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iii 

Preface 

The modeling of forest ecosystems is one of IIASA's continuous research 
activities in the Environment Program. There are two main approaches to 
this modeling: (a) simulation, and (b) qualitative (analytical) . This paper 
belongs to the latter. 

Analytical models allow the prediction of the behavior of key vari­
ables of ecosystems and can be used to organize and analyze data produced 
by simulation models or obtained by observations. This paper is devoted 
to the study of a simple mathematical model of spatially distributed non­
even-age forests. The main tools used in the paper are new methods of 
qualitative theory of non-linear differential equations. 
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This paper is devoted to the investigation of the simplest mathematical models of 
non-even-aged forests affected by insect pests. Two extremely simple situations are 
considered: (1) the pest feeds only on young trees; (2) the pest feeds only on old 
trees. The parameter values of the second model are estimated for the case of 
balsam fir forests and the eastern spruce budworm. It is shown that an invasion of 
a small number of pests into a steady-state forest ecosystem could result in intensive 
oscillations of its age structure. Possible implications of environmental changes in 
forest ecosystems are also considered. © 1990 Academic Press, Inc. 
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1. INTRODUCTION 

Although the influence of insect pests on the age structure dynamics of 
forest systems per se has not been extensively studied in mathematical ecol­
ogy, there is a rapidly expanding literature on the more general problem of 
the stability of models with age-specific predation and parasitism. Gurtin 
and Levine ( 1979) showed that predation on only the youngest prey life 
stage can be destabilizing, but results since then are ambiguous. A number 
of more recent papers (e.g. Levine and Gurtin, 1981; Cushing and Saleem, 
1982; Coleman and Frauenthal, 1983; Nunney, 1985; and Murdoch et al., 
1987) support Hastings' (1983, 1984) contention that age-dependent preda­
tion is not a simple process: model stability may be very sensitive to the 
way age structure is incorporated. 

Several papers (e.g., Antonovsky and Korzukhin, 1983; Korzukhin, 
1980) have been devoted to modelling the age structure dynamics of a 
forest not affected by pests. Dynamical properties of insect-forest systems 
under the assumption of age and species homogeneity can be derived from 
the theoretical works on predator-prey system dynamics (May, 1981; 
Bazykin, 1985). In the present paper we attempt to combine these two 
approaches to investigate the simplest models of non-even-age forests 
affected by insect pests. This paper is based upon IIASA WP-87-70 
(Antonovsky et al., 1987) and WP-87-71 (Fleming et al., 1987). 

The model from Antonovsky and Korzukhin (1983) is a simple model 
of age structure dynamics of a one-species system. It describes the time 
evolution of only two age classes ("young" and "old" trees). The model has 
the form 

x = py-y(y) x-fx 

y=fx-hy. 
(A.O) 

where x and y are densities of "young" and "old" trees, p is the fertility of the 
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species, and h and fare death and aging rates. The function y(y) represents 
a dependence of "young" tree mortality on the density of "old" trees. 
Following Antonovsky and Korzukhin ( 1983) we suppose that there exists 
some optimal value of "old" tree density under which the development of 
"young" trees goes on most successfully. In this case it is possible to choose 
y(y )=a(y-b)2 +c (Fig. 1). 

Model (A.O) serves as the basis for our analysis. Let us therefore recall 
its properties. By settings= f + c, scaling variables (x, y), parameters (a, b, 
c, p, f, h, s), and the time, system (A.O) can be transformed into the 
"dimensionless" form 

x=py-(y- I) 2x-sx 

y=x-hy, 

where we have preserved the old notations. 

(0.1) 

The parametric portrait of system (0.1) on the (p, h )-plane for a fixed s 
value is shown in Fig. 2. Relevant phase portraits are also presented there. 

Thus, if parameters (p, h) belong to region 2, system (0.1) approaches a 
stationary state with constant age class densities (equilibrium £ 2 ) from all 
initial conditions. In region 1 between lines D 1 and D 2 the system 
demonstrates a low density threshold: a sufficient decrease of each age class 
leads to degeneration of the system (equilibrium £ 0 ). The boundary of the 
initial densities that result in the degradation is formed by separatrices of 
saddle E 1 • Finally, in region 0 the stationary existence of the system 
becomes impossible. 

Let us now introduce an insect pest into model (A.O) ang consider two 
extremely simple situations: 

( 1) the pests feed only on the "young" trees (undergrowth); 

(2) the pests feed only on the "old" (adult) trees. 

7 

0 b 11 

FIG. !. The dependence of "young" tree mortality on the density of "old" trees. 
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FIG. 2. The parametric portrait of system (0.1) and relevant phase portraits. 

Assume that in the absence of food the pest density declines exponen­
tially and that forest-insect interactions can be described by bilinear terms 
as in the case of predator- prey system models (e.g., May, 1981; Bazykin, 
1985). 

Thus, for the case where the pest feeds on undergrowth we obtain the 
equations 

x = py-y(y) x-fx-Axz 

j;=fx-hy 

i= -ez+Bxz, 

(A.l) 

while for the case where the pest feeds on adult trees we obtain the equa­
tions 

i=py-y(y)x-fx 

j;= fx-hy-Ayz 

i = -ez+ Byz. 

(A.2) 

Here z is insect density, e is the mortality rate of the insect, and the terms 
with xz and yz represent the insect-forest interaction. 

The goal of this paper is the comparative analysis of models (A.O), (A.1 ), 
and (A.2). In the final part of the paper we consider biological implications 
of the results and outline possible directions for elaborating the model. The 
main tools for our investigation are the bifurcation theory of dynamical 
systems and the numerical methods of this theory. 
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2. RESULTS OF THE INVESTIGATION OF MODEL ( A.1 ) 

By a linear change of variables, parameters, and time, the system ( A.1) 
can be transformed into the form 

x = py - (y - 1 )2 
X - sx - xz 

y=x-hy (1.1) 

i= -Bz+ Bxz, 

where the previous notations are preserved for new variables and 
parameters which have the same sense as in system (0,1 ). The new 
parameters can be presented in terms of the old ones as 

f p 
p := a2b4, 

f +c 
s := ab2 ' 

h 
h := ab2, 

8 

e = ab2' 
B=!!_ 2 

ab· 

In the first octant (i.e., where the variables take on biologically possible 
values), 

R: = {(x,y, z): x,y, z ~O}, 

system (1.1) can have from one to four equilibria. The origin, E0 = (0, 0, 0), 
is always an equilibrium point. On the invariant plane z = 0, where the 
system coincides with system (0.1 ), either one or two equilibria with 
nonzero coordinates may exist. As in system (0.1 ), the two equilibria 
E 1 = (x 1, y 1 , 0) and E 2 = (x2 , Ji, 0), where 

Y1,2 = 1 ± Jp-sh 
h ' X1, 2 = hyl,2• 

appear in system ( 1.1) on the line 

D 1 = {(p, h): p =sh}. 

On the line 

D 2 = { (p, h): p = (s + 1) h}, 

equilibrium E 1 coalesces with equilibrium E0 and disappears from R:. 
Besides the equilibria Ej,j=O, 1, 2, system (1.1) could have an additional 
equilibrium 

{ 
e e p - sh ( e )

2
} 

E3 = B'Bh'_h __ Bh-l . 

2 
: =means that new variables were introduced but, for the sake of simplicity, the old 

notations were preserved: fp/ (a 2b4
)--. p. 
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This equilibrium appears in R ~ for parameter values (p , h) falling to the 
right of the line 

{ 
p-sh ( e )

2 
} S= (p , h) :-h-- Bh-1 =0 

in the parametric portrait (Fig. 3 ). £ 3 passes through the plane z = 0 and 
coalesces on this plane with either equilibrium £ 1 or £ 2 (Fig. 4). Line Sis 
tangent to line D 1 at the point 

M=(~, ~) 

in the (p, h)-plane. Line Sis divided by point Minto two parts, S 1 and S2 , 

on which equilibrium £ 3 collides with either £ 1 or £ 2 , respectively. 
In addition to these bifurcations of the equilibria, autooscillations (i.e., 

neutrally stable oscillations) can "emerge" and "vanish" in system ( 1.1 ). 
These events take place on lines R and P on the parameter plane, while the 
autooscillations exist in regions 5 and 6. 

h 

0 p 

FtG. 3. The parametric portrait of system ( 1.1 ). 



FOREST- PEST INTERACTION DYNAMICS 349 

z 
0 2 

y 

:z: 
3 4 5 
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6 7 8 

FIG. 4. The phase portraits of system (I.I). 

Equilibrium £ 3 loses its stability on line R due to the transition of two 
complex conjugate eigenvalues from the left to the right half of the complex 
plane. This stability change results in the appearance of a stable limit cycle 
in system (1.1) (Andronov- Hopf bifurcation). 

There is also a line corresponding to destruction of the limit cycles: line 
P on the (p , h )-plane. On line P, a separatrix cycle formed by outgoing 
separatrices of saddles £ 1 and £ 2 exists (Fig. 5). As the system approaches 
line P in parameter space (Fig. 3 ), the period of the limit cycle increases to 
infinity, and at the critical parameter value, the limit cycle coalesces with 
the separatrix cycle and disappears. 
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z 

y 

z 

FIG. 5. The separatrix cycle in system ( 1.1 ). 

The point M plays a key role in the parametric plane. This point is a 
common point for all bifurcation lines: S 1 , S2 , D 1 , D 2 , R, and P. It 
corresponds to the existence of an equilibrium with two zero eigenvalues in 
the phase space of the system. This fact allows us to predict the existence 
of lines R and P. 

For parameter values close to the point M there is a two-dimensional 
stable-center manifold in the phase space of system ( 1.1) on which all 
essential bifurcations take place. The center manifold intersects with 

x 

z 
I I /-.... 
i // '\ v \ 
~ 

FIG. 6. The behavior of system (1.1) : s=b=l , E=2, p=6, h=2 (region 3). The Y-axis 
extends vertically upward from the paper. 
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FIG. 7. The behavior of system (1.1): s = b =I, e = 2, p = 6, h = 3 (region 6). 
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FIG. 8. The behavior of system (I.I): s = b = I, e = 2, p = 6, h = 3.5 (region 7 ). 
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invariant plane z = 0 along a curve. Thus we have a dynamical system on 
the two-dimensional manifold with a structurally unstable equilibrium with 
two zero eigenvalues and the invariant curve. This bifurcation has been 
treated in general form by Ga vrilov (1978) in connection with another 
problem. It was shown that the only lines originating in point M are the 
bifurcation lines mentioned above. 

The locations of the R and P lines were found numerically on an 
IBM-PC/XT compatible computer with the help of standard programs for 
computation of curves (Balabaev and Lunevskaya, 1978). The additional 
associated numerical procedures are described in the Appendix. We also 
used an interactive program for the integration of ordinary differential 
equations- PHASER (Kocak, 1986). Figures 6, 7, and 8 show the changes 
in system behavior as increases in h move the system through regions 3, 6, 
and 7. 

3. RESULTS OF THE INVESTIGATION OF MODEL (A.2) 

Model (A.2), which represents a pest attacking exclusively old trees, can 
be transformed by scaling into the form 

X = py- (y- 1 )2 
X - SX 

y=x-hy- yz 

i= -ez + Byz, 

(2.1) 

where the meaning of variables and parameters is the same as in system 
( 1.1 ). 

System (2.1) can have from one to four equilibrium points in the 
first octant R~:E0 =(0,0,0), E 1 =(x 1 ,y 1,0), E 2=(x2,y2,0), and E 3 = 
(x3 , YJ, z 3 ). Equilibria £ 1 and £ 2 on the invariant plane z = 0 have the 
same coordinates as in system ( 1.1 ); they also bifurcate in the same manner 
on lines D 1 and D 2 . As in system ( 1.1 ), there is an equilibrium point of 
system (2.1) in R ~, 

E = ( peB !'._ pB2 -h) 
3 (t:-B) 2 +sB2

' B' (t:-B)2+sB 2 
. 

This equilibrium appears in R ~ below the line 

{ 
pB2 } 

S= (p,h): (t:-B)2+sB2-h=O . 

But equilibrium £ 3 does not lose its stability, so autooscillations m 
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FIG. 9. The parametric portraits of system (2.1 ). 
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FIG. 10. A small decrease in the pest density may result in an insect population outbreak. 
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system (2.1) are not possible. Figure 9 shows the parametric portraits of 
system (2.1 ). The region numbers in Fig. 9 correspond to those in Fig. 4. 

Consider in more detail the system behavior in parameter region 3 where 
damped oscillations are possible. In the absence of pests (i.e., z = 0) the 
system tends to equilibrium £ 2 with constant densities of "young" and 
"old" trees. If a small number of pests then invades the forest , an outbreak 
occurs and the system moves to equilibrium £ 3 with lower tree densities 
and a low density insect population. The maximum insect density reached 
during the outbreak exceeds that of equilibrium £ 3 . 

A potentially unexpected system behavior can occur if the system is at 
equilibrium £ 3 but the pest density then declines, perhaps due to pest 
control operations or the influence of random environmental variation. A 
new pest outbreak results (Fig. 10 ). Therefore, random declines in pest 
density may result in repeated outbreaks. 

4. PARAMETER ESTIMATION FOR MODEL (A.2) 

Our goal here is to demonstrate how the model (A.2) might be applied 
to a real forest- pest ecosystem. This could lead to insight about the 
dynamics of the ecosystem or to a determination of the range of 
applicability of the model for describing ecosystem dynamics. 

The eastern spruce budworm- forest system was picked as an appropriate 
candidate because of the availability of suitable information for many parts 
of the model, because of the similarity of the main model features to some 
key aspects of the budworm- forest system, and because previous models 
(e.g., Jones, 1979; Stedinger, 1984) of the bud worm- forest system have 
emphasized different elements (e.g. , foliage , insect predators, insect disper­
sal) of this system. 

The eastern spruce budworm, Choristoneura fumiferana (Clem.), is a 
naturally occurring defoliator of balsam fir (Abies balsamea [L.] Mill.) in 
the boreal forests of eastern North America. Outbreaking populations kill 
their host trees over wide areas. Outbreak cycles range from 26- 40 years in 
length with outbreaks lasting for 6- 15 years. During outbreaks, insect 
numbers can increase over four orders of magnitude in stands of mature 
and overmature balsam fir , which are particularly vulnerable to attack. 

In accordance with the simplistic nature of the model, which reduces the 
complex budworm- forest ecosystem to a system of three simultaneous 
differential equations, we take a "broad brush" approach to parameter 
estimation. First we identify realistic ranges for the parameter values and 
then we select from those ranges to see how well the model can simulate 
the behaviour of the ecosystem. 
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We begin by estimating h, the natural mortality rate of old trees in 
Eq. (A2). MacLean (1985) gives the "annual net probability of natural 
mortality (before outbreak)" as 1- 3.8% for balsam fir. Hence, if n0 is the 
number of trees in a cohort of old trees of age a, then n0 + 1 = n0 e-\ and 
0.01 ~ (na - na +I )/na ~ 0.038. Hence 

0.01~h~0.04 year - 1
. (3.1) 

The parameter f represents the aging of trees in the model. However, 
depending on how one defines "old" trees, f can take on different values. 
For instance, Bakuzis and Hansen (1965) report that balsam fir reaches 
sexual maturity at 3Q-,.35 years; becomes moderately susceptible to attack 
at over 40 years; and becomes very susceptible at over 60 years. Moreover, 
stands are generally 40--60 years of age when established seedlings first 
appear. Thus we assume that trees spend a mean duration of 30--70 years 
in the physiologically young age group. If this duration has an exponential 
distribution with a mean of 30--70 years, then 

1/70 ~! ~ 1/30 

or 

0.014 ~f ~ 0.033 year - 1
• (3.2) 

The function y(y ) describes the dependence of the natural mortality of 
young trees on y , the density of old trees. MacLean (1985) suggests that 
natural tree mortality might fall in the range 0.01-0.04 per year. Hence, 
since c =minimum of y(y ), we approximate 

c=0.01 year - 1
• (3.3) 

The increased mortality at low y (old tree density) could be ascribed to 
competition with ferns, shrubs, and hardwoods (Bakuzis and Hansen, 
1965) invading sites opened up by the removal of the fir overstory. Com­
petition with older trees accounts for the increase in young tree mortality 
at large y. Assuming that the interspecific competition is much less 
detrimental than the suppression by the older age group, then b ~ Ymax. 

Taking Ymax ::::::; 2.471 (in units of 10 3 trees/ha) as indicating a fairly good 
site (Bakuzis and Hansen, 1965, Table 90), we arbitrarily set 

b '.::::'. 0.1 x y max ~ 0.24 71 (in uni ts of 103 trees/ha). ( 3.4) 

Then, since Y(YmaJ ~ 0.04 (MacLean, 1985). 

Ymax = a( Ymax - b )2 + c ~ 0.04. 
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Substituting (3.3 ), (3.4 ), and then solving for a. 

a= 0.00606 (in units of ha 2(10 3 trees ) - 2 y r - 1 
) . (3.5) 

We have now estimated all the parameters of the forest section of the 
model (A.2) except p, the rate of production of seedlings. This parameter 
combines fertility, germination rate, and survivorship well past the first 
year of life (i.e., into the middle of the range of ages of the 'young' age 
group). Hence, it is a difficult parameter to estimate. 

Our approach is to solve the system ( A.2) for p using reasonable x and 
y values for the equilibrium without pests. For instance, y = 0 in system 
(A.2) with z = 0 when x = yh/f From Y max ~ 2.471 , and from Bakuzis and 
Hansen (1965, Table 90), the corresponding value of x lies in the range 
4.94-7.4210 3 trees/ha. Hence, if we choose f=0.017 yr- 1 say (after Eq. 
(3.2)) and h = 0.04 year - 1 (after Eq. (3.1) ), then the value of x at the upper 
equilibrium (£2 in Fig. 2) is approximately 

Xmax = 5.81 103 trees/ha. 

Since this is a reasonable value of Xmax (Bakuzis and Hansen, 1965, Table 
90) we adopt 

f =0.017 year - 1 (3.6) 

and 

h = 0.04 year - 1 (3.7) 

as reasonable initial guesses for these parameters. 
For a forest equilibrium to occur near (xmax> YmaJ ~ (5.81 , 2.47) requires 

that the first equation in system (A.2) with z = 0 also meet equilibrium 
conditions at this point. Therefore, using (3.3)- (3.6), 

p = 0.134 year - 1
. (3.8) 

This completes the estimation of parameters for the forest section of 
model (A.2) and leaves parameters e, A, and B to be estimated. These three 
parameters represent the natural pest mortality and the interaction between 
the forest and the pest. 

First we estimate e, the instantaneous rate of pest mortality. After an 
outbreak there are often few mature and overmature balsam fir trees left. 
Hence, we assume y is small after an outbreak, so the pest equation 
in model (A.2) becomes i ~ -sz. This equation has the solution 
z ,+ 1/z , ~ e -'. Thus, after comparison it can be seen that e corresponds to 
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the negative part of the vertical axis of Royama's ( 1984) Fig. 8. From the 
minimum of his smooth eye-drawn curve we estimate 

1 ::::; i; ~ 1.5 year - 1
. (3.9) 

Next consider A, the instantaneous rate of tree mortality caused per pest. 
During outbreaks annual budworm-caused tree mortality peaks at 8- 15% 
per year (MacLean, 1985). Hence, considering budworm-caused tree mor­
tality in isolation, y = -Ayz. Then, assuming z is relatively constant during 
the peak of an outbreak ( Royama, 1984, Fig. 1 ), y, + 1 /y,;:;::: e - Az. Hence, in 
analogy with the derivation of (3.1 ), 0.08::::; 1 - e - Az::::; 0.15. Since z peaks 
on the order of 

Zmax ~ 20 x 103 larvae/ tree 

(Miller, 1975), this relationship becomes 

0.00417 ::::; A ::::; 0.0081 in 10 - 3 trees larvae - 1 year - 1
. (3.10) 

The per capita rate of pest increase per tree, B, remains to be estimated. 
When z is small and y is near its equilibrium density, y is relatively 
constant, so the pest equation in system (A.2) gives z,+ 1/z 1 ;:;::: e-(By-•>. In 
analogy with the derivation of (3.9), we note that (By- i;) corresponds to 
the positive vertical axis of Royama's (1984) Fig. 8. From the maximum of 
his curve we estimate 

1::::; By-i;::::; 2. 

Since y;:;::: Ymax ~ 2.47 and substituting (3.9), 

0.8 ::::; B::::; 1.42 x 10 - 3 ha tree - 1 year - 1
• (3 .11) 

The results of model (A.2), numerically integrated by a computer, are 
presented in Fig. 11. The parameters and initial conditions are chosen in 
accordance with Tables I and II. It can be seen that the chosen parameter 
values belong to region 3 on the right parameter portrait in Fig. 9, so an 
outbreak is expected. Computer simulation shows the outbreak has charac­
teristics resembling aspects of real forest data. The outbreak length is about 
15 years, which coincides well with observations (Royama, 1984). So the 
model, despite its extreme simplicity, could reproduce limited time series of 
a real outbreak and can be considered as a compressed representation of 
some aspects of available forest data. 

There are two obvious differences between the computed outbreak shape 
and real budworm outbreaks. First, the time of intensive tree mortality is 
different. In the model this takes place at the peak of the outbreak, while 
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FIG. 11. An outbreak time equation. 
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TABLE I 

Parameters for the Model 

Initial 
Parameter Units Range guess 

a ha 2(103 trees ) - 2 yr - 1 0.00606 
b 103 trees/ha 0.247 
c yr - I 0.01 
p yr - ' 0.134 

I yr - ' 0.01-0.03 0.017 
h yr-' 0.01-0.04 0.04 

yr - ' 1- 1.5 1.5 
A 10 - 3 trees larvae -' yr- 1 0.004-0.008 0.004 
B io - 3ha tree - 1 yr - 1 0.08-1.42 0.8 

in the forest the mortality of trees comes after the insect population peaks. 
This may be the result of excluding consideration of foliage in the equa­
tions. In reality, the insects first defoliate trees and only then do trees begin 
to die due to defoliation. Nonetheless, this distinction is essentially a minor 
detail given the "broad brush" treatment of the problem employed here. 

A more important problem with the model's behavior as far as represent­
ing budworm-forest dynamics is the inability of the modelled stand to fully 
recover after the initial outbreak. For instance, in simulated years 50--60, 
the density of old trees (y) peaks at about~ of its original (t=O) value. 
This behavior (damped oscillation) is determined by the model's structure 
and parameter values, which place the system (A.2) in phase portrait 3 of 
Fig. 4. An obvious question is whether random variation within the given 
ranges of parameter values (Table I), as might occur with changes in 
weather from year to year, could occasionally move the system into 
different phase portraits and thus maintain the oscillations. 

Maintenance of the oscillations (perhaps as a limit cycle) might also be 
accomplished by a more accurate representation of the ecological processes 
considered in model (A.2). An obvious starting point here would be with 

state 
variable 

x (young trees) 
y (o ld trees) 

z (insect larvae) 

TABLE II 

Initial Conditions 

units 

103 trees/ha 
103 trees/ha 

103 larvae/tree 

value 

5.81 
2.47 

0.005 
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the term py. This term represents the rate of seedling establishment as a 
linear function of mature tree density. In fact, although a dense overstory 
of mature trees may produce many seeds, it can inhibit seedling estab­
lishment by limiting the available light. Hence, forest reproductivity, p, 
may be better described by a saturating function of mature tree density, 

Thus 

p(y) = [p- l + y/ (Xmax)J -l . 

{
--"PY 

p(y)·y -"Xmax 
when y is small. 

when y is large. 

Here .\:max• a constant, is the upper limit to seedling establishment when y 
is large. 

5. DISCUSSION OF THE RESULTS 

The basic model (0.1) with two age classes describes either a forest 
approaching an equilibrium state with a constant ratio of "young" and 
"old" trees (x = hy ), or degradation of the ecosystem (and, presumably, 
replacement by other species). 

Models (1.1) and (2.1) have regions on the parameter plane (0, 1, and 2) 
in which their behavior is completely analogous to the behavior of system 
(0.1 ). In these regions the system either degenerates or tends to the station­
ary state with zero pest density. In this case the pest is "poorly adapted" 
to the tree species and cannot survive in the ecosystem. 

In systems ( 1.1) and (2.1) there are also regions ( 4 and 3) where the 
stationary forest state with zero pest density exists, but is not stable to 
small pest "invasions." After a small invasion of pests, the ecosystem 
approaches a new stationary state with nonzero pest density. The pest 
survives in the forest ecosystem. 

The main qualitative difference in the behavior of models (1.1) and (2.1) 
is in the existence of density oscillations in the first system but not in the 
second one. This means that a small invasion of pests adapted to feeding 
upon young trees in a two-age class system could cause periodical oscilla­
tions in the forest age structure and repeated outbreaks in the number of 
pests (i.e., x, y , x /y , and z become periodic functions of time). It should be 
mentioned that the existence of such oscillations is usual for simple models 
of even-aged predator- prey interactions. 

In our case, however, the "prey" is divided into interacting age classes 
and the "predator" feeds only on one of them. It is the pest invasions which 
induce the oscillations in the ratio , x/y, of the age class densities. 
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Moreover, in the case of model (2.1 ), the pest invasion can include 
damping oscillations in the age structure. 

When we move on the parameter plane toward separatrix cycle line P, 
the amplitude of the oscillations increases and their period tends to infinity. 
The oscillations develop a strong relaxation character with intervals of slow 
and rapid variable change. For example, in the dynamics of the pest 
density z(t) there appear long periodic intervals of almost zero density 
followed by rapid density increases. Line P is a boundary of oscillation 
existence and a border above which a small invasion of pests leads to com­
plete degradation of the system. In regions 7 and 8 a small addition of 
insects to a forest system, which was in equilibrium without pests, results 
in a pest outbreak and then tree and pest extinction. 

It can be seen that the introduction of pests feeding only upon the 
"young" trees dramatically reduces the region of stable ecosystem existence. 
The existence becomes impossible in regions 7 and 8. 

We have considered the main dynamical regimes possible in models (1.1) 
and (2.1 ). Before we proceed, however, let us discuss the very important 
topic of time scales of the processes under investigation. It is well known 
that insect pest dynamics reflect a much more rapid process than the 
response in tree density. It seems that this difference in the time scales 
should be modeled by introduction of a small parameter µ ~ 1 into the 
equations for pest density in systems ( 1.1) and (2.1 ): i--> µi. But it can be 
shown that the parametric portraits of the systems are robust to this 
modification. The relative positions of lines D 1 , D 2 , and S, as well as the 
coordinates of the key point M, depend on the ratio e/B, which is invariant 
under the substitutions e --> e/µ, B--> B/µ. The topology of the phase por­
traits is not affected by the introduction of a small parameter µ, but in the 
variable dynamics, intervals of slow and rapid motions appear. Recall that 
model ( 1.1) had oscillations of a similar relaxation character near line P of 
the separatrix cycle without any additional small parameter µ. So we could 
say that we have an "implicit small parameter" in system ( 1.1 ). 

To demonstrate potential extensions of this approach, we now consider 
some qualitative implications that atmospheric change might have for 
forest- pest ecosystems. As suggested by Antonovsky and Korzukhin 
(1983), an increase in the amount of S02 or other pollutants in the atmos­
phere could lead to a decrease of the growth rate p and an increase of the 
mortality rate h. Thus, increases in atmospheric pollution could result in a 
slow drift along some curve on the (p, h )-plane (Fig. 12 ). 

Suppose that the parametric condition has moved from position 1 to 
position 2 on the plane but remains in a region (8) where a stable equi­
librium can exist without pests (Fig. 4 ). But now, if the system is exposed 
to pest invasions, both the forest and the pest become extinct. Therefore, 
slow atmospheric changes could induce both vulnerability of forests to 
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h 

p 

FIG. 12. The probable parameter drift under S0 2 increase. 

pests, and forest death unexpected from the point of view of the forest's 
internal properties. 

6. SUMMARY 

It is obvious that both models (A.1) and (A.2) are extremely schematic. 
Nevertheless, they seem to be among the simplest models allowing the 
complete qualitative analysis of a system in which the predator differen­
tially attacks various age classes of the prey. 

The main qualitative implications from the present paper can be 
formulated in the following, to some extent metaphorical, form: 

1. An invasion of a small number of pests into an existing stationary 
forest ecosystem could result in intensive oscillations of the age structure of 
the tree population. 

2. The oscillations could be either damping or periodic. 

3. Slow changes of environmental parameters may make the forest 
vulnerable to previously unimportant pests. 

There are a number of possible directions for extending the model. It 
seems natural to take into account the following factors: 

( 1) more than two age classes for the specified trees; 

(2) coexistence of more than one tree species affected by the pest; 

(3) introduction of more than one pest species having various inter-
species relations; 

( 4) the role of variables like foliage which are important for describ­
ing the effect of defoliation by the pest; 

(5) feedback relations between vegetation, landscape, and micro­
climate. 
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Finally, we express our belief that careful analysis of simple nonlinear 
ecosystem models will lead to a better understanding of real ecosystem 
dynamics and to a better assessment of possible environmental impacts. 

APPENDIX: NUMERICAL PROCEDURES FOR 

THE BIFURCATION LINES R AND P 

1. Andronov- Hopf Bifurcation Line R. 

On the (p, h )-plane there is a bifurcation line R along which system ( 1.1) 
has an equilibrium with a pair of purely imaginary eigenvalues 
A. 1•2 = ±iw(A.3 < 0). It is convenient to calculate the curve R for other fixed 
parameter values as a projection on the (p, h )-plane of a curve I' in the 
direct product of the parameter plane by phase space R ~ (Bazykin et al., 
1985 ). The curve I' in the 5-dimensional space with coordinates (p, h, x, 
y, z) is determined by the system of algebraic equations 

py-(y-1)2x-sx-xz=0 

x - hy=O 

-sz+Bxz=O 

G(p, h, x, y, z) = 0, 

(*) 

where G is a corresponding Hurwitz determinant of the linearization 
matrix 

(

(y-1) 2 -s-z 
A= 1 

Bz 

p - 2(y- 1) x 
-h 
0 

-x ) 0 . 
-s+Bx 

Each point on curve I' implies that at parameter values (p, h) a point 
(x, y, z) is an equilibrium point of system ( 1.1) (the first three equations of 
(*) are satisfied) with eigenvalues ). 1•2 = ±iw (the last equation of(*) is 
satisfied). 

One point on the curve I' is known. It corresponds to point M on the 
parameter plane at which system (l.l) has the equilibrium (s/B, l, 0) with 
A. 1 =A. 2 =0 (e.g., ± iw = 0). Thus, the point 

• • (
6 ~ ~ 1 o) (p', h', x', y, z) = B' B' B' , 

lies on curve I' and can be used as a beginning point for computations. The 
point-by-point computation of the curve was done by Newton's method 
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with the help of a standard FORTRAN program, CURVE (Balabaev and 
Lunevskaya, 1978 ). 

2. Separatrix Cycle Line P. 

Bifurcation line P on the parameter plane was also computed with the 
help of the program CURVE as a curve where a "split" function F for the 
separatrix connecting saddles £ 2, 1 vanishes: 

F(p, h) =0. 

For fixed parameter values this function can be defined following 
Kuznetsov (1983). Let w; be the outgoing separatrix of saddle £ 2 (the 
one-dimensional unstable manifold of equilibrium £ 2 in R ~ ). Consider a 
plane z = b, where b is a small positive number; note the second inter­
section of w; with this plane (Fig. 13 ). Let the point of intersection be X. 
The two-dimensional stable manifold of saddle E 1 intersects with plane 
z = b along a curve. The distance between this curve and point X, measured 
in the direction of a tangent vector to the unstable manifold of E 1 , could 
be taken as the value of F for given parameter values. This function is well 
defined near its zero value and its vanishing implies the existence of a 
separatrix cycle formed by the saddle £ 1, 2 separatrices. 

For numerical computations separatrix w; was approximated near 
saddle £ 2 by its eigenvector corresponding to A. 1 > 0. The global part of 
w; was defined by the Runge- Kutta numerical method. Point X was 
calculated by a linear interpolation. The stable two-dimensional manifold 
of £ 1 was approximated near saddle £ 1 by a tangent plane, and an affine 

:z: 

z 

w+ 2 

.. -----· 
y 

F1G. 13. The separatrix split function . 
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FIG. 14. The separatrix cycles in system (I.I). 
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FIG. 15. A commuted parametric portrait of system (I.I). 
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coordinate of X in the eigenbasis of £ 1 was taken for the value of split 
function F. 

The initial point on the separatrix has z0 = 0.005. The plane z = {J was 
defined by {J = 0.1 and the integration accuracy was 10 - 7 per step. The 
initial point on P was found through computer experiments. A family of 
the separatrix cycles corresponding to points on curve P is shown in 
Fig. 14. 

Figure 15 presents an actual parametric portrait of system ( 1.1) for 
s=B= 1, c:=2. 
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