
W O R K I N G  PAPER 

BIVOPROB: 
A Computer Program for Maximum-Likelihood 
Estimation of Bivariate Ordered-Probit 
Models for Censored Data 

June 1989 
WP-89-38 

l n t e r n a t ~ o n a l  l n s t ~ t u t e  
for Applied Systems Analysis 



BNOPROB: 
A Computer Program for Maximum-Likelihood 
Estimation of Bivariate Ordered-Probit 
Models for Censored Data 

Charles A .  Calhoun 

June 1989 
WP-8438 

Working Papers are interim reports on work of the International Institute for 
Applied Systems Analysis and have received only limited review. Views or 
opinions expressed herein do not necessarily represent those of the Institute 
or of its National Member Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



Foreword 

Despite the large number of models devoted to the statistical analysis of censored 
data, relatively little attention has been given to  the case of censored discrete outcomes. 
In this paper, Charles Calhoun presents a technical description and user's guide to  a com- 
puter program for estimating bivariate ordered-probit models for censored and uncensored 
data. The model and program are currently being applied in an analysis of World Fertil- 
ity Survey data for Europe and the United States, and the results of this work will be 
described in a forthcoming IIASA working paper. 

Nathan Keyfitz 
Leader 
Population Program 
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BIVOPROB: 
A Computer Program for Maximum-Likelihood Estimation of 

Bivariate Ordered-Probit Models for Censored Data 

Charles A .  Calhoun 

1. Int roduct ion  

BIVOPROB is a Fortran program for maximum-likelihood estimation of bivariate 

ordered-probit models. The model generalizes the univariate ordered-probit framework 

(McKelvey and Zavoina, 1975) to the case of two ordered-discrete or ordered-categorical 

dependent variables. The sample likelihood function is based on a linear 

simultaneous-equations model for two latent normal random variables, and two sets of 

threshold parameters that relate the continuous latent variables to  observed discrete 

outcomes. The use of a simultaneous-equations model for latent dependent variables 

makes it possible to  estimate and test causal relationships that determine the discrete 

random variables. The model can be viewed as a special case of the linear structural- 

relations probit model for binary or ordered-categorical data (Muthen, 1979, 1983). 

BIVOPROB can be used to  estimate five alternative models depending on the 

censoring status of the discrete-dependent variables: (1) an uncensored bivariate 

ordered-probit model in which the discrete-dependent variables are assumed to be ob- 

served without error; (2) a model of lower-limit endogenous censoring in which one 

discrete-dependent variable is a lower bound on the observed value of the other; (3) a 

model of upper-limit endogenous censoring in which one discrete-dependent variable is 

an upper bound on the observed value of the other; (4) a discrete endogenous-switching 

model in which only the minimum of the two discrete-dependent variables is observed; 

and (5) a two-limit bivariate ordered-probit model in which the values of one or both of 

the discrete-dependent variables are known only to  lie between minima and maxima 

that are exogenous to the model. The program includes options for reparameterizing 

the thresholds as linear functions of observed covariates, and for using sampling weights 

in estimation. 



Section 2 summarizes the basic model. Section 3 presents structural and 

reduced-form versions of the model and issues of parameter identification. Maximum- 

likelihood estimation and a joint likelihood-ratio test are discussed in sections 4 and 5. 

The modifications to  the likelihood function that are required for estimating the 

different censoring models are given in section 6. Section 7 provides instructions on in- 

stalling and running the computer program BIVOPROB. 

2. The Bivariate Ordered-Probit Model 

It is assumed that ordered-discrete or ordered-categorical random variables Y; and 

Y; are determined by the following system of simultaneous latent random variables and 

threshold equations: 

Latent variables 2; and Z; are unobserved continuous outcomes for which only the 

discrete indicators Y; and Y; are potentially observable. Zf, z;, and the random distur- 

bances ul and u2 are assumed to always be unobservable. In this section it is as- 

sumed that the discrete outcomes for Y; and Y; are uncensored. The case where censor- 

ing of one of the four types described in the introduction prevents us from observing the 

actual outcomes for the discrete variables is considered in section 6. 

X1 and X2 are row vectors of observed explanatory variables that are assumed to  

be distributed independently of the unobserved random disturbances ul and u2. P1 
and B2 are column vectors of unknown regression coefficients whose elements correspond 



to  the variables in X1 and X2. yl and -y2 are unknown scalar parameters that account for 

the direct effects of 2; and 2; outcomes on each other. Differences in the latent vari- 

ables result in different discrete values of Y; and Y; depending on the location of 2; 

and 2; vis-a-vis the unknown threshold parameters po, pl ,  p2, ..., pc-l and so, 6,, 6,, 

..., 6D-1. The threshold parameters can also be expressed as linear functions of ob- 

served covariates, in which case the scalar parameters pi and 6, are replaced by linear 

forms X3pi and X4bj, where X3 and X4 are row vectors of observed covariates satisfying 

the same assumptions as X1 and X2 with regard to independence from ul and u2. The 

model is completed by assuming that random disturbances ul and u2 are distributed 

bivariate normal with zero means and covariance matrix C. 

3. Structural and Reduced-Form Models and Identification 

Identification of simultaneous-equations probit models is discussed in Muthen 

(1979) and Maddala (1983). The main points as they apply to the bivariate ordered- 

probit model are summarized in this section. The assumption that the explanatory vari- 

ables X1 and X2 are measured without error and are independent of ul and u2 implies 

that the parameters B1, B2, -yl, and 7 2  are identified, up to a constant of proportionality, 

under the same rank and order conditions that hold for ordinary linear simultaneous 

equations. Simultaneous equations (1) and (2) may be written in matrix notation as fol- 

lows: 

where 

z'= [z; z;] 



The reduced-form of the simultaneous (structural) equations in (5) is given by 

where 

and 

When u is bivariate normal with zero mean vector and covariance matrix C, then v is 

bivariate normal with zero mean vector and covariance matrix 

As with any probit model, the variances of the latent variables Zlf and 2; cannot 

be estimated with data on ordered outcomes for Y ;  and Y;. This implies that the 

parameters of an estimable reduced-form model are identified only up to a pair of 

unknown constants of proportionality. If we define the diagonal matrix A with elements 

( J G ) - '  and ( J G ) - l ,  where wll and w22 are the main-diagonal elements of R, then 

n A  and ARA are the reduced-form parameters that can be estimated. Under the usual 

rank and order conditions for identification of linear simultaneous equations, the structur- 

al parameters that can be estimated are AI 'A-~,  PA, and ACA. These restrictions are 

imposed by post-multiplying equations (5) and (7) by A. This is equivalent to assum- 

ing that the reduced-form disturbances have a bivariate standard-normal distribution. 

Normalization of the reduced-form variances to one implies additional restric- 

tions on structural variances all and Writing the reduced-form variances in 

terms of yl,  7 2 ,  and the elements of C, and setting these expressions equal to  one, 

produces two equations in all and a22 which can be solved in terms of a12, 71, and 72: 

Equations (10a) and (lob) can be used to  eliminate all and 022 from the expression for 

the reduced-form covariance given by: 



Restrictions on the unknown threshold parameters consist of setting p o  and So equal 

to  zero, in which case a constant term can be included in the explanatory variable vectors 

X1 and X2.  Identification of the other threshold parameters requires that  there be ob- 

served outcomes in the categories above and below each threshold. Otherwise, empty 

cells must be collapsed with adjacent ones until all unidentified threshold parameters are 

eliminated. The threshold covariate vectors X3 and Xq should each include a t  least a 

constant term to insure that  there is a difference between the thresholds for the zero 

categories and higher-order outcomes. 

4. Maximum-Likelihood Estimation 

Full-information maximum-likelihood estimates of the structural parameters of the 

simultaneous latent-variables equations are found by deriving the likelihood function 

for the corresponding reduced-form model, expressing each reduced-form parameter as a 

function of structural parameters, and then maximizing the resulting sample likelihood 

function over the structural and threshold parameters. As discussed in the previous sec- 

tion on identification, the variances of the unobserved latent variables Z: and Z; cannot 

be estimated from data  on ordered outcomes for Yf and Y;, so it is assumed that  the 

reduced-form model is based on a bivariate standard-normal distribution. The contri- 

bution to  the sample likelihood of an observation with discrete outcomes ~ : = i  and 
ye- - J - is - given by 

where p(a,b;w12) is the density function for the bivariate standard-normal distribution 

with correlation w12, 

and p-l=S-l=-oo, po=So=O, and pC=SD=oo. The likelihood function for a sample 

of independent observations is found by taking the product of the individual likelihood 

contributions defined by (12). 



Maximization of the likelihood function with respect to  the structural and thres- 

hold parameters requires the use of numerical methods for iterative optimization 

(Dennis and Schnabel, 1983; Gill, Murray, and Wright, 1981). BIVOPROB uses sub- 

routines for steepest-descent and Davidon-Fletcher-Powell (DFP)  iterations pro- 

grammed by Gruvaeus and Joreskog (1970). The D F P  method uses the likelihood 

function and gradient vector to  compute the hessian matrix of second derivatives a t  each 

iteration. This gives an approximation t o  the information matrix that  can be used to  

compute statistical tests based on the asymptotic normality of maximum-likelihood 

estimators. Bivariate cumulative-normal probabilities are computed using the method of 

Owen (1956). 

5. A Joint Likelihood-Ratio Test 

This section describes a joint likelihood-ratio test of a model with explanatory 

variables (in addition to constant terms) and non-zero bivariate normal correlation 

parameter w12, against the model with no explanatory variables and wlz=O. The 

test-statistic is given by 

where L ( 4  is the likelihood value of the unrestricted model, L(d0) is the likelihood 

value of the restricted model, and 8 and J0 are the vectors of maximum-likelihood 

parameter estimates for each model. The test statistic LR is distributed (asymptotical- 

ly) X2 with r degrees of freedom, where r is the difference in the number of parameters 

in d and do. 

It is possible to  compute maximum-likelihood estimates for the restricted model 

directly from the observed sample proportions, because there are exactly C-1 parameters 

and independent sample proportions for the first equation, and D-1 parameters and in- 

dependent sample proportions for the second equation. The maximum-likelihood esti- 

mates of 8o are given by 

, = - 1  P ~ ) )  + j for j=1,2 ,..., C-1 
i=O 

and 



6, = C p2(i)) + b2 for j=1,2, ..., D-1 
i=O 

where 9 - I  is the inverse univariate standard-normal cumulative distribution function, 

and Pi(j) is the observed sample proportion with ~ i f = j .  The contribution to  the sample 

likelihood function of the restricted model of an observation with Y;=i and Y;=j is 

given by 

where p (z )  is the univariate standard-normal density function evaluated a t  z ,  and 

& - 1 = 6 - 1 = ~ ,  @O=60=0, and @ c = 6 D = ~ .  The test statistic LR is computed automati- 

cally by BIVOPROB whenever the uncensored bivariate ordered-probit model is es- 

timated. The values of Q - ' ( ~ )  are computed using a rational-approximation formu- 

la from Abramowitz and Stegun (1976). For tests against less restrictive models with ex- 

planatory variables or non-zero bivariate-normal correlation, or in models with censor- 

ing, the likelihood-ratio test requires that  both the restricted and unrestricted versions 

of the model be estimated using the iterative optimization procedure. 

6. Censor ing Mode ls  

The current version of BIVOPROB can be used t o  estimate the uncensored 

bivariate ordered-probit model and four types of censoring models. Applications 

of bivariate ordered-probit censoring models to  substantive problems in demography 

are discussed in Calhoun (1989a, 1989b, 1989~) .  Censoring occurs when the actual 

discrete outcomes for Y; or Y; cannot be observed. I t  is assumed that  partial infor- 

mation about Y; and Y; is available, and that  this information can be expressed in 

terms of the observed values of discrete random variables Y1 and Y2. In a full- 

information approach based on latent variables, censoring can be incorporated with 

relatively simple modifications to  the sample likelihood function. Table 1 summarizes 

the observed data  and contributions t o  the likelihood function for the uncensored 

bivariate ordered-probit model and the four models of censoring. The models can be 

summarized as follows: 



Model  1: Uncensored Bivar ia te  Ordered-Probit  

This model was discussed in the previous sections. 

Model  2: Lower-Limit Endogenous Censoring 

The second model in Table 1 shows the contribution to  the sample likelihood function 

of outcomes for which the observed value Y2 is limited to  a value that is greater than or 

equal to the observed (uncensored) value of Yf. The only difference between the likeli- 

hood function for model 1 and that for model 2 is that integration over values of Z; is not 

limited below when Y;< Y;. 

Model  3: Upper-Limit Endogenous Censoring 

The third model in Table 1 shows the analogous situation where Y2 is limited to values 

that are less than or equal to  the observed (uncensored) values of Yf. Models 2 and 

3 can be seen as discrete cases of plane truncation analogous to  those for continuously dis- 

tributed normal random variables considered by Tallis (1965). Here the truncation re- 

lationship is defined by the restriction Y1 < Y2 or Y1> Y2. 

Model  4: Discrete Endogenous-Switching 

The fourth model in Table 1 is the discrete counterpart to  the endogenous switching- 

regression model for continuous data (Fair and Jaffee, 1972; Goldfeld and Quandt, 

1973; Maddala and Nelson, 1975). It is assumed that Y1=Yf is observed when 
* * 

~ ; = m i n (  Y;, Y;) and that Y2= Y; is observed when Y;=rnin( Y1, Y2). It is also assumed 

that independent information is available to indicate which of the two ordered-probit 

equations generated the observation. 

Model  5: Two-Limit Bivar ia te  Ordered-Probit  Model  

The fifth model in Table 1 gives the contribution to the likelihood function when the ac- 

tual discrete outcomes are known only to  lie between observed minimum and max- 

imum values given by Yr in  and Yrax for Yf, and YFin and YFax for Y;. The limit 

values can vary from observation to  observation, but are assumed to be exogenous to  

the model. This model extends the univariate twelimit probit model (Rosett and Nel- 

son, 1975) to  one with tweequations having more than three outcomes and limits that 

can vary by observation. 



All of the censoring models are assumed to have the same underlying structure 

given by equations (1) to  (4). The distributions of z;, z;, ul, and u2 are defined over 

the population. Y; and Y; are interpreted as the potential values of the discrete out- 

comes that would be observed in the absence of censoring, while the observed discrete 

outcomes given by Y1 and Y2 may be defined only for certain values of Y; and Y;, or 

only for selective subsamples of the population, depending on the type of censoring in- 

volved. 

Computational formulas for calculating the integrals in Table 1 are given in Tables 

2.1 to 2.5. These are used in subroutine FCTGR for computing the likelihood func- 

tion values for each of the models. 

7. Running BIVOPROB 

This section provides instructions on installing and running BIVOPROB. The 

program has been written in Fortran, and is currently being used on VAX 11 and 6200 

series mainframe computers, and IBM-compatible personal computers. There are approx- 

imately 2000 lines of code and comments in the program. There is a subroutine (USER) 

that can be modified for user-defined recodes and variable transformations. A user- 

supplied missing data code (XMISS) is used to control the selection of data for analysis. 

Instructions on how to modify subroutine USER are given in the program. USER loads 

the data into the vector XDATA, which is located in common storage region /DAT/. 

The size of XDATA can be increased or decreased depending on the size of the data 

set and hardware capacity. The initial size of XDATA has been set a t  500,000 cells 

(cases z variables). Included on the diskette containing the source code is an execut- 

able version of the program called BIVOPROB.EXE for use on an IBM-compatible per- 

sonal computer equipped with a math coprocessor. The size of XDATA has been set to 

50000 in BIVOPROB.EXE. 

Files for Input-Output 

The user must create three (3) files that will contain the control cards and model 

options (SETUPJLE), the input data (DATAINJLE), and the starting values for 

the maximum-likelihood procedure (STARTTLE). The estimation results are 

directed to OUTPUT-FLE, and the estimated parameters and information matrix 

from the last run are output to  VALUES.FLE. 0UTPUT.FLE and VALUES.FLE do not 

have to exist prior to  running the program. If they do exist, they will be overwritten. 



The program includes an option for using the values returned to  VALUES.FLE to  restart 

the program if additional iterations are desired. The filenames used for these I/O 

devices can be changed by editing the OPEN statements in the driver program 

BIVOPROB. 

Starting Values for Maximum-Likelihood Estimation 

The user provides starting values only for the coefficient vectors B1 and B2. These 

should be given in the file START.FLE in free format (i.e., separated by spaces or com- 

mas). The values for B1 and B2 should be given in two sets that  each begin on a 

separate line. Each set can be continued on additional lines if necessary. 

The starting values of the other parameters are computed by the program. In- 

tegers are used as starting values for the threshold parameters. When Xg and X4 in- 

clude covariates in addition to the constant terms, integers are used as the starting 

values of the coefficients of the constants, and the other coefficients are set t o  zero. The 

starting values for 71, 7 2 ,  and w12 or a12 are always set to zero. 

Good starting values for B1 and p2 may help in avoiding a local maximum. On 

the other hand, accurate starting values have the disadvantage that  convergence 

could be achieved before an accurate estimate of the information matrix is obtained. In 

this case the parameter estimates and likelihood function values will be correct, but 

the reported variances, standard errors, and t-statistics should be ignored. Zeros have 

been found to work well in most cases. If zeros do not work, as indicated by a failure t o  

converge in the steepest-decent iterations, it may suffice to  use the means of the depen- 

dent variables as starting values for the coefficients of the constant terms, with all 

other elements of pl and B2 set to zero. 

Convergence Limit e 

The iterative procedure that  is used by BIVOPROB to obtain maximum-likelihood 

estimates depends on several criteria for convergence. The user specifies the maximum 

number of iterations as an input to the program. The values of other convergence cri- 

teria are assigned in subroutine USER, and can be altered to increase or decrease the 

accuracy of the results, and, conversely, increase or decrease the time required by the p r e  

gram. In most cases, only one of these parameters, EPS, will be changed by the 

user. EPS determines the relative magnitude of the maximum gradient element a t  

convergence. A description of the other parameters and their function can be found 



in Gruvaeus and Joreskog (1970). 

Regardless of whether or not the convergence criterion implied by EPS is 

satisfied, upon termination the program prints the current values of all parameters 

and statistics, including the gradient. One can examine the gradient elements to see 

if they are acceptable, and to determine which variables might be deleted from the 

model in order to  improve the overall fit. 

Control-Card Sequence 

The following list gives the sequence of values that must be supplied in the file 

SETUP.FLE in order to  run the program: 

NVARIN NVAR MODEL 
IR EA D INA ME XMISS 
ISTART IDFP MXITER 

DA TFMT (include only when IREAD = 1 or 2) 

NA ME(I), I=1, ..., N VA R (include only when INA ME = 1) 
IG1 IG2 (if MODEL = 1, 2, 3, or  4) 

IGl  L IGl  U IG2L IG2 U (if MODEL = 5) 

IMAXl MAX2 
NVARl NVARl2 NVAR2 
NUM(I), I=l, ..., NVAR1 

NUM(I), I=NVAR1+1, ..., NVARlSNVAR12 
NUM(I), I=NVARl+NVAR12+1, ..., NVARl+NVAR2+NVAR2 
NVMUl NVMU2 

NUM(I), I=NVARl+NVARl2+NVAR2+1, ..., 
NVARl+NVARl2+NVAR2+NVMUl 

NUM(I), I=NVARl+NVARl2+NVAR2+NVMUl+l, ..., 
NVARl+NVARl2+NVAR2+NVMUl+NVMU2 

IGAMl IGAM2 

IRHO 
IWGHT 

Each row of items listed above must start on a new line. Except for the data format 

statement (DA TFMT) and variable names (NAME(I),I=l,NVAR) all items are given in 

free format (i.e., separated by commas or spaces), and may be continued on as many 

lines as desired. The values listed above are defined as follows: 



NVARIN Number of variables in the data set to be read from DATAIN.FLE. 

NVAR Number of variables returned by subroutine USER for analysis. See 
the instructions provided in subroutine USER for adding and recoding vari- 
ables. 

MODEL Model version number. 
1 = Uncensored bivariate ordered-probit model. 

2 = Lower-limit endogenous censoring model. 
3 = Upper-limit endogenous censoring model. 

4 = Discrete endogenous-switching model. 
5 = Two-limit bivariate ordered-probit model. 

IREAD Format of the data. 

1 = Formatted, integer data. Must provide DA T F M T .  
2 = Formatted, real data. Must provide DA T F M T .  
3 = Free format, integer data. 

4 = Free format, real data. 

INA ME Equals 1 if variable names are to be specified by the user, equals 0 0th- 
erwise. If INAME=O then V A R  NO is the prefix assigned as the vari- 
able name for all variables, which are then identified only by number. 

XMISS The missing data code required by subroutine USER for selecting the cases 
for analysis. Only cases with missing data for the variables that are ac- 
tually used in estimating the model will be rejected. 

ISTART Equals 1 if the start values for the maximum-likelihood iterations are read 
from VALUES.FLE, equals 0 if start values are read from START.FLE. 
This must be set to 0 for the first attempt to estimate a given 
model specification. At the end of each run the current parameter 
values and estimated information matrix are output to VALUES.FLE. 

IDFP Equals 1 if technical output from DFP is to  be written to  
OUTPUT.FLE, 0 otherwise. Technical output includes a summary of 
steepest-descent and Davidon-Fletcher-Powell iterations. 

MXITER Maximum number of iterations. If convergence is not achieved in 
MXITER iterations, the results a t  that point are printed and the current 
values of the parameters and hessian matrix are output to  VALUES.FLE. 
The program can be restarted by setting ISTART=l  if additional itera- 
tions are desired. 

DATFMT Fortran format in 80 characters or less. Include only if IREAD=l or 2. 
Must be enclosed in parentheses. For example, (2X,2016,4X,314), if 
IREAD=l .  Data must be all integers or all real numbers. 



NAME(I) Variable names in (10A8) format for I=1, ..., NVAR. A constant term 
should be included in the data set or created in subroutine USER. 

IG 1 Variable number of first dependent variable when MODEL=l, 2, or 3. 
When MqD?L=4 then IG1 is the variable number of the observed values 
of min(Y1,Y2). 

Variable number of second dependent variable when MODEL=l, 2, or 3. 
When MODEL=4 then IG2 is the variable number of* thz indicator of 
which equation generated the observed values of min(Y1, Y2). This vari- 
able should take the value 1 or 2 depending on whether the observation is 
from equation 1 or equation 2. 

IGlL Variable number of lower-limit ypin for Y; when MODEL=5. 

IG1 U Variable number of upper-limit Ypa for Y; when MODEL=5. 

IG2 L Variable number of lower-limit yzmin for Y; when MODEL=5. 

IG2 U Variable number of upper-limit Y y  for Y; when MODEL=5. 

IMAXl Maximum value of the first dependent variable. 

IMAX2 Maximum value of the second dependent variable. 

NVARl Number of explanatory variables that appear ONLY in the first struc- 
tural equation. 

NVA R 12 Number of explanatory variables (including constants) that appear in 
BOTH structural equations. Do not double count -- if the constant term is 
the only variable common to both equations, then NVAR12=1. 

NVAR2 Number of explanatory variables that appear ONLY in the second 
structural equation. 

NUM(I) Explanatory variable numbers for XI and X2 given in three sets. The first 
set are the numbers of the NVA R l  variables appearing only in struc- 
tural equation 1. The second set are the numbers of the NVA R l 2  vari- 
ables appearing in both structural equations. The third set are the 
numbers of the NVAR2 variables appearing only in structural equation 
2. The list for each set must start on a new line. If NVARl, NVAR12, 
or NVA R2 are zero, no numbers are provided for the corresponding line. 
BLANK LINES SHOULD NOT BE INCLUDED. 

NVMUl Number of explanatory variables for the first-equation threshold values. 
If IMAX1=1 then the program automatically sets N VMUl=O. When 
IMAX1>1 then the list of explanatory variables for the first-equation 
thresholds should always include at  least a constant term. 



N V M U 2  Number of explanatory variables for the second-equation threshold values. 
If IMAX2=1 then the program automatically sets N V M U 2 = 0 .  When 
I M A X 2 > 1  then the list of explanatory variables for the second-equation 
thresholds should always include at  least a constant term. 

IGA M1 

IGA M2 

IRHO 

Explanatory variable numbers for X g  and X q  given in two sets. The first 
set are the numbers of the N V M U l  explanatory variables for the first- 
equation threshold values. The second set are the numbers of the 
N V M U 2  explanatory variables for the second-equation threshold values. 
If IMAX1=1 or IMAX2=1 then no variable numbers are given for 
the corresponding line. BLANK LINES SHOULD NOT BE INCLUDED. 

Indicator for whether 2; appears in structural equation 1.  If I G A M l = l ,  
then -yl  is estimated. I f  IGAMl=O,  then -yl  is constrained to  zero. 

Indicator for whether 2; appears in structural equation 2 .  If IGAM2=1,  
then -y2 is estimated. If IGAM2=O, then -y2 is constrained to  zero. 

If I R H O = l  then a12 or w12 is estimated. If IRHO=O, then u12 or w12 is 
constrained to  be zero. 

I W G H T  Number of the variable used to weight the likelihood values in estimation. 
If IWGHT=O then estimation is unweighted. The weights are automatical- 
ly scaled to  sum to one. 
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Table 1 
Bivariate Ordered-Probit Models 

Obeerved Data and Likelihood Functione 

Obeerved Data 

- -  

Contribution to Sample Likelihood* 

1. Uncensored Bivariate Ordered-Probit Model 

2. Lower-Limit Endogenoue Censoring Model 

3. Upper-Limit Endogenous Censoring Model 

4. Diecrete Endogenous-Switching Model 

A(Y1) m 

Y, = m i n ( ~ ; ,  Y;) if Y;< Y; I I ~ ( a , b ;  w12)dbda 
A(Yl-1) B(Yl-1) 

6. Two-Limit Bivariate Ordered-Probit Model 

Yi"'" 5 Y; 5 YPax 

min < y * < ymax 
y 2  - 2 -  2 

* See Section 4 of the main text for the definitions of A(i) and BCj). 



Table 2.1 
Computational Formulas for Likelihood Values 

Model 1: Uncensored Bivariate Ordered-Probit Model 

Observed Data Likelihood Value* 

* The functions F(i j), G(i), and H(j) are the cumulative normal probabilities given by 

where @(a, b;wlp) is the bivariate standard-normal cdf with correlation parameter wl,, @(a) is the univari- 
ate standard-normal cdf, 

A (i) = X3pi - XlPl + 71XlPl 
1-172 

and / L - ~ = ~ - ~ = - K I ,  h=60=0, and pc=dD=oo. The structural-variance parameters o l l  and ol1 satisfy the 
following restrictions: 



Table a.a 
Computational Formulas for Likelihood Values 

Model 2: Lower-LMt Endogenous Censoring Model 

Observed Data Likelihood Value* 

* See Table 2.1 for definition8 of F(i,j), G(i), and H(j). 



Table 1.3 
Computational Formulas for Likelihood Values 

Model 3: Upper-Limit Endogenous Censoring Model 

Observed Data Likelihood Value* 

* See Table 2.1 for definitions of F(i j), G(i), and H(j). 



Table 2.4 

Computational Formulas for Likelihood Values 

Model 4: Discrete Endogenous-Switching Model 

Observed Data* Likelihood Value* 

* Yl=min( Y;, Y;) when Y;< Y; and Y2=min( Y;, Y;) when Y;> Y;. 

** See Table 2.1 for definition8 of F(i j), G(i), and H(j). 



Table 2.6 
Computational Formulae for Likelihood Values 

Model 6: Two-Limit Bivariate Orderd-Probit Model 

Observed Data Likelihood Value* 

* See Table 2.1 for definitions of F(i A ) ,  G(i), and H(j). 
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