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FOREWORD

This paper is devoted to the characterization of the tracking property
connecting solutions to two differential inclusions or control systems through
an observation map derived from the viability theorem. The tracking prop-
erty holds true if and only if the dynamics of the two systems and the
contingent derivative of the observation map satisfy a generalized partial
differential equation, called the contingent differential tncluston. This con-
tingent differential inclusion is then used in several ways. For instance,
knowing the dynamics of the two systems, construct the observation map
or, knowing the dynamics of one system and the observation map, derive dy-
namics of the other system (trackers) which are solutions to the contingent
differential inclusion.

It is also shown that the tracking problem provides a natural framework
to treat issues such as the zero dynamics, decentralization, and hierarchical
decomposition.

Alexander B. Kurzhanski
Chairman
System and Decision Science Program
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Tracking Property: a Viability Approach
Jean-Pierre Aubin

Introduction

Consider two finite dimensional vector-spaces X and Y, two set-valued
maps F : X XY ~ X, G : X XY ~ Y and the system of differential

inclusions
Z'(t) € F(=(t),y(t))
y(t) € G(=(2),y(t))
We further introduce a set-valued map H : X ~ Y, regarded as an
observation map.
We devote this paper to many issues related to the following tracking
property: for every zo € Dom(H) and every yo € H(zo), there exist solutions
(z(-), y(-)) to the system of differential inclusions such that

Vt>0, y(t) € H(z(t)

The answer to this question is a solution to a viability problem, since we
actually look for a solution (z(-), y(-)) which remains viable in the graph of
the observation map H. So, if the set-valued maps F and G are Peano!
maps and if the graph of H is closed, the Viability Theorem states that the
tracking property is equivalent to the fact that the graph of H is a viability
domain of (z,y) ~ F(z,y) X G(z,y).

Recalling that the graph of the contingent derivative DH(z,y) of H at
a point (z,y) of its graph is the contingent cone? to the graph of H at

1A set-valued map is called Peano if its graph is nonempty and closed, its values are
convex and its growth linear.

3The contingent cone Tk (z) to a subset K at z € K is the closed cone of directions
v € X such that lima—o+ dx(z + Av)/h = 0. It is equal to X when z belongs to the
interior of K, coincides with the tangent space when K is smooth and to the tangent cone
of convex analysis when K is convex. We say thgat K is sleek at z is y ~ Tk (y) is lower
semicontinuous at z. In this case, the contingent cone Tk (z) is convex. Convex subsets
are sleek.

If (z,y) belongs to the graph of a set-valued map H : X ~» Y, the contingent derivative
DH(z,y) of H at (z,y) is the set-valued map from X to Y defined by

Graph(DH(z,y)) = TGraph a)(% v)



(z,y), the tracking property is then equivalent to the contingent differential
tnclusion

V (z,y) € Graph(H), G(z,y)N DH(z,y)(F(z,y))# 0

We observe that when F and G are single-valued maps f and gand H isa
differentiable single-valued map h, the contingent differential inclusion boils
down to the more familiar system of first-order partial differential equations®

VJ - ) .y m, Z f'(z h(z) gl(z’h(z)) =

Since the contingent differential inclusion links the three data F, G and
H, we can use it in three different ways:

1. — Knowing F and H, find G or selections g of G such that the
tracking property holds (observation problem)
2. — Knowing G (regarded as an ezosystem, following Byrnes-

Isidori’s terminology) and H, find F or selections of f of F such that the
tracking property holds (tracking problem)
3. — Knowing F and G, find observation maps H satisfying the
tracking property, i.e., solve the above contingent differential inclusion.
Furthermore, we can address other questions such as:

a) — Find the largest solution to the contingent differential inclu-
sion (which then, contains all the other ones if any)
b) — Find single-valued solutions h to the contingent differential

inclusion which then becomes
Vz€ K, 0€ Dh(z)(F(z,h(z))) — G(z,h(z))

In this case, the tracking property states that there exists a solution to the
“reduced” differential snclusion

2'(t) € F(z(t), h(z(1)))

so that (z(-), y(-) := h(z(-))) is a solution to the initial system of differential
inclusions starting at (zo, h(zo)). Knowing h allows to divide the system by
half, so to speak.

*For special types of systems of differential equations, the graph of such a map A
(satisfying additional properties) is called a center manifold. Theorems providing the
existence of local center manifolds have been widely used for the study of stability near
an equilibrium and in control theory.



The observation and the tracking problems are the two sides of the same
coin because the set-valued map H and its inverse play the same roles when-
ever we regard a single-valued map as a set-valued map characterized by its
graph.

Consider then the observation problem: the idea is to observe solutions
of a system 2’ € F(z,y) by asystem y' € G(z,y) where G : Y ~+ Y describes
simpler dynamics: equilibria, uniform movement, exponential growth, peri-
odic solutions, etc. This would allow to observe complex systems* z' € F(z)
in high dimensional spaces X by simpler systems y' € G(y) or even better,
y' = g(y), in low dimension spaces. We can think of H as an observation
map, made of a small number of sensors taking into account uncertainty or
lack of precision.

For instance, when G = 0, we obtain constant observations. Observation
maps H such that F(z) N DH(z,y)"}(0) # @ for all y € H(z) provide
solutions satisfying

Vt>0, z(t) € H '(y) where yo € H(zo)

In other words, inverse images H ~!(yo) are closed viability domains® of F.
Viewed through such an observation map, the system appears in equilibrium.
More generally, if there exists a linear operator A € L(Y,Y) such that

Vye Im(H),Vze H ' (y), F(z)nDH(z,y) (Ay) # 0

then we obtain solutions z(-) satisfying the time-dependent viability condi-
tion
Vt>0, z(t) € H ' (e**y) where yo € H(zo)

so that we can use the exhaustive knowledge of linear differential equations
to derive behavioral properties of the solutions to the original system.

4We can use this tracking property as a mathematical metaphor to model the concept
of .... metaphors in epistemology. The simpler system (the model) y' € G(y) is designed
to provide ezplanations of the evolution of the unknown system z' € F(z) and the tracking
property means that the metaphor H is valid (non falsifigble). Evolution of knowledge
amounts to “increase” the observation space Y and to modify the system G (replace the
model) and/or the observation map H (obtain more experimental data), checking that
the tracking property (the validity or the consistency of the metaphor) is maintained.

SWhen Y := R, such maps can be called “prime integrals® (or “energy functions®) of
F, because when both F := f and H := A are single-valued, we find the usual condition
A(z) - f(z)=0.



But instead of checking whether such or such dynamics G satisfy the
tracking property, we can look for systematic ways of finding them. For
that purpose, it is natural to appeal to the selection procedures studied
in [6, Chapter 6]. For instance, the most attractive idea is to choose the
minimal selection (z,y) — ¢°(z,y) of the set-valued map

(z,y) ~ DH(z,y)(F(z,y))

which, by construction, satisfies the contingent differential inclusion. We
shall prove that under adequate assumptions, the system

{ i) 2(t) € F(z(t),y(t))
W) y'(t) = g°(=(t), y(t)

has solutions (satisfying automatically the tracking property) even though
the minimal selection g° is not necessarily continuous (see [13,3,?] for the
use of minimal selections).

The drawback of the minimal selection and the other ones of the same
family is that g° depends upon z. We would like to obtain single-valued
dynamics g independent of z. They are selections of the set-valued map Gy
defined by

Gu(y) == [ DH(z,y)(F(=z,y))
zeEH~1(y)
We must appeal to Michael’s Continuous Selection Theorem to find contin-
uous selections g of this map, so that the system

{ 9) 2(t) € F(z(t),y(t))
1) y'(t) = g(y(t)

has solutions satisfying the tracking property.

The size of the set-valued map Gy measures in some sense a degree of
tnadequacy of the observation of the system z' € F(z) through H, because
the larger the images of Gy, the more dynamics g tracking an evolution of
the differential inclusion.

Tracking problems are intimately related to the observation problem:
Here, the system y' € G(y), called the ezosystem, is given, and so are
their solutions when the initial states are fixed. The problem is to regulate
the system 2'(t) € F(z(t),y(t)) for finding solutions z(-) that match the
solutions to the ezosystem y'(t) € G(y(t)) in the sense that y(t) € H(z(t)),
or, more to the point, z(t) € H~1(y(t)).



Decentralization of control systems, as well as decoupling properties, are
instances of this problem.

An instance of decentralization can be described as follows: We take
X :=Y", F(z) := [, Fi(z:), and the viability subset is given in the form

K = {(z1,...,2zn) | iz; € M}
i=1

so that we observe the individual evolutions z}(t) € F;(zi(t)) through their
sum y(t) := 3", z;(t). Decentralizing the system means solving

— first a differential inclusion y'(t) € G(y(t)) providing a viable
solution y(:) in the viability subset M C Y, and

— second, find solutions to the differential inclusions z}(t) € Fi(z;(t))
satisfying the (time-dependent) viability condition

3 5(t) = y(t)
=1

condition which does not depend anymore on M.

Hierarchical decomposition happens whenever the observation map is a
composition product of several maps determining the successtve levels of
the hierarchy. The evolution at each level is linked to the state of the lower
level and is regulated by controls depending upon the evolution of the state-
control of the lower level.

1 The Tracking Property

1.1 Characterization of the Tracking Property

Consider two finite dimensional vector-spaces X and Y, two set-valued maps
F:XxY~X,G:XxY ~Y and a set-valued map H : X ~ Y, called
the observation map:

Definition 1.1 We shall say that F, G and H satisfy the tracking property
if for any initial state (zo, yo) € Graph(H), there ezists at least one solution
(z(+),y(*)) to the system of differential inclusions

{ 2(1) € F(=(2), (1)) )
y(t) € G(=(t),y(®))



satisfying
Vi>0, y(t) € H(z(t))

We shall say that a set-valued map H : X ~ Y 18 a solution to the
contingent differential inclusion if its graph is a closed subset of Dom(F) N
Dom(G) and if

V (z,y) € Graph(H), G(z,y)n DH(z,y)(F(z,y)) (2)

We deduce at once from the viability theorems of [6, Chapter 3] the
following:

Theorem 1.2 Let us assume that F : X XY ~ X, G: X XY ~ Y are
Peano maps and that the graph of the set-valued map H 18 a closed subset
of Dom(F) N Dom(G).

1. — The triple (F,G, H) enjoys the tracking property if and only if
H 1is a solution to the contingent differential inclusion (2).

2. — There exists a largest solution H, to the contingent differential
tnclusion (2) contained in H. It enjoys the following property: whenever
an initial state yo € H(zo) does not belong to H,(zo), then all solutions
(z(-), y(:)) to the system of differential inclusions (1) satisfy

i) Vt>0, y(t) ¢ H.(z(t))

#1) 3T >0 such that y(T) ¢ H(z(T))

(3)

8. — If the set-valued maps H, C H are solutions to the contingent
differential inclusion (2), so is their graphical upper limitS.

We shall be interested in particular by single-valued solutions h to the
partial contingent differential inclusion

Vze K, 0€ Dh(z)(F(z, h(z))) - G(z, h(z))

In this case, the stability property implies the following statement: Let
us consider an equicontinuous sequence of continuous solutions h, to the
contingent differential incluston converging pointwise to a function h. Then
h 18 stsll a solution to the contingent differential snclusion.

®The graphical upper limit of a sequence of set-valued maps H, is the set-valued map
whose graph is the (Kuratowski) upper limit of the graphs of the H,'s.



First, a pointwise limit h of single-valued maps h,, is a selection of the
graphical upper limit of the h,. The latter is equal to A when A,, remain
in an equicontinuous subset: Indeed, in this case, any limit of elements
(zn, hn(zn)) being of the form (z, h(z)) belongs to the graph of A.

Remark — We could also introduce two other kinds of contingent
differentsal inclusions:

V (z,y) € Graph(H), DH(=z,y)(F(z,y)) C G(z,y)

and
V(z,y) € Graph(H), G(z,y) ¢ (] DH(z,y)(u)
uEF(z,y)
The first inclusion implies obviously that any solution (z(-), y(-)) to the
viability problem

2'(t) € F(z(t),y(t)) & =(t) € H'(y(t)

parametrized by the absolutely continuous function y(:) is a solution to the
differential inclusion

y'(t) € G(2(1),u(2))

The second inclusion states the the graph of H is an invariance domain
of the set-valued map F x G. Assume that F and G are Lipschitz with
compact values on a neighborhood of the graph of F. By the Invariance
Theorem of [6, Theorem 5.4.5], the second inclusion is equivalent to the
following strong tracking property:

For any initial state (zo,y0) € Graph(H), every solution (z(-),y(-)) to
the system of differential inclusions (1) starting at (zo, yo) satisfies y(t) €
H(z(t))forallt>0. O

We shall address now the problem of constructing trackers, which are
selections of the set-valued map ®

(z,y) ~ ®(z,y) := DH(z,y)(F(z,y))

For that purpose, we recall what we mean by selection procedure of a
set-valued map F from a metric space X to a normed space Y.



1.2 Selection Procedures

Definition 1.3 (Selection Procedure) Let X be a metric space, Y be a
normed space and F be a set-valued map from X toY. A selection procedure
of a set-valued map F : X ~ Y ts a set-valued map Sp : X ~ Y satisfying

t) Vz € Dom(F), S(F(z)):=Sr(z)NF(z)# 0
t1) the graph of Sp is closed

The set-valued map S(F) : £ ~ S(F(z)) is called the selection of F.
The set-valued map defined by

Sk(z,y) == {veY [|v]| <d(0, F(z,y))} (4)

is naturally a selection procedure of a set-valued map with closed convex
values which provides the minimal selection.

We can easily provide more examples of selection procedures through
optimization thanks to the Maximum Theorem.

Proposition 1.4 Let us assume that a set-valued map F : X ~ Y 18 lower
semiconlinuous with compact values. Let V : Graph(F) — R be continuous.
Then the set-valued map Sp defined by:

Se(z) = {y €Y |V(z,9) < inf V(z9))
y'€F(2)
18 a selection procedure of F which yields selection S(F) equal to:
S(F(z)) ={y€ F(z) | V(z,y) < ,inf V(z,y))}
v'€F(z)
Proof — Since F is lower semicontinuous, the function
(I, y) — V(::, y) + sup (—V(:c) y'))
V'EF(z)

is lower semicontinuous thanks to the Maximum Theorem. Our proposition
follows from :

Graph(Sr) =
{(z)y) | V(z)y) + supv'EF(z)(_V(x’y')) < 0} o
Most selection procedures through game theoretical models or equilibria

are instances of this general selection procedure based on Ky Fan’s Inequality
(see [2, Theorem 6.3.5] for instance).



Proposition 1.5 Let us assume that a set-valued map F : X ~ Y 18 lower
semicontinuous with convez compact values. Let ¢ : X XY XY — R satisfy

t)  (z,y,y") is lower semicontinuous
i) V(z,y)€ X xY, y'— p(z,y,y')is concave
i) V(z,y)€ X xY, p(z,y,y) <0

Then the map Sr associated with o by the relation
Sp(z):=={ye€Y | sup p(z,y,y') <0}
V'EF(2)

18 a selection procedure of F yielding the selection map z — S(F(z)) defined
by

Sr(z) :={y€ F(z) | sup ¢(z,y,y') <0}
y'EF(z)

Proof — Ky Fan’s inequality states that the subsets Sy(z) are not
empty since the subsets F(z) are convex and compact. The graph of S is
closed thanks to the assumptions and the Maximum Theorem because it is
equal to the lower section of a lower semicontinuous function:

Graph(Sr) = {(z,y) | sup ¢(z,y,y') <0} O
y'EF(z)

Proposition 1.6 Assume that Y = Y; x Y3, that a set-valued map F
X ~ Y 18 lower semicontinuous with convez compact values and that a :
X x Yy x Yy — R satisfies

t) a 18 conlinuous
i) VY(z,y2) € X x Y3, y1— a(z,y1,y2) 18 convez
111) VY(z,y1) € X X Y1, y2 — a(z,y1,y2) 18 concave

Then the set-valued map S associating to any z € X the subset

Sr(z) := {(v1,¥2) €Y1 x Y2 such that

Y(z1,22) € F(z), a(z,y1,22) < a(z, z1,¥2)}
18 a selection procedure of F (with convez values). The selection map S(F(-))
assoctates with any x € X the subset

S(F)(z) := {(y1,y2) € F(z) such that
V(zlx Zz) € F(z)’ a(z) yl)z2) .<. a(z) Y1, y?) < a(z) 21, y2)}
of saddle-points of a(z,-,*) in F(z).
Proof — We take
o(z, (y1,12), (v1,42)) = a(=z, 41, ¥2) — a(z, 41, 92)

and we apply the above theorem. O



1.3 Construction of trackers

Any selection of the map & defined by
V (z,y) € Graph(H), ¥(z,y) := DH(z,y)(F(z,y))

provides dynamics which satisfy the tracking property, provided that the
system has solutions.

Naturally, we can obtain such selections by using selections procedures
G = Sp of ® (see Definition 1.3) which have convex values and linear
growth, since the solutions to the system

{ i) Z(t) € F(z(t),y(t)
11) y'(t) € Se(z(t),y(t))

satisfying the tracking (which exist by Theorem 1.2) are solutions to the
gsystem

{ i) '(t) € F(z(t), y(t))
i) y'(t) € S(@)(z(t),y(t)) == B(=(2), y(t)) N Se(=(2), y(t))

Let us mention only the case of the minimal selection g° of ® defined by
i) ¢°(z,y) € DH(z,y)(F(z,y))
“) ”90(2’ !/)” = lnquDH(z,y)(F(z,y)) HU”

Theorem 1.7 Assume that the Peano map F s continuous and that H s
a sleek closed set-valued map satisfying, for some constant ¢ > 0,

V (z,y) € Graph(H), ||DH(z,y)|| <¢

where | DH(z,y)|| := supy)<1infuepH(zy)(u) |v]| denotes the norm of the
closed convez process DH tz, y). Then the system observed by the minimal
selection g° of DH(-,")(F(-,-))

{ i) 2(t) € F(z(t),y(t)
i) o'(t) = ¢°(z(t), y(t))

has solutions enjoying the tracking property.

Proof — By [5, Theorem 3.1.1] ,the set-valued map (z,y, u) ~ DH(z, y)(u)

is lower semicontinuous. We deduce then from the lower semicontinuity of

10



F that the set-valued map ® is also lower semicontinuous. Since DH(z,y)
is a convex process, it maps the convex subset F(z,y) to the convex subset
®(z,y). Therefore,  being lower semicontinuous with closed convex im-
ages, its minimal selection Sg defined by (4) is closed with convex values.
Furthermore,

lg®(z: 9l < cllF(z,9)ll < c(l=ll + llyll + 1)

since | DH (z, y)|| < c and the growth of F is linear. Then the system
i) () € F(=z(t),y())

i) ¥'(t) € S3(z(t),y()) (=)l + lly()ll + 1) B

has solutions enjoying the tracking property by Theorem 1.2. Therefore for
almost all t > O,

y'(t) € o(z(),y(t)) N S3(z(t), ¥(t)) = 9°(2(1),v(®)) ©

1.4 The Observation Problem

We consider the important case when G : Y ~ Y does not depend upon z.
Hence the contingent differential inclusion becomes

Vz€Dom(H),Y y€ H(z), G(y)nDH(z,y)(F(z,y))# 0

Example Let us consider the case of descriptor systems
Ezx'(t) = Az(t) + Bu(t)
which we want to observe through H € £(X,Y) by the linear equation
y'(t) = Gy(t)

where G € L(Y,Y). We introduce the matrices (4, GH) from X to X x Y and

(f{ g) fromXtho.XxY

We observe that the system enjoys the tracking property if and only if

Im(A,GH) clm(f‘; g)

11




In this case, the velocities z’(t) and the controls u(t) are supplied by the linear
system
{ Ez'(t) — Bu(t) = Az(t)

Hz'(t) = GHzx(t)

which can be solved by linear algebraic formulas. O

Example: Energy Maps (or Zero Dynamics) The simplest dy-
namics is obtained when G = 0: in this case, each subset H™1(y) is a
viability domain of F(-,y), because, for any y € Im(H) and zo € H™(y),
there exists a solution z(-) such that z(t) € H~(yo) for all t > 0.

This viability property becomes:

VyeIm(H),Vze H Y (y), F(z,y)n DH(z,y)~'(0) # 0
When F is a Peano map, we deduce that it is also equivalent to condition

VyeIm(H),Vze H(y), F(z,vy) NTh-1y)(z) # 0

We shall say that such a set-valued map H is an energy map of F.

In the general case, the evolution with respect to a parameter y of the
viability kernels of the closed subsets H~!(y) under the set-valued map
F(-,y) is described by the inverse of the largest solution H,:

Corollary 1.8 Let F : X ~ X be a Peano map. Then for any finite
dimensional vector-space Y, there exists a largest closed energy map H, :
X ~Y of F, a solution to the inclusion

Vz €Dom(H),Vy€ H(z), DH(z,y)(F(z,y)) 20

The inverse images H; 1(y) are the viability kernels of the subsets H™'(y)
under the maps F(-,y):

Viabp(.)(H7'(y)) = H'(y)
The graphical upper limit of energy maps 1s still an energy map.

Then the graph of the map y ~ Viabp(.,)(H1(y)) s closed, and thus upper
semicontinuous whenever the domain of H is bounded.

When the observation map H is a single-valued map A, the contingent
differential inclusion becomes

Vz, Ju€ F(z,y) such that 0 € Dh(z)(u)

12



When h is differentiable and F := f is single-valued, we find the classical
characterization

<H(@),(0)> = Y. 5@ la) =0

i=1

of energy functions or prime integrals’ of the differential equation z' = f(z).

The largest closed energy map contained in h is necessarily the restriction
of h to a closed subset of the domain of h, which s the viabslity kernel of
h~1(0). The restriction of the differential inclusion to the viability kernel of
h~1(0) is (almost) what Byrnes and Isidori call the zero dynamics of F (in
the framework of smooth nonlinear control systems).

Remark — The Equilibrium Map. We associate with each param-
eter y the set
E(y) = {z€ H'(y) |0 € F(z,9)}

of equilibria of F(-,y) viable in H~!(y). We say that £ : Y ~ X is the
equilibrium map.

We can derive some information on this equilibriumn map from its deriva-
tive, that we can compute easily:

Theorem 1.9 Assume that both H : X ~ Y and F : X XY ~ X are
closed and sleek and that

V (z,y) € Graph(H), V (u,v,w) € X xY x X,
Jv; € DH(z,y)(u1) such that w € DF(z,y,0)(u+ u1,v+v1)

Then the contingent derivative of the equilibrium map 38 the equilibrium map
of the derivative:

u € DE(y,z)(v) <> v € DH(z,y)"!(v) & 0€ DF(z,y,0)(u,v)

Proof — We observe that by setting x(z,y) := (z,y,0), the graph of
E~1 can be written:

Graph(E™!) := Graph(H)nx~!(Graph(F))

TWhen f is real-valued, thei is the “contingent version® of the Hamilton-Jacobi equa-
tion. See the the papers and the forthcoming monograph of Frankowska [14] for its ex-
haustive study and the connections with the wviscossty solutions.

13



and we apply [5, Theorem 4.3.3], which states that if the transversality
condition: for all (z,y) € Graph(E~1),

x (TGraph(H)(z, !I)) - T(;raph(p)(r(z, y) = XxY xX
holds true, then

TGraph(E—l)(z’y) = TGraph(H)(z’y) nx?! (TGraph(F)("'(Z,!l)))

Recalling that the contingent cone to the graph of a set-valued map is the
graph of its contingent derivative, the assumption of our proposition implies
the transversality condition. We then observe that the latter equality yields
the conclusion of the proposition. O

Using the inverse function and the localization theorems presented in
[5, section 5.4), we can derive the same kind of informations as the ones
provided by [5, Proposition 5.4.7.].

For instance, set

Q(y,z) := u€ DH(z,y)"}(0) |0 € DF(z,y,0)(u,0)

Then, for any equilibrium z € E(y) and any closed cone P satisfying
PN Q(y,z) = {0}, there exists £ > 0 such that

E(y)n (z+e(PNB)) = {z)

where B denotes the ubit ball. In particular, an equilibrium z € E(y)
18 locally unique whenever 0 € DH(z,y) }(0) is the unique equilibrium of
DF(::, y,O)(',O)-

Furthermore, if the set E(y) of equilibria is convex, then

E(y) c z+Q(y,2z) D

More generally, the behavior of observations of some solutions to the
differential inclusion z' € F(z,y) may be given as the prescribed behavior
of solutions to differential equations y' = g(y), where g is a selection of

sw)e (| DH(z,y)(DF(z,y))
scH-1(y)

In the case when the differential equation y' = g(y) has a unique solution
r(t)yo staring from yo, the solution z(-) satisfies the condition

Vt>0, z(t) e H(r(t)y(0)), z(0) € H'(y(0))
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When g is a linear operator G € L(Y,Y), it can be written
Vt20, z(t) e H'(%y(0)), =(0)e H(y(0))

When H = h is a single-valued differentiable map, then the map Gg can
be written

Gu(y) = n K(z)F(z,y)
h(z)=y
and a single-valued map g is a selection of Gy if and only if

V z € Dom(H), 0€ h'(z)F(z,y) — 9(h(z))

The problem arises to construct such maps g.

1.5 Construction of Observers

These maps g are selections of the map Gg : Y ~ Y defined by

Gu(y) == (] (DH(=z,y)(F(z,)))
z€H(y)

(The set-valued map Gy measures so to speak a degree of disorder of the
system z' € F(z,y), because the larger the images of Gy, the more observed
dynamics g tracking an evolution of the differential inclusion.)

By using Michael’s Continuous Selection Theorem, we obtain the follow-
ing
Theorem 1.10 Assume that the set-valued map F is continuous with con-
vez compact images and linear growth, that H is a sleek closed set-valued
map the domain of which i3 bounded and that there exists a constant ¢ > 0
such that

V (z,y) € Graph(H), ||DH(z,y)| <¢

Assume also that there ezxist constants § > 0 and v > O such that, for any
map z — e(z) € 7B,

§Bn [ (DH(z,y)(F(z,v)) - ¢(z)) # ©

seH-1(y)

Then there exzists a continuous map g such that the solutions of

{ i) 2(t) € F(z(t),y(t))
i) y'(t) = g(y(t))

enjoy the tracking property for any snitsal state (zo, yo) € Graph(H).
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Proof — The proof of the above theorem showed that the set-valued map
® is lower semicontinuous with compact convex images. Furthermore, the
set-valued map H~! is upper semicontinuous with compact images since
we assumed the domain of H bounded. Then the lower semicontinuity
criterion [5, Theorem 1.5.3) implies that the set-valued map Gy is also lower
semicontinuous with compact convex images. Then there exists a continuous
selection g of G, so that the above system does have solutions viable in
the graph of H. O

2 The Tracking Problem

2.1 Tracking Control Systems

Let H : X ~» Y be an observation map. We consider two control systems

) foralmostallt >0, z'(t) = f(z(t),u(t)) 5
1) where u(t) € U(z(t)) (%)

i) for almost allt > 0, y'(t) = g(y(t),v(t)) (6)
11) where v(t) € V(y(t))

on the state and observation spaces respectively, where U : X ~» Zx and
V:Y ~ Zx map X and Y to the control spaces Zx and Zy and where
f : Graph(U) — X and g : Graph(V) — Y.

We introduce the set-valued maps Ry (z,y) : Zy ~ Zx defined by

Rit(z, ;) = { {ueU(2)|f(z,u) GGDH(Z, ¥) " (g(y,v))} ::z : “;8;

Corollary 2.1 Assume that the set-valued maps U and V are Peano maps
and that the maps f and g are continuous, affine with respect to the controls

and with linear growth. The two control systems enjoy the tracking property
if and only f

V (z,y) € Graph(H), Graph(Rg(z,y))# 0
Then the system is regulated by the regulation law

for almost allt > 0, u(t) € Rua(z(t),y(t); v(t))
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When H = h issingle-valued and differentiable and when we set f(z,u) :=
¢(z) + g(z)u and g(y, v) := d(y) + e(y)v where g(z)- and e(y)- are linear op-
erators, we obtain the formula

Ru(z;v) :=U(z) N (K'(2)g(z)) " (d(h(z)) — h'(z)e(z) + e(h(z)v))

2.2 Decentralization of a control system

We assume that the viability set of the control system (5) is defined by
constraints of the form K := L N h~1(M) where

i) LcCX and M CY aresleek
i) h isa Cl-map from X to Y (M
i) Vz€ K:= Lnh (M), Y = K(z)Tr(z) — Tm(h(z))

We associate with the two systems (5), (6) the decoupled viabtlity con-

straints
i) Vt>0, z(t)elL

i) Vt>0, h(z(t)) = y(t) (8)

ii) Vt>0, y(t) e M
It is obvious that the state component z(-) of any solution (z(-), y(‘)) to
the system ((5),(6)) satisfying viability constraints (8) is a solution to the
initial control system (5) viable in the set K defined by (7).
On the other hand, solutions to the system (5) viable in K can be ob-
tained in two steps:
— first, find a solution y(-) to the control system (6) viable in M
and then,
— second, find a solution z(-) the control system (5) satisfying the
viability constraints

{) Vt>0, z(t) L
{.’3) vt >0, h§,(t§ = y(t) ()

which do not tnvolve anymore the subset M C Y of constraints.

This decentralization problem is a particular case of the observation
problem for the set-valued map H defined by

o = ) e e

17



whose contingent derivative is equal under assumptions (7) to

We know that the regulation map of the initial system (5), (6) on the
subset K defined by (7) is equal to

Rk(z) = {ueU(z)nTL(z) | h'(z)f(z,u) € Tm(h(z))}

The regulation map of the projected control system (6) on the subset M
is defined by

Rm(y) = {veV(y) | g(y,v) € Tm(v)}
We introduce now the set-valued map Ry which is equal to
Ru(z,y;v) = {veU(@)NTi(z) | K (2)f(z,u) = g(y,v)}
We observe that
Vz € K, Ry(z,h(z); Ru(h(z))) € Rk(z)

The regulation map regulating solutions to the system ((5),(6)) satisfying
viability conditions (8) is equal to z ~+ Ry(z,h(z); Rm(h(z))). Therefore,
the regulation law feeding back the controls from the solutions are given by:
for almost all t > 0

{,-) o(t) € Rum(y(t))
1) u(t) € Ru(z(t);v(t))

The first law regulates the solutions to the control system (6) viable in
M and the second regulates the solutions to the control system (5) satisfying
the viability constraints (9).

Remark — The reason why this property is called decentralization
lies in the particular case when X := Y", when h(z) := X, z; and when
the control system (5) is

Vi=1,...,n, zi(t)=fi(zi(t), ui(t)) where ui(t) € Us(zi(t))

constrained by

n
Vi=1,...,n, z(t)eL; & Ea:.-(t)eM

=1
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We introduce the regulation map Ry defined by

RH(I],...,In,y;U)

= {u € MLy (Ui(z) N T (=) | ity filzi, u) = 9(y,v)}

This system can be decentralized first by solving the viability problem for
system (6) in the viability set M through the regulation law v(t) € Rps(y(t)).

This being done, the state-control (y(-),v(:)) being known, it remains in
a second step to study the evolution of the n control systems

Vi=1,...,n, zi(t) = fi(z:,u(t))
through the regulation law

u(t) € Ru(zi(t),...,za(t),y(t); v(t)) O

Economic Interpretation — We can illustrate this problem with an eco-
nomic interpretation: the state z := (z,,...,z,) describes an allocation of a com-
modity y € M among n consumers. The subsets L; represent the consumptions
sets of each consumer and the subset M the set of available commodities. The
control u plays the role of the price system of the consumptions goods and v the
price of the production goods. Differential equations z! = f;(z:, u) represent the
behavior of each consumer in terms of the consumption price and y' = g(y, v) the
evolution of the production process.

The decentralization process allows us to decouple the production problem and
the consumption problem. See more details in [6, Chapter 15] on dynamical eco-
nomic models. O

2.3 Hierarchical Decomposition Property

For simplicity, we restrict ourself here to the case when the observation map
H = h := hy o h; 18 the product of two differentiable single-valued maps
hlszyl andh::YlHYz.
We address the following issue: Can we observe the evolution of a solu-
tion to a control problem (5) through hy o h; by observing it
— first through A; by a control system

1) for almost allt > 0, yi(t) = g1(wi(t),v1(t)) (10)
11) where vy(t) € Vi(w(t))

and then,
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— second, observing this system through h..
We introduce the maps Ry, Ry, and R), defined respectively by

(Ra(zv) = {u€ U(2) | K(2) (2, 9) = g(h(z),)
ifve V(h(z))}

Rhl (:!:; 01) = {u € U(:!:) | hll(z)f(z’u) = gl(hl(z): 01)
if v; € V(hi(z))}

Rp,(z1;v) = {v1 € Vi(=z1) | By(z1)91(21,v1) = g(ha(z1),v)
ifve V(hz(:l:l))}

\

and we see at once that
Rn, (z; Rn,(h1(z);v)) € Ru(z;v)

Therefore, if the graph of v ~» Ry, (z; Ra,(h1(z);v)) is not empty, we can
recover from the evolution of a solution y(:) to the control system (6) a
solution y; () to the control system (10) by the tracking law

for almost all t, vy(t) € Ry, (w1(t),v(t))
and then, a solution z(-) to the control system (5) by the tracking law
for almost all t, u(t) € Ry, (z(t), v1(t))

This can illustrate hierarchical organization which 1s found in the evolu-
tion of so many macrosystems. The decomposition of the observation map
as a product of several maps determines the successive levels of the hierar-
chy. The evolution at each level obeys the constraint binding its state to the
state of the lower level. It is regulated by controls determined (in a set-valued
way) by the evolution of the state-control of the lower level.
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