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Abstract 

The paper gives a survey of some recent results and ideas in the area of sustained oscillations 
in nonlinear age-structured population equations. The application of one parameter Hopf bi- 
furcation technique to  nonlinear integral Volterra equation is demonstrated. Two parameters 
Lyapunov and Schmidt bifurcation method are implemented to  both nonlinear integral equation 
and nonlinear McKendrik-von-Foerster equation. The direction of bifurcation and oscillation 
period is calculated for two examples. 



SELF-REGULATION IN AGE-STRUCTURED POPULATIONS 

E.N. Boulanger Institute for Control Sciences, Russian Academy of Sciences, Moscow 
GI. Yashin Institute for Control Sciences, Russian Academy of Sciences, Moscow and 
Odense University, Odense, Denmark 

Introduction 

The behavior of some populations reveals the signs of some unknown forces 

acting periodically. The theoretical explanations of the observed oscillations are discussed 

in the numerous literature. Traditionally most of the authors refer to either the periodic 

external influence like seasonable changes of the environment (see, for example, Oster 

and Takahashi (1974) or to the populations interaction like in predator-prey models (see, 

for example, Pielou (1977)). 

Several recent studies are focused on the oscillations produced by the populations 

self-regulatory mechanisms. For the human population the nature of these mechanisms 

appear in the fact that the size of the cohorts influences its living standards, which in 

their turn, influence the cohort's future fertility rates. As a result of this cohort-controlled 

mechanism the women born in a large cohort tend to produce fewer children than 

women born in a small cohort. This idea, suggested by Easterlin (1961), was studied 

extensively in subsequent papers (see, for example, Lee (1974), Frauenthal (1975), 

Easterlin (1980), Smith (1981), Swick (1981, 1985), Alburg (1983), Frauental and Swick 

(1983), Wachter and Lee (1989), Feichtinger and Sorger (1990), Wachter (1991a, 1991b). 
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Mathematically this idea is expressed in the fact that the net maternity function in the 

population equation becomes density dependent, so the equation itself becomes 

nonlinear. 

The nonlinearity of the population equations does not guarantee the existence of 

the periodic solutions. Sustained oscillations may occur only if some special conditions 

are satisfied. In particular, the presence of a delay in the response to changes in 

population density function is the crucial feature for the existence of sustained 

oscillations in populations characteristics (Cushing 1983). 

It is clear that a sustained cyclic behavior is not possible if the parameters of the 

equation provide the existence and the uniqueness of stable steady state solution. The 

oscillations may occur only if the situation becomes unstable, i.e. when the parameter 

values cross the boundary of some set in the parameter space within which the stable 

stationary state is guaranteed. Perhaps the simplest way to check the existence of 

nonlinear cycles is to vary one parameter beyond some threshold value and to analyze 

the properties of the solution. The approach based on this idea is known as the Hopf 

bifurcation technique (see, for example, Marsden and McCraken 1976, Hale and 

Oliveira 1980). 

The possibility of oscillations in nonlinear demographic models was discussed by 

Key£itz (1968). Lee (1974) suggested several discrete time cohort controlled population 

models that produce oscillations in population size. Frauental (1975) suggested and 

analyzed a particular mathematical model of nonlinear maternity function and calculated 

for this example the period of oscillations and the threshold parameter value. Swick 

(1981), (1985) generalized this approach to broader class of maternity functions and 

suggested to use the one-parameter Hopf bifurcation technique to study the problem of 



existence of sustained cycles as the solutions of nonlinear integral Volterra equations for 

the numbers of births. Frauenthal and Swick (1983) calculated the parameter estimates 

for the cohort feedback model using U.S. data. Wachter and Lee (1989) criticized their 

approach and discussed the applicability of several nonlinear population models to 

demographic data. Wachter (1991% 1991b) proved that strictly positive lower bound on 

age of procreation plays an important part in the question of existence of nonlinear 

cycles in population models and discussed the applicability of Lee-Easterlin models for 

U.S. data. The ecological aspects of self-regulation mechanisms are discussed by Oster 

(1976), Botsford and Wichham (1978), Roughgarden, Iwasa and Baxter (1985), Gurtin 

and Levine (1982), Levin and Gurtin (1981). 

In most of these papers the population dynamics is described by nonlinear integral 

Volterra equations. The properties of their solutions depend on the values of the 

parameters which speclfy the nonlinear feedback mechanism and the vital characteristics 

of the population. When there is only one parameter the Hopf bifurcation technique is 

the appropriate tool to study the existence conditions for nonlinear oscillations. Note that 

the period of nonlinear oscillations is not constant: it changes when the parameter 

changes beyond some threshold level. A more detailed specification of the changes of 

the period of oscillations as a function of small parameter within the Hopf bifurcation 

technique requires the additional efforts. This problem can be easily solved, however, in 

the framework of Lyapunov and Schmidt multiparameter bifurcation analysis (see, for 

example, Vainberg and Trenogin 1962). The respective techniques for population 

equations were developed by Cushing in a series of papers (Cushing 1978, 1979, 1983). 

His results determine the existence of both the nonlinear cycles as a solution of 

population equations and the direction in the parameter space along which the period 



of oscillations is constant. 

Using this methodology Tuljapurkar (1987)' (1991) elaborated a tool whereby the 

direction of bifurcation can be specified in terms of characteristics of the nonlinear 

population model. He also obtained the stability conditions for the periodic solution of 

population equations. By this method the nonlinearities in the population equations can 

be translated explicitly into features of population dynamics. One can use this method 

either to test the basic assumptions by confronting theoretical results with data or to infer 

from data the features of the feedback mechanism. 

The purpose of this paper is to give a survey of recent results in the area of 

periodic solutions of the nonlinear population equations with the age structure. We start 

with the one parameter Hopf bifurcation result implemented to population equation by 

Swick (1981)' and demonstrate the Frauenthal's (1975) method for the calculation of the 

oscillation's period and the threshold parameter value. Then we discuss Gushing's (1978) 

two-parameters bifurcation result concerning the existence of nonlinear oscillations as 

the solutions of nonlinear integral Volterra equations. Such equations describe the 

dynamics of the number of births in the population with the density dependent vital 

rates. After that the Tuljapurkar (1987) result which specifies the direction of bifurcation 

for such equations is formulated and discussed. Two examples of typical calculations are 

also presented. 

When nonlinear feedback mechanisms appear in both mortality and fertility 

coefficients, the population evolves in accordance with the nonlinear McKendrik 

equation with nonlinear boundary condition. Following Tuljapurkar we describe the 

method that allows the calculation of the direction of bifurcation and  spec^ the stability 

conditions. This approach uses the result of Cushing (1983), concerning the existence of 



nonlinear cycles in the solutions of integro-differential equations. 

Despite the fact that all results which we discuss here have the precise 

mathematical formulation, we focus most of our attention on substantive issues 

sometimes sacrificing mathematical accuracy to the benefits of simplicity. 

Nonlinear Integral Volterra Equation for the Number of Birth 

Let us consider the following nonlinear Volterra integral equation for the number 

of births in the population 

here we use the notation for the birth trajectory on the interval . 

One Parameter Hopi Bifurcation 

Let us assume that density dependent net maternity function may be represented 

as follows 

where nonnegative functions and . 

So the equation (1) may be written as follows 

The Easterlin's hypothesis will be satisfied if Ro ( B )  is a decreasing function of 

B. Let Bo > 0 be an equilibrium birth level. It is clear that Ro ( B o )  = 1. Expanding 

Ro ( B )  B about B,, we get 

where I=-B,R,/(B,) and g ( 0 )  = g l ( o )  = o .  



Setting x=B -Bo the equation (3) can be rewritten in the form 

X (  t )  = 1 -  / 4 s x t - s  d s  + / 4 (s) g ( X (  t - s ) ) d s .  
0 0 

The following statement establishes the stability conditions of Bo. 

Theorem 1 (Swick 1981). If all roots of the equation 

have negative real parts, then Bo is asymptotically stable. 

If the time independent solution B, is unstable the following theorem gives the 

conditions at which B, bifurcates into periodic solution. 

Theorem 2 (Swick 1981). Suppose that for r=ro equation (6) has the pure 

imaginary roots * ooi = t z, po > 0 and no, i is not a root of (6) for n + *l and 
Po 

D. 

ca(o0) A / s+(s) cos (oos)  d s  + 0. 
0 

Then Bo bifurcates at r=ro to a periodic solution of (1) with period near p,. 

The proof of this theorem follows easily from the general Hopf bifurcation result 

for functional equations proved by Hale and Oliveira (1980). In accordance with this 

theorem one should check that 



where a is a root of the characteristic equation (6). Differentiating both parts of (6) with 

respect to r we get 

So for a = i o o  

where 

OI a 

C, (ao) = s4 k) e-"cos (oos) ds, sa(o0) = [ s4 k) e-..sin (o0s) ds 
0 0 

and, hence 

Thus the condition of theorem 2 is equivalent to the condition of Hopf theorem 

( see Hale and Oliveira 1980). 

To apply theorem 2 one should find the threshold value of the parameterr=rO 

and frequency of oscillations wo from the characteristic equation. 



Separating (7) into real and imaginary parts we get 

One can solve the equation (9) iteratively for oo and substitute this value into 

(8) to find out ro directly. 

Frauenthal (1975) suggested direct method of calculation starting from the 

characteristics equation (7). Using this approach let us define the mean age of 

childbearing r  in associated stationary population by the equality 

Let us multiply both sides of (7) by e-'"~' and expanding the exponent on the left 

hand side in a Taylor's series around r .  Retaining terms up to the second order in 

( S-r ) and separating real and imaginary parts we get 

.. 
0 0  / ( s - T )  4 ( s )  d s  - sin (oar) I 

o 1 -ro 

oi ( s - r )  ) 4 ( s )  d s  a cos ( 0 , ~ )  
2 1-1, 



It follows from (ll) ,  (10) and that s i n  (o,r) =: 0. Hence, oar = kn , wherek 

is an integer. Choosing k=1  we get 

Let us now solve (12). It follows from (13) that cos (oar) --I and hence from 

(12) 

where a2 is the variance of the age of childbearing is defined as 

For U.S. 1966 fertility data it was found out that B, is asymptotically stable for 0 < r <a .3 

and bifurcates to a periodic solution of (3) with period p, near 52. 

Two parameters Bifurcation 

In the case when the solution of the population equation depends on more then 

one parameters more general multipararneter bifurcation methods are needed. We will 

demonstrate the implementation of two parameters bifurcation technique to the 

population equation (1). 

Assume that a time-independent solution of (1) to be written as B, ( p ) , where p 

is a parameter vector. The conditions of stability of this steady-state solution (see, for 
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example Pruss 1981) define some area in the parameter space for which Bo ( p )  is locally 

stable. 

Let us write the equation for the deviation of B ( t , p ) from the steady state 

solution of (1) B, ( p )  in the following form 

where x ( t , p = B ( t , p) - B, ( p ) , M is linear operator and N is nonlinear operator. 

Note that the transition from (1) to (14) may require the Taylor expansion, thus we 

assume the appropriate smoothness of 4. 

Following Tuljapurkar (1987) let us assume that there are also threshold 

parameter values denoted by p* at which Bo ( p * )  looses stability. These values are 

characterized by the fact that the linearized equation for deviation 

x( t, p*) =B ( t) -B, ( p*) has a pair of periodic solutions. The main problem of interest 

is whether the nonlinear equation (1) has periodic solutions in the vicinity of p*. Let us 

select two parameters b, and b, from the parameter vector p and introduce two values A, 

and A, by the equalities 

A1=bl-b:; A2=b2-bz+ 

here b,' , b,' corresponds the threshold values of b, and b2 . 

Let us linearize the equation (14) with respect to A,, A,. As a result we have 

X( t, A )  -L(X) =AIKl (X) +A,K, (X) +T(x, 1) (15 

Here L, K,, 6 ,  are linear operators which do not explicitly depend on A ,  while T is 
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a nonlinear operator which does. The following assumptions will be used in formulation 

of main result of this section. 

Assumption HI. The linearized version of (15) around B, ( p* )  , is of the Volterra form 

with 

where k(s) is some bounded function. 

Assumption H2. Equation (16) has one pair of linearly independent periodic solutions 

of period po = ( 2 x  / a o )  which may be chosen to be 

and a complex conjugate ( t )  . It follows from (16) and (17) that oo satisfies the 

characteristics equation 

1= k ( s )  exp (- ioos)  . 1 0 

Let Bpo be a space of periodic functions u  ( t ) = u  ( t +po) with the norm 

lul= sup lu(  t) 1 .  
0 < t<po 

Assumption H3. The operators L,  K,. i =I, 2 ,  are bounded linear operators from Bpo 

to Bpo. i =1,2. 

Assumption H4. Nonlinear operator T(x, A )  is sufficiently Frechet differentiable in 
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some open neighborhood of x=X=O to allow an expansion in the form 

T(x, A )  =g2 (x, X I  +Xlg2, (x, x) +A2g2, (x, x) +g, (x, x, x) +g, (x, A )  (21) 

where the vector functions g2 (X, Y) , g,, (X, Y) , g2, (X, Y) , g, ( X ,  Y, Z) , are linear 

functions of each argument and also symmetric in these vectors, and Jg,l being 

or lx121xl+lAlllxl12) - 
Define the Fourier coefficients of any function u ( t) €Bp0 as 

for all integers j. Two functions r(t) and s(t) in B , ~  will be called ortogonal if 

Define the Fourier coefficients 

W,= [Km( Y (  t) ) 1 ,=Pm+iQm, m = 1 , 2  

where 

and K,, m = l ,  2 are the linear operators on the right of (15). 



The following statement addresses the existence of periodic solutions in (15) and 

, hence, in (1). 

Theorem 3. (Cushing 1978). Assume HI-H4 and also that 

Then there is e, > 0 such that for 1 E I < 1 E , I equation (15) has p, -periodic solution of the 

form 

with A = A  ( E )  , J I z I I = o ( J E ~ )  as e+O, and z ( t )  ortogonal to ~ ( t ) .  

The proof of this statement follows from the implicit function theorem that uses 

the condition (26). 

Let us assume now that the conditions of the above theorem apply so the 

nonlinear model does have p,-periodic solutions. Note that according to theorem 3 these 

solutions of amplitude E exist near threshold at parameter values 

b * + A ,  ( E ) , b * + A 2  ( E ) and have the same period as the linear model at the threshold. 

The differentiability assumed in assumption H4 yields the possibility for nonlinear term 

Z(t) to be expanded, along with A( e) , as a series 

The combination of the decomposition (28) and theorem 3 leads to the following 



statement. 

Theorem 4. (Tuljapurkar 1987) Under the assumptions stated above 

(a) 

Ajl=O, j = 1 , 2 ;  

(b) The function Z, ( t) in (28) satisfies the equation 

z, ( t) -L (2,) =g, ( Y, Y) 

with g, as in (21). 

( C )  Defining the object 

the Fourier coefficient 

and the matrix 

the vector (A,,, A,,) is given by the formula 

The proof of this theorem based on method of Lyapunov and Schmidt is given by 

Tuljapurkar (1987). 

Let us demonstrate the applications of these results to some particular population 



models. 

Self-Regulation of Fertility: Two Parameters Bifurcation 

Let us consider the integral Volterra equation (1) with the density dependent 

maternity function in the form 

Here *( a) is a bounded function such that*( a) > 0 on age interval (a,, a, 

and *(a) =O if ae(al ,a2) .  

Using (1) and (35) it is easy to find out the steady state solution 

where we use the notation 

The deviation from the steady state solution of (1) 

satisfies the equation 

Using (36) one can transform (39) to the 



.. .. 
X (  t )  = R! 9 ( a )  e - p a x (  t - a )  d a  - 2R4r,B0 / I )  ( a )  e - p a x (  t - a )  d a  

0 0 (39) 

1' 
- 

XI tI - (t - R) [ @ ( a )  e - l a  X ( t - a )  da = - R I )  ( a )  e -pa  X (  t - a )  cia [ 1 
(40) 

Following theorem 3 we should check the existence of only a pair of periodic 

solutions in the linear equation 

for some parameters values. After substitution 

h o t  - 
Y o ( t )  = e , a n d  Y o ( t )  = e -ioot 

with arbitrary oo in (41) we get the following equation for oo : 

which is equivalent to the pair of algebraic equations 

where 



c (a0)  = /I# b) e-roa cos ( o o a )  da,  
0 

I 

S ( a o )  = /$ b) e-"Oa sin (",a) da .  
0 

It is obviously from (42) that 

Note that the equations (43) define the values of p , ,  R~ as functions of o,, i.e. 

the threshold values. 

Let the parameters near threshold be 

then after substitution (46) in (40) we have the equation (15) with 

I 

L ( X I  = ($ -Ro) Lo (XI , L~ ( x )  = / I# b)  e - ' " ~ (  t - a )  da,  t4') 
0 

I 

L,(X) = / a $ b )  e - r o a ~ ( t - a )  da,  
0 



Here 

qo = I$h)e-"'  da,  $, = I a $ h ) e - p o a  da,  
0 0 

In order to check the Gushing's nondegeneraey condition ( 6 (El w,) * 0 ) we 

need to calculate the real and imaginary parts of Fourier coefficients of 

Kl(Y( t)) and K2(Y( t)): 

Taking into account (48) and (49) we get: 

where 



a 

sa (a,) = 1 a $ b) e-'~' sin (a , a )  da ,  
0 

a 

ca (a,) = 1 a $ b) e-'~'  cos (a,a) da 
0 

So 6 = p, Q, = S, (a,) . Thus the conditions of theorem 3 can be rewritten in the 

following form: 

(see (43), (45)). The last inequality follows from the positiveness of the stationary state 

( see (36) with p = p, , R = R,). 

According to theorem 3 for all such values p,, R, satisfying (57) the linearized 

equation (15) has a pair of p,-periodic solutions and for some e>O small enough there 

exists A( e) ( the direction of the bifurcation ) such that forp =p, +A, a n d  R=R,+A, 

the nonlinear equation (42) also has p, -periodic solution ( with the same period p,) of 

the form 

X( t)  =e(Y( t)  +Z( t ) ) ,  (ZI=o(e)  a s  e-0. 

Note that theorem 3 guarantees only the existence of the direction A( e) in 

parameter space, which "saves" the period po of the solution. 

Using theorem 4 we can evaluate the nonlinear contribution on the bifurcation 

cycle 



and calculate the direction A( e) of parameters changes in the parameter space beyond 

the threshold level that guarantees the nonlinear oscillations with the same period. 

Let us define 

(60) 

i.e. Y( t )  is the solution of equation (41) with p , ,  R~ and a , .  

Taking into account that according to (47) and (51). 

g2 ( y ,  y> = - Ro I# ( a )  e-'Oa Y (  t - a )  da 

the equation (29) for Zl is: 

where Y (  t )  is from (60). 

Let us solve this equation by using Fourier decomposition. As a result the solution 

of (62) has the form 

with 

where 



Now let us calculate the direction of bifurcation. In accordance with (31) we 

should calculate the Fourier coefficients of the function 

Using (55), (61) and (63) we get 

[R^(t)], = A +i B 

where 

Thus from (34) we have 

One parameter Hopf bifurcation technique allows us to establish the existence 

conditions for sustained oscillations in nonlinear population equations. However, when 

the parameter varies beyond the threshold level the period of oscillations also changes. 

The calculations of these changes within Hopf bifurcation approach requires additional 
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efforts. It turns out that one can solve this problem also using two parameters 

Lyapunov-Shmidt bifurcation technique (see, for example, Marsden and McCraken 1976). 

We will illustrate this idea using the same example of self-regulation in fertility function. 

Self-Regulation Fertility: Relation to Hopf Bifurcation 

Let us consider the equation (1) with the maternity function (35) and chose R 

and p  as two varying parameters; here p  is the unknown period of nonlinear cycles. 

After rescaling the time variable from t to t / p  the equation for the deviation becomes 

.. 
X (  t )  - P (t-R) [ q ( p a )  xi t - a )  da = -R 

where 

cp ( a )  = 4' ( a )  e-pa. 

Note that at the threshold ( R o t  pol the equation 

should have a pair of periodic solutions with the unit period, i.e. functions 

- 
y ( t )  = e 2 i n t l  y ( t )  = e - 2 i n t  ( o = 2% ) satisfy the equation (72). Thus the 

threshold values R, , po are defined from two algebraic equations 

S ( o o )  = 0 ,  where S ( o o )  = c p  ( a )  s i n ( o o a )  da, I 0 

(73) - 
4' 

S ( " o )  = (2-R:4'p) , where = / c p  ( o o a )  cos  ( o o a )  da .  
0 



It is obviously from (73) that 

ROrCl,, * 2 

Now we set 

R = Ro + I , ,  P = Po + A 2  ( 7 5 )  

and use the first order Taylor expansions in the parameters ( I , ,  I , )  for the equation 

(70). So for the deviation X (  t , A )  we get 

X ( t , l )  - L ( X )  = L , K , ( X )  + 1 2 K 2 ( X )  + g 2 ( X , X )  ( 7 6 )  

with 

- 
K1 ( X I  = - p0 / p (pas) X (  t - a )  d a ,  

0 



Fourier coefficients for the functions K, ( Y) , m = 1 , 2  

[&I, =PI + i ~ , ,  [f],  = P2 + i Q 2 ,  

where 

with 

m 

Sa (aO)  = s<p CS) sin ( o o s )  ds,  / 0 

Since in our case the nondegeneracy condition (25) has the form 

0 0  b = PIQ, or b = - C, (a0 )  z 0 which is equivalent to 
2rc 

Next we need to calculate Z, ( t) ( see (28)), which satisfies the equation ( see 

(30)) 



where we took into account (73) and the fact that 

Using Fourier decomposition from (84) we have 

wi th 

2, = ~ R , C ~  (a,)  ; z2 = R,C' (a , )  . 

In order to find the direction of bifurcation we need to calculate the Fourier 

coefficients for the function R  ( t )  ( see (31)) , which in our case has the form 

R ( t )  = g 2 ( Y , Z l ) .  

Thus 

where 

A = 2  R,Z c3 (a,) ( 21p + 
Ro qr -1 

In accordance with (34) 



Using (82) finally we get 

Thus formula for A,, describes the changes of the oscillation period as a function 

of E .  

The multiparameter bifurcation technique can be also implemented to the 

nonlinear McKendrik-von-Foerster equation. The approach is very similar to the previous 

one. It should, however, take into account the specific features of this equation. 

Following Tuljapurcar (199l)here we illustrate the main ideas of this approach using two 

parameters bifurcation. 

Two Parameters Bifurcation Method for Nonlinear MacKendrik Equation 

Let us consider the general demographic model given by McKendric-von-Foerster 

equation ( McKendrik 1926, von Foerster 1959) 

Here D ( P) and B (P) are density dependent death rate and the number of birth at time 



Let p  be the parameters vector which affected the solutions of (87). Under some 

conditions ( see, for example, Pruss, 1981) the equation (87) has nonzero time 

independent solution P  ( a ,  p  ) . 

Let 

g ( t , a , p )  = P ( t , a , p )  - P * ( a , p )  (88) 

be the deviation from the steady state solution of (87). It is convenient henceforth to 

change variables from t ,  a to u ,  a with u= t - a  and function from d (  u + a ,  a )  to 

X ( u ,  a )  . Using these new variables one can easily write down the equation for the 

deviation in the form 

Here M , ,  % are linear operators and N,, N, are nonlinear operators. Note that 

transformation of (87) into (89) may require a Taylor expansion and thus appropriate 

smoothness of linear functions D and B in (87). 

The starting point for the bifurcation analysis here is the assumption that for 

some threshold parameters values p  = p* the linear version of (89) ( with Nl = N2 = 0 

) has a pair of periodic solutions. 

Then we chose two parameters b = (b, , b2 ) from p  with the corresponding 

threshold values b e =  (b,',b,'). For the values near threshold 

b = 13 + 1 wi th X = ( A , ,  1,)  . Assuming the appropriate smoothness in (x, X ) we 
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transform (89) to the form 

axcu, a )  / a a - ~ ,  ( x )  =A,L, ( X I  +A,L, ( X I  + g ( x ,  1 )  =T, ( x ,  A )  , (9 0 

X ( u ,  0 )  -H2 ( X )  +AIKl ( X I  +A,K, ( X )  +h ( X ,  A )  =T2 ( X ,  A )  . 

 here^,(^) = M l ( X , p ' )  ; H 2 ( X )  = M 2 ( X , p * )  ; Li,Ki arelinearoperatorsand 

g ,  h , Ti are nonlinear operators, i =1,2 . 

Assumption HI. For equation (90): 

m 

-HI ( X I  ( u ,  a )  =cl ( a )  X ( u ,  a )  +c2 ( a )  / kl ( s )  X(u+a-s ,  s)  d s ,  

At the threshold the local linear equations are 

~ x ( u ,  a )  / a a - ~ ,  (x)  = o ,  X ( U ,  0) -H, ( x )  = o .  (92 

Assumption H2. Linear equations (92) have only one pair of periodic solutions 

- 
Y l ( u , a ) = Y l ( a ) e x p ( i o u )  and Y l ( u , a )  (barindicatesacomplexconjugate). 

Fourier coefficients of a periodic function g (  u ,  a )  are as 

for j = 0 . .  . with p = 2 z / o  and g ( u , a ) = g ( u + p , a )  .Thesolvability 

of a system like (90) is to be expressed via Fredholm conditions and these require a 
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particular functional: 

for apair of functions ( g ( u , a )  , h ( u )  ) ,both p-periodic in u ,  

Here 6, is a Fourier component as in (93) and x, depends on Fourier component 

@, ( a )  as follows: write 

a 

I ( a )  =exp[ - /  c,(v) d v l .  
0 

then set 

a 

x, ( a )  =I  ( a ) /  [ & ( s )  -We2 ( s )  exp ( ios )  I m ( s )  d s  , (9 6 

0 

with 

~ ~ ~ = / k ~ ( s ) l ( s ) e x p ( - i o s ) /  & ( v ) m ( v )  d v d s ,  
0 0 



- 

wl=l+ k, (s) 1 (s) exp(-ios)! c2 ( v ) m ( v )  exp ( iov) dv ds. (g8) I 0 0 

Assumption H3. 

w, # 0 .  

Assumption H4. Li , Ki for i =1,2 are bounded linear operators. 

Assumption H5. For periodic functions X and real parameters X in open neighborhood 

of X=O , 1 =o,  the nonlinear functions in (90) satisfy (g ( e x ,  X )  , h ( e x ,  1) ) = 

e( 3 X, A, e) , h( x, 1, E) ) . Here g, fi are at least once continuously Frechet 

differentiable and o =g (x, 0 , o  ) =ax (x, 0 , 0 ) = fi (x, 0 , 0 ) =& (x, o , o  ) where subscript 

x denotes the derivative with respect to x. 

Theorem 5 (Cushing 1983). Assume H1 to H5 and further that 

with Y, being the solution of (92). Than for all e satisfying 1 e I < el  ( 0 < e l s e  ) equation 

(90) has a p-periodic solution of the form 

and JzJ=0(1e  1) as e-.oo. 

Nonlinear Terms 



Assume that the birth and death rates in the model are sufficiently many times 

continuously differentiable functions in some open neighborhood of x=O , A = O  so that 

one can make the expansion 

g ( x ,  A )  =g2 ( x I  X )  +Alg2, ( x ,  x)  +A2g2, ( x ,  x )  +g3 ( x ,  x ,  x )  +g4 ( x ,  A )  , 
(101) 

Here g,, g,, h,, h,, are p-linear symmetric in x  f o r  p g 3  . The terms g, , h, , are 

O ( ~ X U + + I ~ ~ X U ~ + I A  1 2 ~ ~ ~ ~ ~ )  . 

A Lyapunov-Schmid t expansion (Poore 1976) yields the following results. 

Theorem 6 (Tuljapurcar (1991)). Assume the conditions of Cushing's theorem, 

the representation (101), and consider the expansions 

where Y is a real periodic solution of (92). 

Then 

( a )  A j = 0  j=1,2. 

(b) Zl ( u, a )  is the solution of the inhomogeneous equations 

( C) defining the matrix 



and letting A ,  B be the real and imaginary parts respectively of the function 

n [ 2 g 2 ( Y , z 1 )  + g , ( Y , Y , Y ) ,  2 h , ( ~ , z , )  + h , ( y , Y , Y ) ] ,  onehas 

The proof of this result is based on the Fredholm alternative for the solution of 

the integrodifferential equations. 

Discussion 

The interaction of generations in age-structured populations is responsible for 

nonlinear self-regulatory feedback mechanisms of population evolution. The properties 

of the feedback mechanism depend on the parameters values and type of nonlinearities 

that specify the mutual influence of different cohorts and determine the population vital 

rates. The stable stationary state which may exist for some parameter values is one 

possible result of self-regulation. When the parameters of equations reach some 

threshold values the steady state solution becomes unstable. The sustained nonlinear 

oscillations are the most interesting results of this instability. Some special conditions 

must be specified in order to guarantee the unstable solution to be the sustained 

nonlinear oscillations. 

The important practical problem is: how our knowledge of the interaction 

mechanisms (nonlinear feedback) can help in understanding the dynamic properties of 

the population, i.e. when the nonlinear oscillations occur, what is their period and shape, 



what is the direction in the parameters space along which the period of oscillations is 

constant, whether the revealed oscillations are stable. 

The machinery that helps to answer all these questions is readily available: one 

should write down the nonlinear equation for population evolution, find its steady-state 

solution and write down the equation for deviation from this steady state solution. The 

linear part of this equation is used for finding the threshold parameter values, i.e. the 

values for which the linear version of this equation has a pair of periodic solutions. In 

order to check whether the nonlinear equation has a periodic solution let us choose two 

parameters (that will be varied near the threshold level) from the parameter set and 

keep the other on the threshold. Linearize the equation for deviation with respect to 

increments of these two parameters. Note that zero deviation is usually a solution of this 

nonlinear equation since the (unstable) steady state solution exists. However, if the 

situation is unstable this solution may be not unique. It turns out that other solutions 

exist in the vicinity of zero solution. The Gushing's "nondegeneracy" condition guarantees 

the existence of periodic solutions as well as the existence of some special direction in 

the parameter space. Changing two selected parameters in this direction will not change 

the period of nonlinear oscillations. Power series expansion of the solution of the 

nonlinear population equation with respect to small parameter - the amplitude of 

nonlinear oscillations, allows to identify this direction. Special efforts needed to analyze 

the stability property of the periodic solutions. 

Conclusion 

Real problems of population dynamics can motivate the variety of research 

activities from building large simulation models till development the abstract 



mathematical constructions. The idea of this paper is to elucidate approaches that allow 

us to better understand the mechanism of sustained oscillations in population size and 

structure. 

The nature of these oscillations appears in nonlinear feedback which generates 

the delay of response of the population vital rates to the changes in population structure. 

The effects appear automatically when the parameters of equations cross some threshold 

levels. This feature of nonlinear population equation is extremely important for 

applications: human as well as other biological populations evolve in the changing 

environment that influences the parameters of their vital rates. To predict or to avoid 

the surprises in population behavior one should know the nature of the bifurcation 

mechanisms and the regularities in the parameters changes that might lead to the 

bifurcation phenomena. 

The reasons for these changes in real systems may be numerous. For human 

populations they are associated with the industrial development, changes of living 

standards, or cultural evolution. Biological species demonstrate the sensitivity to the 

changes of the environmental conditions induced by natural evolution or human activity. 

Note that the sustained oscillations as a bifurcation phenomena is by no means 

a unique event. According to Prigogine and Nicolis (1985) rather, it is the beginning of 

a complex systems transitions. The cascades of new properties of the solution may be 

revealed. The systematic studies of these phenomena that include the bifurcation analysis 

as well as the identification of nonlinear feedback mechanisms from real data are 

needed. 

The nonlinear population models with self-exciting oscillations are very often the 

mathematical abstractions. In many situations they arise as an attempt to exclude some 



intermediate variables and to reduce the dimension of the problem. The explanation of 

the Easterlin cycles, for instance, involves such economical categories as level of well- 

being or standards of living. The approach that allows to combine the evolution of 

population age structure with changing environmental indices still need to be developed. 

This variety of exiting and still unsolved problems only supports the idea that the world 

of dynarnical systems is fascinating and still largely unexplored. 
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