviest migration level out of California occurs in

the San Diego region, where almost a half (45 to 47 percent) of a baby's

expected lifetime is expected to be lived outside of California. This no doubt

is due to the large number of births that are attributable to Navy and other

military personnel stationed in that region.



TABLE 2 REGIONAL EXPECTATIONS OF LIFE AT BIRTH

10

BY REGION OF RES IDENCE: UNITED STATES MALES AND FEMALES, 1958,

FIVE-REGION MODEL

A. Males

Region of Region of Residence
Total

Birth 1. 2. 3. 4. 5.

1. San Franc isco S.M.S .A. 32.51 5.50 1.10 5.59 22.92 67.62

2. Los Angeles S.M.S .A. 4.11 36.06 1.56 3.62 22.16 67.50

3. San Diego S .M.S.A. 3.64 7.67 21.72 2.46 31.95 67.44

4. Rest of California 8.81 7.39 1.27 27.09 22.78 67.35

5. Rest of U.S. 1.34 2.69 0.58 0.87 61.26 66.74
,

B. Females

Region of Region of Residence

!
! Total

Birth 1. 2. 3. 4. 5.
I

1. San Francisco S.MgS.A. 35.96 I 6.61 1.18 6.02 24.22 73.98

2. Los Angeles S.M.S .A. 4.77 40.81 1. 79 3.82 22.97 74.15

3. San Diego S .M.S .A g 4.22 9.05 24.63 2.61 33.26 73.78

4. Rest of California 10.59 9.09 1.37 27.97 24.71 73.73

5. Rest of U.S. 1.42 2.99 0.55 i 0.83 67.35 73.14
i



2. The Discrete Model of Multiregional Demographic Growth

Population projections work out the numerical consequences to an initial

population of a particular set of assumptions regarding future fertility,

mortality, and geographical mobility. The mechanics of such projections

typically revolve around three basic steps. The first ascertains the

starting age distribution and the age-specific schedules of fertility,

mortality, and migration to which this population has been subject during a

past period. The second adopts a set of assumptions regarding the future

behavior of such schedules. And the third derives the consequences of

applying these schedules to the initial population.

The discrete model of multiregional demographic growth expresses the

population projection process by means of a matrix operation in which a

multiregional population, set out as a vector, is multiplied by a projection

matrix that survives that population forward through time (see Appendix-A.2).

The projection calculates the region and age-specific survivors of a multi-

regional population of a given sex and adds to this total the new

births that survive to the end of the unit time interval. This process may

be described by the following system of equations:

11

m
~

j=l
~-5 s x ~ ~-5,

i = 1, 2, ... , m
(5)

m
K~t+l)(x+5) = ~
~ j=l

x=O, 5, 10, •.. , z
i = 1, 2, ... , m

(6)

where we continue to assume a time and age interval of 5 years, and where

b., (x)
J~

the average number of (female) babies born during a 5-year

unit interval and alive in region i at the 'end of that

interval, per (female) person in region j aged x to x+4

years at the beginning of the interval;
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s .. (x) = the probability that a (female) resident of region j aged
J1.

x to x+4 years will be alive and in region i 5 years later;

K~t)(x) = the (female) population in region j aged x to x+4 years at time t·,
J

a = the first age of childbearing;

~ the last age of childbearing;

Z ~ the last age interval of life (e.g., 85 years and over).

As in the single-region model, survival of individuals from one moment in

time to another, 5 years later, is calculated by diminishing a regional

population to take into account the decrement due to mortality. In the mu1ti-

regional model, however, we also need to include the decrement due to outmigration

and the increment contributed by inmigration. An analogous problem is presented

by surviving children born during the 5-year interval. Some of these migrate

with their parents; others are born after their parents have migrated but before

the unit time interval has elapsed.

In the United States an estimated 446,634 [ =Ki
t
)(20)] and 5,149,902

[ =K~t)(20)J women, aged 20 to 24 years at last birthday, were living in

California and in the rest of the United States, respectively, at mid-year of

1958. Recalling the two-region life table population for California and the

rest of the United States that appears in Table 1 and using the formula for

s .. (x) that is developed in Equation ~.12)of the Appendix we may compute,
1.1.

for example,
lLl (25) 2Ll (25) 3.33854 0.33460
lL2(20) 2L2(20) 1.18150 4.56260

s11 (20) = = 0.90596 .lLl (20) 2Ll (20) 3.65597 0.25690
lL2 (20) 2L2(20) 1.18150 4.56260

Analogous calculations yield the outmigration proportion s2l (20) = 0.02232.
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(t) (t).
The sum of the two products sll (20) K

l
(20) and s21 (20) K2 (20) g~ves the

expected number of women aged 25 to 29 in California in 1963 [Equation (6)J:

K(t+l) (25)
1

(0.90596)(466,634) + (0.02232)(5,149,902)

= 537,719.

Utilizing the formula for the fertility rates b .. (x) set out in Equation
~J

(A.13) of the Appendix we may calculate the contribution made to the first

age group in the rest of the United States in 1963 by surviving female children

of 20-to 24-year-old women residents of California in 1958:

b12 (20) = ~[(0.11260)Fl (20) + (0.90596)(0.11260)Fl (25)

+ (0.09050)(4.90700)F2(25)J

into which we may substitute F
l

(20) = 0.12323, F
l

(25) 0.08945, and

F
2

(25) = 0.09311 to find

b
12

(20) = 0.03217.

Applying this rate to the estimated 446,634 females in California aged

20 to 24 years in 1958, we find their contribution to the first age group in

the rest of the United States in 1963 to be 446,634 (0.03217) = 14,368 girls.

Adding this total to the corresponding contribution made by 20-to 24-year-old

females in the rest of the United States in 1958 we obtain the total contribution

(t+l) ..to K
2

(0) made by U.S. women aged 20 to 24 ~n 1958, and aggregat~ng all such

totals across the childbearing ages [Equation (5)J, we find K~t+1)(0) = 9,638,313,

the resident population aged 0 to 4 at last birthday in the United States at

mid-year 1963. Adding this total to the resident population at all other ages

gives the rest of the United States a projected grand total of 86,612,665

females for 1963. California's projected total female population for the same

year is 8,646,045. In Table 3B we find that the corresponding totals in 1958

were 80,844,419 and 7,395,438, respectively.
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It is well known that a regional population which is closed to (i.e ••

undisturbed by) migration will. if subjected to an unchanging regime of mortality

and fertility, ultimately achieve a stable constant age composition that increases

at a constant stable growth ratio. ~ say. In Rogers (1975) it is shown that this

same property obtains region-by-region in the case of a multiregional population

system the totality of which is closed to migration and subjected to an unchang-

ing multiregional schedule of mortality. fertility. and internal migration.

Knowledge of the asymptotic properties of such a population projection

helps us understand the meaning of observed age-specific birth. death. and

migration rates. In particular. the quantity r = 0.2 In A gives the intrinsic

rate of growth that is implied by the indefinite continuation of observed

schedules of mortality. fertility. and migration. Table 3 shows that this rate

is 0.02064 in the 2-region projection and 0.02065 in the 5-region projection.

Both rates are below the 0.02070 yielded by the single-region model. The

differences are a consequence of aggregation bias.

A related but equally useful demographic measure is the stable eguivalent

Y (Keyfitz, 1969) of each region and its proportional allocation across age

groups in that region. C.(x), which is the region's stable age composition.
~

The former may be obtained by projecting the observed multiregional population

forward until it becomes stable and dividing the resulting age-region-specific

1 b h bl h · . d h th h i htota s y testa e growt rat~o A ra~se to ten power. were n s t e

number of iterations that were needed to achieve stability. Summing across

all age groups in a region gives the regional stable equivalent Y.• whilst
~

dividing the number in each age group in region i by Y. gives C.(x). region i's
~ ~

age composition at stability. Finally. dividing each region's stable equivalent

by the sum total of all regional stable equivalents gives (%) .• the stable regional
~

share of the total multiregional population in region i at stability.
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Table 3 presents the above described demographic measures for our

California-rest of the United States data of 1958. Also included are intrinsic

rates of birth, death, and migration. (These are defined in Appendix A.2.)

Note that if the 1958 schedules of growth were to continue unchanged, California's

population would ultimately stabilize at about 18 percent of the national total

(doubling its 1958 share) and would increase at an annual rate of approximately

20.6 per 1000. Three-fourths of California's stable population would reside

in the San Francisco and Los Angeles SMSAs and about one-third of the population

would be under 15 years of age. Net migration into the state would be positive,

but both the San Diego SMSA and the rest of California each would experience a

slight net outmigration of about 0.4 per 1000. Both the highest birth rate

and the highest proportion of the aged would be found in the San Diego SMSA,

a reflection of San Diego's dual roles as military base and retirement haven.



TABLE 3 - MULTIREGIONAL PROJECTIONS TO STABILITY AND ASSOCIATED
PARAMETERS: UNITED STATES FEMALES, 1958

A. FIVE-REGION PROJECTION

16

Projections REGION OF RESIDENCE
and Stable
Growth l. San Francisco 2. Los Ange 1esT3. San Diego 4. Rest of Cal 5•Re s t 0 f U. S •(Parame ters S.~.A. S,MSA. S11SA.,
I K(1958) 1 941. 994 3.723.919 446.390 1.283.135 80 844 419

'70 (1958 ) 0.0220 0.0422 0.0051 0.0145 0.9162

K(2008) 7.561.538 14.488.817 2.334.043 ! 4.634 969
,

180.567.030r

%(2008) 0.0361 0.0691 0.0112 0.0221 i 0.8615•
I Y 3.620.347 6.612.727 1 023.696 2.210.093 t 61.171.949

!

% 0.0485 0.0886 0.0137 0.0296 • 0.8196

C(0-14) 0.3275 0.3297 0.3404 0.3520 0.3456

C(15-64) 0.5953 0.5904 0.5570 0.5717 0.5828

C(65+) 0.0773 0.0799 0.1027 0.0763 0.0716

A l.10878

r 0.02065

b 0 0 02593 ! 0.02612 f 0.02826 0.02780 0.02744~

A=b-r 0.00528 I 0.00547 { 0.00760 0.00714 0.00679l

d 0.00652
,

0.00628 0.00721 0.00676 0.00665

i 0.02242
}

0.01832 0.03163 0.02920 0.00245

0.02117
,

0.01751 0.03202 ! 0.02958 0.002590 I

•n 0.00125 J 0.00081 -0.00039 -0.00039 -0.00014

B. TWO-REGION AND AGGREGATED MULTIREGIONAL PROJECTIONS

Projections TWO-REGION MODEL
AGGREGATIONS OF SINGLE-

and Stable MULTIREGIONAL MODELS
Growth

REGION

Parameters l. California 2. Rest of U.S. TWO-REGION FIVE-REGION MODEL

K(l958) 7.395.438 80,844.419 88.239,857 88.239.857 88.239.857

K(2008) 28,704.425 180.787.223 209.491,647 209.586.397 209.416,093

Y 13 182 724 61.427.080 74 609 804 74.638.813 74.172,787

% 0.1767 0.8233 1.0000 1.0000 1.0000

C(0-14) 0.3337 0.3456 0.3435 0.3435 0.3443

C(15-64) 0.5865 0.5828 0.5835 0.5834 0.5835

C(65+) 0.0798 0.0716 0.0730 0.0732 0.0722

A 1.10874 \ 1. 10874 1. 10878 1.10905

r 0.02064 0.02064 0.02065 0.02070

! b 0.02651 0.02744 i 0.02728 0.02727 0.02734

6=b-r=d 0.00587 0.00680 I 0.00663 0.00662 , 0.00664



children in region i per year.
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3. The Continuous Model of Multiregional Demographic Growth

The principal contribution of the continuous model of demographic growth

lies in its ability to trace through the ultimate consequences of applying a

given s±edule of fixed age-specific rates of fertility, mortality, and migration

to a population of a single sex. It is, therefore, a natural generalization

of the multiregional life table's stationary population whose total births

are equal to total deaths. When births are not forced to equal deaths, but

instead are assumed to occur according to rates that are forever fixed, we

obtain the more interesting model of a stable multiregional population. By

associating the births of a current generation with those of a preceding

generation, one can develop several important constants that describe the

ultimate growth and regional age distributions of such a population.

A continuous model of single-sex population growth may be defined foca

multiregional population system by means of a straightforward generalization

of the corresponding single-region model. Beginning with the number of female

births at time t in each region, B.(t), say, we note that the number of women
1

aged x to x+dx in region i at time t, were born since time zero and are survivors

of those born x years ago anywhere in the multiregional system and now living
m

in region i at age x, that is E B.(t-x).p.(x)dx, where x ~ t. At time t, these
j=l J J ~

women give birth to

[ ~ B.(t-x).p.(x)lL,(x)dx
j=l J J 1 J1I1

Here .p,(x) denotes the probability that a
J 1

baby girl born in region j will survive to age x in region i, and m.(x)dx is
1

the annual rate of female childbearing among women aged x to x+dx in region i.

Integrating the above expression over all x and adding w.(t) to include
1

births to women already alive at time zero gives the fundamental integral
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equation system

B, (t)
1.

t r m ]= W,(t) + J L ~ B,(t-x),Pi(x) m,(x)dx,
1. 0 j =1 J J 1.

i = 1, 2, ... , m (7)

For all t beyond the last age of childbearing, those surviving from time

zero will no longer contribute to current births, i.e., W.(t) :: 0 for e>a, and (7)
1.

then reduces to the homogeneous equation system

t > a

t m t

B.(t) - J ~ B.(t-x),p,(x)m.(x)dx = S
1. 0 j::1 J J 1. 1. 0

m
~

j::1
B, (t-x) . ~, (x)dx

J J 1.

i = 1, 2, •.• , ro,

(8)

where .~.(x) = .p.(x)m,(x) is the mu1tiregiona1 generalization of the net
J 1. J 1. 1.

maternity function of the single-region model (Keyfitz, 1968, Ch.6). With

this mu1tiregiona1 net maternity function we may associate the moments

f
a n

.R,(n) = x .~,(x)dx
J 1. J 1.

et

i,j = 1, 2, "', m (9)

among which jRi(O) is of particular interest inasmuch as it defines the

number of (girl) children expected to be born in region i to a (girl) baby

now born in region j. Summing this measure over regions of residence we find the

region-of-birth reproduction rate for region j:
m

~ ,R, (0)
i=l J 1.

Alternatively, summing the same measure over regions of birth we obtain the

region-of-residence reproduction rate for region i:

B
1 B

2
m
~R. (0) :: 1Ri(0) +- ZRi(O) + = r: .R. (0)B. B.

...
Bi

1.
j=l J 1.

1. 1.

where the weights introduced into the summation reflect the total number of

births in each region.

(10)

(11)
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As in the single-region model, the solution of (7) can be found by first

obtaining a solution of (8) and then choosing values for the arbitrary constants

in that solution so that in addition to satisfying (8), B.(t) also satisfies (7).
1.

Following the procedure used in the single-region model (e.g., Keyfitz, 1968, Ch.5)

we adopt the trial solution B.(t) = Q.e
rt

and rewrite (8) as
1. 1.

-rx
Q.e .p.(x)m.(x)dx

J J 1. 1.
, i = 1, 2, ... , m,

where the range of integration has been narrowed to take into account that

m.(x) # 0 only for a ~ x ~~. Finally, dividing both sides of the equation
1.

by Q. gives the mu1tiregional characteristic eguation system
1.

m
1 = L:

j=l
i 1,2, •.. , m, (12)

-- J~where . 'i'. (r)
J 1. a

-rx
e

~
.P. (x)m. (x)dx = J
J 1. 1. a

-rx
e .~.(x)dx

J 1.

Single-region arguments may be used to show that the system of equations

in (12) can have only one real root and that any complex roots which

satisfy (12), must occur in complex conjugate pairs (Keyfitz, 1968, Ch.5).

Furthermore, the real root r is greater than
co

the real part of any complex r09t.
rht

Qhie is increasingly dominatedConsequently, the

by the first term

birth sequence B.(t) = L
1. h=l

rlt
Q1ie as t becomes large. Thus, ultimately

B. (t) ~ Q1'
1. 1.

rt
= Q.e

1.

Exponential births lead to an exponentially growing population with a

stable distribution in which each age-by-region subpopulation maintains a

constant proportional relationship to the total population and increases at

the same intrinsic rate of growth, r. The influence of the initial population

distribution is forgotten as time goes by, a condition known as ergodicity.
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In the single-region model one normally evaluates ~(r) with the numerical

approximation

~(r) ~~~5 e-r(x+2.5) 1,(x)F(x)
1,(0)

5
in which the integral J

o
-r(x+t)

e p(x+t)m(x+t)dt is replaced by the product of

-r(x+2.5) L(x)
e , 1,(0) and F(x), the observed fertility rate. The summation is

over ages x which are multiples of 5.

An analogous approach may be followed in the multiregional model. We

evaluate the integral

5J e-r(x+t) .p.(x+t)m.(x+t)dt
o J 1 1

-r(x+2.5) .L.(x)
as the product of e , J 1

1,j(O)

Thus we have

and F. (x).
1

.~.(r)=
] 1

Using the data set out in Table 1, we may compute, for example,

50
2~1(0) = 2Rl(0) = ~

x=lO
Fl (x) = 0.105 ,

which defines the number of baby girls by which a woman born in the rest of

the United States will be replaced in California. Analogous computations give

We conclude therefore, that under the 1958 schedule of growth. a girl born in

the rest of the United States will be replaced, in the subsequent generation. by

ZR(O) = 0.105 + 1.603 = 1.708 baby girls of whom 0.105 will be born in California.

Corresponding measures for a California-born girl are 1.687 and 0.495, respectively.



But r = 0 is clearly not the solution of Equation (12). This can be

readily established by substituting the values of .~.(O) into (12) and solving
J 1

for Q
2

/Q l and Ql /Q2 ,respectively. Solving the first equation

we obtain Q2/Ql = -1.829; the solution to the second is Q
l

/Q
2

= -1.218 or,

equivalently, Q2/Q l = -0.821. Since we have two different estimates of the

same quantity it is clear that we have not yet found the correct value for r.

By a process of iteration we ultimately converge to r = 0.02059, for which

21

l~l (r) = 0.711

Substituting these into Equation (12) gives Q
2

/Q
l

0.711 + (4.823)0.060 = 1

4.823 in both cases, i.e.,

(1/4.823)0.282 + 0.941 1
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4. The Spatial Consequences of Zero Population Growth

During the past decade, several White House task forces. countless

congressional committees, and scores of public interest groups have attempted

to define the outlines of a desirable national population growth policy. taking

as their starting point the widespread conviction that such growth is not

taking place the way it should. Even though these committees and task forces

span more than a decade and several administrations, their respective products

have been remarkably similar in coverage. major themes. and proposals. Most

begin by projecting the nation's population growth to a net increase of anywhere

from 80 to 145 million Americans by the turn of the century. Almost all

of these study groups then assert that without public intervention, a majority

of citizens will inherit steadily growing, already overcrowded and poorly

planned metropolitan areas. (See, for example, the various reports of the U.S.

Commission on Population Growth and the American Future, 1972.)

The contention that America's population crisis stems from a propensity to

overbreed overlooks the evident fact that any demographic imbalance in the U.S.

today is less one of absolute numbers than of their maldistribution. The notion

of a population distribution policy therefore has wide appeal but. unfortunately,

insufficient substance. An important contributing factor to this lack of sub­

stance is our poor understanding of the dynamics of multiregional demographic

growth and distribution.

Demographers agree that because of the large number of young people in

America's population today. immediate zero population growth is not a .practical

objective. Consequently, most projected paths toward a stationary population

assume an average of approximately 2.11 births per woman from now on and hold

mortality fixed. On the assumption of zero or negligibly small net immigration,

such a projection leads in about 70 years to a stationary population that is
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approximately 40 to 50 percent larger than the current population. Much has

been made of the social and economic consequences of such a population and

particularly important have been the analyses of its stationary age composition-­

an age composition that would have a higher median age and virtually constant

numbers from age zero to 50. (See, for example, Coale, 1972.)

But what of the spatial distribution of such a stationary national population?

What are the alternative paths in a geographic context? Will we, for example

have as Alonso (1973, p. 191) puts it "a nationally stable population

composed of many localities declining in population, many localities growing,

and only some remaining stable"?

A nationally stationary population may arise out of a growth process which

exhibits a zero growth rate in each short interval of time or it may develop out

of a long-run average zero growth rate which occurs as a consequence of a

combination of sequences of positive growth, of zero growth, and of decline.

Since no obvious advantages arise from the latter case, demographers quite

naturally have viewed the attainment of a stationary population as arising from

a continuation of zero growth in the short-run. Thus the normal assumption

involves a fixed mortality schedule and fertility set at replacement level.

An analogous situation arises in the case of a multi regional population.

By augmenting the assumptions of fixed mortality and replacement level fertility

with the assumption of fixed migration we may obtain a stationary mu1tiregiona1

population. In such a case, each region in the system will grow at a zero rate

of growth. (Alternatively, we may assume that zero growth for the mu1tiregiona1

system is a consequence of an aggregation of zero and nonzero growth rates in

its constituent regions. The dynamics of this situation are more complex and

will not be considered in this paper.)
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If mortality is fixed and one thousand baby girls born at each moment

replace themselves, on the average, with a thousand baby girls as they move

past their childbearing years, we will ultimately obtain a stationary zero

growth population. But the women who survive to the childbearing ages must

have enough daughters to replace not only themselves but also those women who

have not survived to become mothers. Thus we specify that the net (and not the.......-

gross) reproduction rate of the female population be unity, i.e., R(O)=l.

Reducing observed age-specific fertility rates proportionally to obtain a net

reproduction rate of unity then is one way of achieving a stationary population.

The last column in the lower half of Table 4 shows that had the U.S. female

population in 1958 immediately moved to replacement levels, the 88 million

female population of that year would have grown to 113 million (the stationary

~uival:~~, Y) before attaining zero population growth.

The multiregional analog of the above calculation is straightforward. We

simply reduce the observed age-specific re?ional fertility rates proportionally

until region-of-birth net reproduction rates are all equal to unity~ i.e.,

.R(O) = 1, j = 1, 2, ..• , m. (To avoid interrupting the flow of the argument, we
J

have relegated the discussion of such a calculation to the Appendix.) The

mechanics of the population projection process itself, however, remain unchanged.

Table 4 sets out some of the more interesting consequences of an immediate

movement to replacement levels of fertility by the 1958 U.S. female population.

that has served as our numerical example throughout this paper. (Note that

Table 4 is the zero gro~th counterpart of Table 3, which illuminatep the long-run

consequences of an unchanging continuance of present rates.)

are of some interest and merit elaboration.

Several findings

First, observe that the spatial allocations or shares of the stationary

multiregional population in Table 4 do not differ significantly from those of



TABLE 4 - MULTI REGIONAL PROJECTIONS TO ZERO GROWTH AND ASSOCIATED
PARAMETERS: UNITED STATES FEMALES, 1958

A. FIVE-REGION PROJECTION

25

Projections REGION OF RESIDENCE
and Stable
Growth l. San Francisco 2. Los Angeles 3. San Diego 4. Rest of Cal. 5. Rest of U.S.
Parameters S.M.S.A. S.M.S.A. S .M.S .A.

K(1958) 1 941.994 3,723 919 446 390 1,283,135 80.844.419

%(1958) 0.0220 0.0422 0.0051 0.0145 0.9162

K(2008) 4 132.157 7,869,750 1,216,643 2 398.295 95,274,261

%(2008) 0.0373 0.0710 0.01l0 0.0216 0.8592

y 5.887,834 10,558 059 1,546,379 3 337,595 92.180,796

% 0.0519 0.0930 0.0136 0.0294 0.8121

C(0-14) 0.1997 0.1960 0.1705 0.1979 0.2014

c(1S-64) 0.6296 0.6223 0.5874 0.6212 0.6309

C(65+) 0.1707 0.1818 0.2422 0.1810 0.1677

A- 1.00000

r 0.00000

b 0.01359 0.01317 0.01l78 0.01315 0.01375

t.=b-r 0.01359 0.01317 0.01l78 0.01315 0.01375

d 0.01334 O. 01305 0.01599 0.01438 0.01366

i 0.01906 0.01624 0.03167 0.02775 0.00224

0 0.01931 0.01636 0.02746 0.02651 0.00233

n -0.00025 -0.00012 0.0042L 0.00124 -0.00009

B. TWO-REGION AND AGGREGATED MULTIREGIONAL PROJECTIONS

Projections TWO-REGION MODEL AGGREGATIONS OF
SINGLE-and Stable MULTlREGIONAL MODELS

Growth REGION

Parameters l. California 2. Rest of U.S. TWO-REGION FIVE-REGION MODEL

K 7 395 438 80 844 419 88 239 857 88 239 857 88 239 857

K 15 442 904 95 404 038 110 846 942 110 891 106 110 653 183
y 20 765 005 92 670 056 ll3 435 061 113 512 666 ll2 988 412

% 0.1831 0.8169 1.0000 1.0000 1.0000

0.1927 0.2014 0.1998 0.1997 0.2003

C 0.6249 0.6310 0.6299 0.6296 0.6308

C 0.1824 0.1676 0.1703 0.1707 0.1689

A- 1.00000 1.00000 1.00000 1.00000

r 0.00000 0.00000 0.00000 0.00000

b 0.01322 0.01375 0.01365 0.01364 0.01369

6=b-r=d 0.01322 0.01375 0.01365 0.01364 0.01369
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the stable mu1tiregiona1 population in Table 3. In both cases, California

receives approximately 18 percent of the national population with the San

Francisco, Los Angeles and San Diego SMSA's receiving 5, 9, and 1~ percent,

respectively. Thus it appears that the spatial allocation effects of

proportionally reduced fertility are negligible.

Although the redistributiona1 effects of proportionally reduced fertility

are negligible, the age compositional effects are not. As in the single-region

model, reduced fertility produces an older population which has a much higher

percentage of its members in the 65 years and over age group. However, the

interaction of reduced fertility and fixed migration schedules produces an uneven

regional allocation of the aged. Thus although California under zero growth

would have about 18 percent of its population in the 65-year and over age group,

San Diego would have more (24 percent) while San Francisco would have less

(17 percent). The spatial population dynamics leading up to this result are

clear. San Diego, because it is a retirement haven, receives relatively "older"

inmigrants than does San Francisco. As the proportion of the aged increases·

nationally, San Diego will receive a heavier than average net inflow of migrants.

This is why its net migration rate changes from a negative 0.4 per 1000 in Table

3 to a positive 4.2 per 1000 in Table 4. San Francisco's corresponding rates,

on the other hand, exhibit a reverse shift, decreasing from a positive net

migration rate of 1.2 per 1000 to a negative rate of 0.2 per 1000.

Finally, Table 4 shows that regions which exhibit higher than average birth

rates prior to zero growth will have lower than average birth rates during zero

growth. Once again San Diego offers an interesting case study. According to

Table 3, it has the highest intrinsic birth rate of all 5 regions in the system

(28 per 1000). Yet in Table 4 its intrinsic birth rate is the lowest (12 per 1000).

The population dynamics producing this reversal are the same as those outlined
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earlier and result from the relatively older population that San Diego would

have under zero growth. (Note that San Diego's intrinsic death rate is the

highest both before and during zero growth).

In one of his contributions to the final reports produced by the Commission

on Population Growth and the American Future, Peter Morrison (1972, p. 547)

observed:

" •.• demographic processes interact in subtle and often complex ways,

and the mechanisms by which declining fertility would influence

population redistribution are only partially understood."

It is hoped that this paper has identified and illuminated some of these

mechanisms.
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APPENDIX

THE MATHEMATICS OF MULTI REGIONAL POPULATION GROWTH

A.1 The Mu1tiregiona1 Life Table

The components of a mu1tiregiona1 life table originate from a set of sur-

viv~ship-outmigrationmatrices R(x), x = 0, 5, 10, ••• , z-5, which are applied

in the appropriate sequence to a collection of survival matrices ~(x) which

describe the number of individuals attaining age x by region of birth and

residence.

we obtain

Starting with the first survival matrix

1,(5) = P(O)t(O)
'" - '"

teO), a diagonal matrix,
'"

where, for example, in a two-region system

[

PH (0)

K(O) =
P12 (0)

t (0)
'"

More generally, we may define the following matrix counterpart to Equation (1):

t (x+5) = P(x) t (x)
~ - '"

(A.1)

th ,th
where the elements in the i row and J column of t(x) and R(x) are .t.(x)

'" J 1

and P.,(x), respectively.
J1

Observe the transposed subscripting in the matrices, and note the Markovian

assumption that is implicit in (A.1), i.e., the same probabilities are applied

to all residents of a region irrespective of their previous life-residence history.

We have elected to defy traditional matrix notation and use transposed

subscripting in order to preserve a 1eft-to-right ordering of places of residence

while retaining the usual "matrix-times-a-vector" multiplication process used in

the single-region model (e.g., in Keyfitz, 1968 , Ch. 3).

Integrating (A.1) over 5-year intervals to find
5

hex) = J ~(x+t)dt
o
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we use the linear approximation

S'-- ]
~(x) = 2" ~,g,(x) + i(x+S) (A.2)

where the element in the i
th

row and jth column of 1(x) is .L.(x).
J ~

Summing the various person-years lived to obtain
z

T(O)...., ~ ~(x)

x=O
(A.3)

we may calculate the matrix of expectations of life at birth by place of birth

and residence:

e(O) = T(O) t(O)-l
...., ...., '"

h h 1 . h . th d . th 1 f (0) .were tee ement ~n t e ~ rowan J co umn 0 Z ~s

(A.4)
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A.2 The Discrete Model of Mu1tiregiona1 Demographic Growth

The mu1tiregiona1 growth and distribution process defined in Section 2 of

this paper enables us to express the relation between the population at time

t and time t+1 as a set of linear, first-order, homogeneous difference

equations with constant coefficients. These can be expressed compactly in

matrix form. Two of the most logical formulations use alternative generalizations

of the so-called Leslie matrix for the single-region case. The arrangement of

elements defined in Rogers (1966) was of the form

.911 Q21 G-m1

Q12 .222
G-m2

G
'"

G G G
'" 1m '" 2m "'mm

i CA.5)
: I

!

I
I
I

• s .. (z-5) ~1J

where

G.. =
"'1J

r
i 0
I
I

!Sij(O)

I

o b .. (a- 5) ••• b .. (~-5 )
1J 1J

s .. (5)
1J •

o .... o

for i,j = 1, 2, • III ., m.

An alternative arrangement, suggested by Feeney (1970), is

10
,

0 ](0'-5) ~(~-5) 0 0I ,.. ,.,. ,.,.

.§ (0)

H == ~(5)

~(z-5) 0



We shall follow Feeney's designation of Q as the multiregional matrix growth

operator and of !:! as the generalized Leslie matrix. The matrix expression

of the multiregional growth process using the multiregional matrix growth

operator is

{~(t+l)} = Q {~(t)} (A.6)

where ( , ,
~

I
I

I K(t) K(t)(O)

I
...... 1 i i

I
J

{!S(t)}
I K(t) l {~it)} K~t)(5)= \ and < "i

...... 2 ( l.

I i
I K(t) I

K~t)Cz)!

J !l "'m l. )

The same growth process expressed with the generalized 1eslie matrix is

32

where

r K:(t) (0) I r '1
...... I Kit) (x) I

J

I I

I
{K:(t) 'I K:Ct) (5) I

{gCt) (x)} K~t)(x)". J = ) and = I". I

i
I .

K(t) (z)
I K(t)(x)

I l, m
'"

CA.7)
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Survivorship and Outmigration

Consider an m-region population system with k.(x) individuals at age x in
1

region i. Then, as in the life table population, we have that

k. (x)
1

m

+ ... = L:
j=l

.k. (x)
J 1

i = 1, 2, ... , m, (A.8)

where .k.(x) denotes the number of j-born individuals who are in region i at
J 1

age x. The expected survivors of the multiregional population after five years

are

k. (x+5) =
J

m

L:
i=l

k.(x)p .. (x)
1 1J

j 1, 2, ..• , m,

where Pij(x) is the probability that an individual in region i at age x will

be in region j at age x+5. Substituting the definitional relationship of (A.8)

into the above equation and utilizing the fact that i-born individuals can

never become members of a j-born population, and vice-versa, we have that

.k. (x+5)
J 1

m
= L:

h=l
i,j = 1, 2, ..• , m

or, in matrix form,

~(x+5) = R(x) ~(x)

whence

-1
P(x) = k(x+5) k(x)- '" '"

The expected survivor.s of this multiregional population aged x to x + dx,

k(x)dx, say, after 5 years are....

k(x+5)dx = P(x)k(x)dx- - '"

and those between ages x and x+5 expected to survive 5 years are

,g(x+5 )
5

=J
o

k(x+5+t)dt....,

5
= JR(x+t) ~(x+t)dt

o
(A.9)
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As in the single-region model, we assume that the survivorship and out-

migration behavior of the stationary life table population adequately represents

that of the empirical population. Thus, substituting the life table matrix

product ~(x+5) ~(x)-l for K(x) in (A.9), we obtain

5 1
~(x+5) =S !(x+5+t)~(x+t)- ~(x+t)dt

o

And adopting the multiregional analog of the numerical approximation to

this integral that is normally used in the single-region model [e.g., Keyfitz,

1968 , p. 247J we find

5 5 J-l 5
!(x+5) = J ~(x+5+t)dt [ J ~(x+t)dt J ~(x+t)dt
000

= ~(x)~(x)

where

-1
S(x) = L(x+5)L(x),.., ..... '"

-1= L(x+5)L(x) K(x)
'" .... ,..,

(A.lO)

(A.ll)

In the case of a two-region model, Equation (A. 11) yields, for example,

.L. (x+5)
~ ~

. L. (x)
~ ~

.L. (x)
~ J

.L. (x+5)
] ~

.L. (x)
J J

.L. (x)
] ~

.L. (x)
J J

(A.12)

Generally population projections do not call for population totals

disaggregated by place of birth. Hence, we may consolidate the ~(x) matrix

into the vector

{g(t)(x)} = ~(t)(x) {l} , and post-multiply both sides of (A.lO)

We have added a t superscript to denote time and have placed a bar over the

vector in order to distinguish it from the vector {~(t)} , to which we ascribed

a somewhat different structure in (A.6).
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Fertili ty

To complete the multiregional population projection, we must include an

estimate of the total number of births during the unit time interval. Denoting

the age-region-specific annual birth rate by F.(x), we multiply it by the
~

arithmetic mean of the initial and final populations of ages x to x+4 in region i:

K;t)(x) + K~t+l)(x)

2
1 ( (t) m (t) "\
- K. (x) + L; s .. (x-5)K. (x-5) ,
2 '- ~ j=l J~ J /

and since this number is exposed for 5 years, we multiply it by 5. The women

in region i aged x to x+4 together with those aged x+5 to x+9 at last birthday

will contribute, during the 5-year time interval, a total of

births. Of these, a proportion

F.(x) + 2
2
{K~t)(x+5) + K~t+l)(X+5)Jl F.(x+5)

~ ~ ~ ~

iLj(O) will be surviving residents of region
5 1,. (0)

~

j at the end of the time interval. Adding through all ages of childbearing,

~ through ~, rearranging, and adopting the more compact notation of matrix

~lgebra, we have

{g(t+1) (0) } 1
2

where ~ (0) and !(x) are diagonal matrices with regional radices and regional

fertility rates, respectively, set out along their principal diagonals.

We have therefore the age-region-specific fertility elements

b .. (x)
~J

1
= -

2

r·L.(O)
I ~ 1
l. 1,. (0)

~

Fh (X+5)] (A.l3)
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Stable Growth

Having expressed population growth in matrix form, as in (A.6), we now

may examine, by means of repeated multiplication, the long-run implications

of maintaining current age-specific birth, death and outmigration rates.

For example, observe that

{
K(t+2)1 = G {K(t+l)~ =
- J ~ ~ )

and, in general,

(A.14)

The properties of such a projection as n increases indefinitely have been

studied by Leslie (1945) and Keyfitz (1968), among others, and more recently

by Sykes (1969), Parlett (1970), and Rogers (1975). This body of theory,

commonly referred to as stable growth theory, draws on the properties of

matrices with nonnegative elements, and, in particular, on what is commonly

referred to as the Perron-Frobenius theorem.

The Perron-Frobenius theorem establishes that any nonnegative, indecomposable,

primitive square matrix has a unique, real, positive characteristic root, A say,

that is larger in absolute value than any other characteristic root of that

matrix. Moreover, one can associate with this dominant characteristic root

a characteristic vector that has only positive elements, which for convenience

we shall assume are scaled so as to sum to unity.

To establish the asymptotic properties of the projection process in (A.14),

we first partition each submatrix G.. of G at the highest age of reproduction
-~J

[i.e., after the column headed by b .. (~-5) in (A.5)]. Then we permute the
~J

rows and columns of G to form the similar matrix G in which the upper partitioned

parts of each G.. are brought together as the submatrix y. to form the upper
-~J --

left corner of g. Since g and g are similar matrices, they have the same

characteristic roots. Because
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only the submatrix ~ of G can affect the growth of the population below the

highest age of reproduction, it can be shown that the characteristic roots of

the submatrix V completely determine those of G, and therefore of G.- -
From here on we may follow the usual sequence of arguments used in the

single-region theory. First, we may establish the primitivity of ~, under

certain conditions regarding the positioning of positive fertility elements in

that matrix. We then may draw on the Perron-Frobenius theorem to establish the

existence of a unique, real, positive, dominant characteristic root and

associated positive characteristic vector. Finally, we may show that successive

powers of ~ converge to a limiting form with proportional columns, leading to

the observation that the effects of the initial population distribution on

those at future points in time diminish as time increases, and ultimately

disappear entirely as the population assumes the stable distribution. This

feature of the projection process usually is established by diagonalizing ~

under the assumption that its characteristic roots are distinct (Rogers, 1971,

pp. 422-423).

The sequence of arguments outlined above hinges on the establishment of

conditions under which V is primitive. One such condition in the single-region

theory is that at least two adjacent fertility elements in the first row be

positive (Pollard, 1973, pp. 46-47). A natural generalization of this condition

to the multiregional case is, of course, that two adjacent fertility elements

be positive in each and every submatrix V.. of V. However, as in the single­
~1J

region case this condition can be shown to be unnecessarily restrictive (see

Rogers, 1975, Ch. 5).
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Intrinsic Rates

As Stone (1968) points out, classical work in stable population theory

has ignored migration and therefore has not dealt with the notion of stable

migration rates. His proposed formulas for stable age-specific migration

rates are our starting point for developing the notion of intrinsic migration

rates for the mu1tiregiona1 theory.

Stone defines

m
~t)(x)~ Shj(x)

h=l
5i .(x) hlj

J
K~t)(x)

J

and

5
o.(x) =

J

m
E

h=l
hlj

to be the stable age-specific inmigration and outmigration rates, respectively,

of a regional population experiencing stable growth. Analogously,

5
d.(x) =

J
1 -

may be defined to be the stable age-specific death rate of the same population.

Thus among people aged x in region i at stability, a proportion 50. (x) leave
J

the region during a 5 year interval of time while, simultaneously, a fraction

5d .(x) die and a total of
J

individuals migrate into the region to give it an inmigration rate of 5i .(x).
J

But outmigrations, deaths, and inmigrations also occur among babies during the



same time interval. For example,

m

I: ,~(O) /51.(0)
h=l ] ]
h#j

is the proportion of births in region j who migrate and survive to be members

of the first age group outside of region j at the start of the next unit time

interval. Hence, the consolidated "crude" 5-year stable outmigration rate of

region j is

z
(t) 5I: K. (x) o. (x)

.Lh(O)5 x=O ] ] 5
b

m
o. = + I: J

] z
K~t)(x)

] h=l 5.e. (0)
l:

]

x=O ] h#j

where \ is the corresponding 5-year stable birth rate:
]

39

\
j

=
z
l:

x=O

By an analogous argument

z
K~t)(x)5d.(x)

m
I: I: j~ (0)

x=O ] ]
h=l5

d + \. 1 -
] z

K~t)(x)
]

5.e. (0)I: ]

x=O ]

c~d 5 i . ca~ be fou~d as a residual since, ~, definition
J

~ ~ ) -~ ~ . -
u .} ~ , -j j .J .J

where A is the dominant characteristic root of the projection matrix E. and

r=0.2 In A' To transform (A.15) into the corresponding equation for intrinsic
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rates:

r = b, - d, - 0, +' = b, d, + n, b. t:.. (A.16)1,
J J J J J J J J J

we rewrite (A. 15 ) as

5r
- 1 = \, _ sd. 5 + 5.e - 0, 1.

J J J J

and multiply both sides of the equation by
r

to find (A.16) where
sr 1e -

b,
f_r 5b , d, -(es;-J 5d ,

1
J \ esr_l J J J

\

f r 15 • ( r ) Si
(A. I?)

0, I 5 o. i,

J
J \er-lJ J J \e5r_l j

n. = i, o. 6, d, + o. - i. = d. - n.
J J J J J J J J J
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A.3 The Continuous Model of Multiregional Demographic Growth

the set of fundamental integral equations in Equation (7) may be collected

together in matrix form as the multiregional renewal equation

where ~(x) is a diagonal matrix with diagonal

element in the i th row and jth column of £(x)

(A .18)

elements m.(x) and where the
~

is .P.(x). Note that [!\.(t)} and
J ~ .-

f~(t)} are vectors, and observe that £(x) denotes a matrix that is different

from f(x).

For the case where t exceeds ~, the last age of childbearing, births among

those surviving from time zero will be zero, that is, f~(t)} = fQ}, and (A.18)

reduces to the homoge~ equation first set out by LeBras (1971):
~

[~(t)} = J ~(x)£(x) f.~(t-x)}dx
Ct

(A .19)

The matrix product M(x)P(x), which we shall denote by the matrix ~(x), is the
~ ~ ~

multiregional net maternity function [Rogers, 1974 ] with which we may asso-

ciate the moment matrices

~ n
!(n) = J x ~(x)dx

Ct

To solve (A.19) we adopt the trial solution [~(t)}

r~ -rx
gives [Q} =. e !1(x)!(x) f,9} dx

Ct

[I~ -rx ]= Q' e ,t(x)dx

= '¥",,(r) [.g},

rt
= [gJe which when substituted

into (A.19)

(Ao20)

where

:K(r)

t(x) = M(x)P(x) is the multiregional net maternity function and
"" ""' ....

J
13 -

= e- rx t(x)dx is the multiregional characteristic matrix.
r:;

We now have reduced our problem from one of solving the integral equation

in (A.19) to that of solving (A.20) which, unlike (A.19), is a function of only

a single variable, r. To solve for r in (A.20), we rewrite that equation as
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from which we conclude that [~} is the characteristic vector that corresponds

to the characteristic root of unity of the matrix Y(r), and r is the number,..,

for which that matrix has a characteristic root of unity or, equivalently,

1(r) - I I = o. (A.2l)

The matrix 1(r) normally has only positive elements. Consequently by

the well-known Perron-Frobenius properties of positive matrices [Gantmacher,

Vol. II, 1959 , pp. 53-66J it has a real and positive dominant characteristic

root, ~l (r), say, which is a simple root and is greater than the absolute

value of any other characteristic root. Moreover, we may associate with ~l(r)

a characteristic vector [21}' say, that has only positive elements. Finally,

the dominant characteristic root ~l(r) decreases in value as r is increased.

The dominant characteristic root ~l (r) is in fact a function that assigns

to any value of r the dominant characteristic root of the matrix !(r). This

function is continuous, concave upward throughout, and its values decrease

monotonically from + ~ to 0 as its argument increases from - =to +~. Con-

sequently, ~l(r) = 1 can occur only once. And since ~l (r) is the dominant

characteristic root of Y(r), it will always assume the value of unity at the,..,

highest value of those real roots r that satisfy (A.2l). That is, ~l (r 1 ) = 1,
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A.4 The Spatial Conseguences of Zero Population Growth

A baby girl born at a given moment in region j will, according to Equation

(10) , have a net reproduction rate of

m m ~-5

.R(O) = L: .R. (0) = L: L: .L.(x)F.(x) j = l, 2, ... , m.
J i=l J ~ i=l x~

J ~ ~

(A.22)

Suppose that we wish to reduce each of these m observed regional rates to

unity by proportionally reducing each region's fertility rates. That is,

imagine a set of m fractions Yl , Y2' ... , Vm such that

m ·m ~-5

L: y ..R.(O) = L: L: .L.(x) y. F.(x)
i=l ~ J ~ i=l x=a J ~ ~ ~

1 , j 1, 2, ... , m. (A.23)

or, more compactly, in matrix form

where the apostrophe denotes transposition. The requisite fractions then may

be obtained by premultiplying both sides of (A.24) by the inverse of the trans-

pose of the net reproduction matrix , whence

(A.25)

By way of illustration, recall the net reproduction matrix for our

2-region population example of California and the rest of the United States

set out in Section 3. The inverse of its transpose is

-0.26665 ]

0.64126

r-

[ ]

1 I 0.86263

~'(O) - =L-0.05635

h} = {:::::::?
and multiplying the two sets of regional age-specific rates in Table 1 by these

Thus

fractions gives the replacement levels of fertility that lead to the zero-growth

results presented in the lower half of Table 4. (It is of interest to note

that in summing the revised regional age-specific rates



and multiplying by 5 to obtain the regional gross reproduction rates, GRR.
~

say, we find that they are not identical. The GRR for California is 1.0295,

while that for the rest of the United States is 1.0435.)
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