Working Paper

Controllability of the Wave
Equation with Pointwise Moving
Control

A.Yu.Khapalov

WP-92-82
October 1992

I IASA International Institute for Applied Systems Analysis 0 A-2361 Laxenburg o Austria
il Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313




Controllability of the Wave
Equation with Pointwise Moving
Control

A.Yu.Khapalov

WP-92-82
October 1992

Working Papers are interim reports on work of the International Institute for Applied

Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member

Organizations.

International Institute for Applied Systems Analysis o A-2361 Laxenburg o Austria

ClIASA
Telephone: +43 2236 715210 o Telex: 079 137 iiasa a o Telefax: +43 2236 71313




Foreword

The paper deals with approximate and exact controllability of the wave equation with interior
pointwise control acting along the curve specified in advance in the system’s spatial domain.
The structure of the control input is dual to the structure of the observations describing the
measurements of velocity and gradient of the solution of the dual system, obtained from the
single pointwise moving sensor. A relevant formalization of such a control problem is discussed,
based on transposition. For any given time-interval [0,7] the existence of the curves providing
approximate controllability in H~[*/2-1(Q) x H-[*/2-2(Q) (where n stands for the spatial
dimension) is established with controls from L2_,,(0,T). The same curves ensure exact con-
trollability in L?(9) x H~1(Q) if controls are allowed to be selected in LZY,(0,T). Required
curves can be constructed to be continuous on [0,T).

The used techniques are based on the observability results involving a priori energy estimates
of an instantaneous type.
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1. Introduction and Problem Formulation.

Let 2 be a bounded domain of an n-dimensional Euclidean space R™ with a boundary Q.

In 2 we consider the following initial-boundary value problem for the wave equation of an

arbitrary dimension:

yu=Ay+L(&())0 in (0,T)xQ=Q, (1.1)
ylz=0, X =00x(0,T),

Yy |t=0= 0’ 7 It=0= 0

In (1.1) the control input is described by the term L(Z(-))d, where % = (v1,...,0541) €V
is an (n + 1)-dimensional control and V = L2,,(0,T) or L3Y,(0,T). The linear operator
L(£(-)) specifies the structure of control input along the curve Z(-),

t - i(t) € Q, te[o,T], (1.2)

selected in advance.




Most of the work on controllability of distributed parameter systems is devoted to the sys-
tems with controls which are distributed either over the system’s spatial domain or over the
boundary of this domain. Because of their infinite-dimensional nature, distributed controls are
not always readily implemented in practice. Therefore, the considerable attention has been
given to pointwise controls which are technically easier to realize. To our knowledge the results
dealing in this context with controllability of distributed parameter systems of hyperbolic type

have been restricted only by the case of stationary pointwise control, namely, when

L(Z(t)) = v(t) 6(z — Z), ie () = Z.

The regularity of the hyperbolic time-invariant systems with stationary pointwise control has
been studied in [16, 8, 11, 19]. Exact controllability of the wave equation in the space &/,
where @ is defined as the completion of the space of smooth initial conditions ¢° ¢' with
¢° =0 on 8N in the norm (fJ ¢%(z,t)dt)/> (with ¢ being the solution of the wave
equation associated with ¢°, ¢!) has been established by means of the Hilbert Uniqueness
Method in [11]. A number of results concerning approximate controllability for the one and two
dimensional wave equations with stationary pointwise control has been obtained in [5] on the
basis on non-harmonic analysis.

Due to finite speed of propagation, the stationary pointwise controls are able to ensure
exact controllability only if T is big enough. Another difficulty arising here is that related
to the multiplicity of the eigenvalues of the system in question, which is often either unknown
or unbounded. Introduction of moving pointwise controls allows to overcome this difficulty.
Furthermore, this type of control does not depend upon the speed of propagation: for any
required time-interval a special curve for control can be found.

The main aim of this paper is to study — on the basis of a relevant formalization — both
approximate and exact controllability of the system (1.1)-(1.2) in the case when the control
operator L(Z(-)) is dual to the observation operator G(Z(:)) representing at every instant of
time the values of the velocity and gradient of the solution ¢ of the homogeneous dual system

along the curve (t), t € [0,T], namely,

() = (:8;5’ , (13)
t\T\))¢t

Gz(i('))()oz = ((Px: (i()v ')v cey (Pzn(i'(')’ '))Iv (1'4)




Gi(2(-))pe = u(2(-), ") (1.5)

We stress that the observations of type (1.3)-(1.5) provide the information about the energy E

of the conservative dual system which is one of its most important physical characteristics,

E = /(cp?(::,t) + ¢2(z,t))dz = const, te[0,T],
Q

$r = (‘P:cn- . -,‘Prn)l1 ‘PZ- = ¢z “3%" .

This makes such a type of observations be of considerable interest and, consequently, leads to
the structure of control input that is of our interest in this paper. Thus, the aim of our study is
controllability of the system (1.1), (1.2) with the control operators that, by duality, can formally

be represented as follows,

L(#(-))p = Lo(2(-))o™ + Li(#(-))vn+1, (1.6)

L(£(:))»™ = V(z - 2(-))o o™, (™ = (vy,...,v,), (1.7)
) 0 )

L(2(-Dvns1 = 37 (6(z = 2(-)) 0 vnp1), (1.8)

where the symbol “o” corresponds the duality associated with V (see the next section for
details). This type of control — being finite-dimensional at every moment of time - allows,
however, to obtain a number of both approximate and exact controllability results. For any
given time interval [0,T] the existence of the curves providing the system (1.1)-(1.2), (1.6)-
(1.8) with approximate controllability in H-I"/2-1(Q)x H-I*/21-%(Q) is established for the case
when controls belong to L2,,(0,T) (Theorems 2.1 and 2.2). It is also proved that if controls
are selected from L%Y,(0,T), the same curves ensure exact controllability in L*() x H~1(Q)
(Theorem 2.3). The used techniques are based on the “energy” estimates for solutions that are

treated here as ones of an instantaneous type.

Remark 1.1. The control operators (1.7), (1.8) are similar (to some extent) to those used in




[4] by L. F. Ho, who studied the problem of exact controllability for the one-dimensional wave
equation with locally distributed controls.

Remark 1.2. Martin in [14] suggested an approach based on the results of Sakawa [18] (based,
in turn, on harmonic analysis) to the controllability and observability problems for the one-
dimensional parabolic systems with scanning sensors (for observability of the one-dimensional
heat equation see also [10]). The optimal control problems for the parabolic systems with
different types of moving and scanning controls have been studied in [15, 1], see also [6].

Remark 1.8. The details about the space L3Y,(0,T) can be found in [3].

The paper is organized as follows. The next section lists the main results of the paper:
Theorems 2.1-2.3. On the basis of transposition [13] Section 3 discusses the regularity of the
solutions of the system (1.1). It is shown that although the initial-boundary value problem (1.1)
with the non-smooth right-hand sides (1.6)-(1.8) is allowed to have the solutions discontinuous
in time in the spaces of interest, the mapping between them and the terminal conditions is
injective. A similar situation with boundary controls has been discussed in [9]. The proofs of
Theorems 2.1-2.2 are given in Section 4. Theorem 2.3 is proved in Section 5. The schemes of all
the proofs are based on the framework of the general duality theory of observation and control
and on the observability results involving the estimates in the norm of Lg%,(0,T), obtained in
[7].

We proceed now with the formulation of the main results.

2. Main results
Let us recall first two well-known definitions of controllability.

Definition 2.1. The system (1.1) is said to be approximately controllable in the Hilbert

space H if its attainable set

Y = { {y It=T1 U It:T} | Y satisfies (1.1)}

at t=T is densein H.

Definition 2.2. The system (1.1) is said to be exactly controllable in the Hilbert space H
if Y = H.

The formulation of the main results requires a number of auxiliary notations. We begin by

the introduction of the adjoint system associated with (1.1):



o = Ap + f in Q, (2.1)

¢ |e=0,

"2 |t=T= Yo, W |t=T= ¥1,

assuming that {wo, ¢1, f}, (we use the notation {(-),(-),(-)} = ((-),(-),(-))) belong to the
Hilbert space

&0 x &, x F = AR/ Q) x gB/AY Q) x B/, (2.1)
Hp(Q)={¢| ¢ € H(Q), ¢lon=... = Ale=D/Ag [59=10},

HHQ)=A{f| F € H*Q), flaaxjpr] = --- = AV/Af |50, 10.7= 0}.

Remark 2.1. The system (2.1), (2.1)’ admits a unique solution from the space H"/21+2(Q)

and the following estimate holds true (see [17] for details):

[n/2]+2

OPp
Il Zo Bir | ptnrai2-p(q) <
p:

< const (|| wo lgimaeziay + Il @1 llgtmasr@) + I £ llginrarqy) Ve €10, 7]

Let S(t), t € [0,T] denote the operator representing the general solution of the system
(2.1),

S('): QO X Q1 xF — W’ S('){‘Pov‘Plvf} = Sl('){%,ﬁpl}. + S2()f = @,

where W is the Hilbert space consisting of all the solutions of (2.1) taken on (0,7") endowed

with the norm



lelw= (Il eolfmmeaqy + o1 lmmesgy + I f (Gnraies(g))'’>

Set next

S:(:): Box &y x F — W, S(-Hvo,¢1,f} = ¥z,

Se(-): ®ox®1 X F — Wiy,  Si(-Ywo,01,f} = o1,

where W,, W, are the spaces for the gradients and the velocities of the solutions of (2.1)
associated with W.

The controllability problem for the system (1.1), (1.6)-(1.8) — being dual for the observability
problem with scanning observations (1.3)-(1.5) — requires the introduction of controls through
the respective functionals. Therefore, we introduce (formally for a while) two linear continuous

functionals defined by controls 9 € V on ®p x &; x F:

L(v™,¢) = <o, Ga(2(-))e: >, (2:2)

It(vn41,9) = < Vny1, Ge(2(-))ept >, (2.3)

Remark 2.2. Everywhere in this paper the symbol < u*,u > is used to describe the duality
between the Banach space U (U 3 u) and its dual U’ (U’ > u*) - the space of the linear

continuous functional on U. In more complicated cases we shall write explicitly - < u*,u >y .

In accordance with (2.2), (2.3), the operator L;(Z(-)) is defined by the following identity:

< o™, Go(2(-))ps > = < Lo(2(-)o™, S()po, 1, f} > (24)

Vf’EVv V{v(),vlvf}EQOXQIXI'-‘-

In turn, the operator L,(Z(:)) is defined by

< Vnt1, Ge(Z(-))¢pt > = < Le(2(-))vn41, S(:){w0, %1, f} > (2.5)



Vﬁ(')eva V{¢0)¢l’f}€¢0x¢lXFa

so that

{Lo(2(-)), Le(2(:))}: V — W' (2.5)

Remark 2.8. The observations (1.4)-(1.5) and, consequently, the control operators (2.4)-
(2.5) require a considerable regularity of the solutions of the dual problem (2.1) increasing with

the growth of n. We shall discuss this in the next section.

Theorem 2.1 (Approximate Controllability). Let the boundary 3§ be of the class
Cl*/242 Then there exists a class of curves #(-) continuous on [0,T) that make the sys-
tem (1.1), (1.2), (1.6), (2.4)-(2.5) with V = L2,,(0,T) be approximate controllable in
H-I"A-1(Q) x H-1"/A-2(Q).

Denote by {Ax}52,, {wk(-)}52, the sequences of eigenvalues and respective eigenfunctions

(orthonormalized in L?(f2)) for the spectral problem

Awk(+) = = wi(), wi() € HEAH(q),

< wk(*)ywm(:) > = Skm,

so that

Akl 2 Ak Ap = +00, k> 4005 gm =



Recalling that the eigenfunctions are orthogonal in any of the spaces H 1[; / 2H"(Q), s=1,2

with respect to the scalar product

[v1,00] = ) AP/ o, (2.6)
k=1

v1k=/ v1(2)wi(z) dz, v2k=/ vo(z)wi(z) dz,
Q

Q

we can introduce the (orthogonal) projection operator P(;) from H 1[; / 2H'?’(Q) xﬂl[;/ 2H'I(Q)

endowed with the norm associated with (2.6) on its finite-dimensional subspace
(HE@) Ly (@) x (HE (@) N LEy(@)).

Denote the latter by H(;.

The next result may be interpreted as an intermediate one between approximate and exact
controllability. In fact, Theorem 2.2 establishes exact controllability of the projections of (1.1)
on all the finite-dimensional subspaces dual to those spanned by eigenfunctions. In order to
do this, it suffices in every particular case to construct moving controls only on the part of the

interval [0,7], namely, where the curve Z(-) is continuous.

Theorem 2.2 (Exact Controllability in Finite Dimensions). Let the boundary 9Q
be of the class CI"/2+2, Then the assertion of Theorem 2.1 holds true for controls % vanishing
in some neighborhood of t = T. Moreover, let the spaces Hl[;/ 2H"'(Q), s = 1,2 be endowed
with the norm associated with (2.6) and let H(; be identified with its dual. Then for any given
sequence 0 < §; — 0 there exists such a class of curves :i:() that for any 7 =1, ... the
projection of the attainable set Y of the system (1.1)-(1.2), (1.6), (2.4)-(2.5)' on H("-) with
controls ¥ € L3,,(0,T) vanishing in [T —§;,T] coincides with H(;), i.e.,

- Pz,)Y = H(’,) = H(,’), i=1, cee .

Remark 2.4. Although in Theorem 2.2 the basis of the eigenfunctions has been consid-
ered, the result remains true (by applying Galerkin’s method) for any basis in HI[;MH(Q),
orthonormalized in L?(9).

The following remark plays an important role in the statement of Theorem 2.3.

Remark 2.5. Let H; and H; be a pair of the Hilbert spaces such that H; embeds



continuously into H, and let H; be dense in H,. In this situation we can identify H} with
some subspace of Hj.
The following theorem states the main result of the paper with respect to exact controllability.

Theorem 2.3 (Exact Controllability). Let the boundary 9Q be of the class C[/21+2,
Then there exists a class of curves Z(-) continuous on [0,7) that make the system (1.1), (1.2),

(1.6), (2.4)-(2.5) with V = L3(0,T) be exactly controllable in L?(Q2) x H~1(Q).

Corollary 2.1. Let all the conditions of Theorem 2.3 be fulfilled. Then, in order to drive
the system (1.1) to the terminal state {y |e=7, % |:=7} € L*(Q) x H-1(Q), it suffices to use

bounded controls satisfying

| 9 llegy, 01y < Mo E* Yy |i=T, 9t |e=1),

where E*1/2(..) is the norm dual to the energy one, namely, to

Epli=1) = B le=1, 0t ls=T) = (/n (#3(2,T) + ¢i(2, T))dz)'/?

and the constant Mj is defined by the estimate (4.3), (4.7) providing exact observability of the
dual system.

Remark 2.6. Due to Poincaré’s inequality,

I (-5t |2y < comst || @z(-,t) llz2(nr)>

the “energy” norm is equivalent to the standard one of the space H{(Q).

3. Auxiliary results.

In this section the regularity of the solutions of the systems (1.1), (1.6)-(1.8) is discussed, based
on transposition [13]. Special attention is given to the treatment of the terminal conditions.

Indeed, the non-smoothness of control terms might generate, in general, the discontinuity in




time of the solutions in the spaces of interest. It will be shown, however, that the mapping
between the triplet {y |¢=0, ¥ |¢t=0,¥} and the terminal conditions is injective.

Consider the following auxiliary problem

pu=08p + f in Q, (3.1)
"4 |2= Ov

¢ li=r=10, ¢t |t= = 0,

assuming the boundary 99 to be of the class C[*/2+2,
Denote by Xa the space of all the solutions of (3.1) when f ranges Hl[:';/ 2]'H(Q). Endow

XA with the norm

” ¥ ”XA = ” f “Hg'leI(Q) .

Note XA C W. ;From Remark 2.1 it follows that the operator

8%
Gz TAY

is an isomorphism of XA onto Hl[:’;/zlﬂ(Q). Following [13], we shall establish that if

Lo (3(-))v™, Le(3(-))vn41 € XA

the following identities

<¥, P — A¢ >=< L:(.’E())‘U(n), >, v pE XA, (32)

< 37, P — A¢ >=< Lt(i('))vn+1, >, v pE XA, (32)I

10




define by transposition the unique solutions from H-["/2-1(Q) of two following initial-

boundary value problems:

Ve = A+ Lz(f('))v(") in @,

(3.3)
v |2= 0) 7] |t=0 = 0’ 1] |t=0 = Oa
Yo = A+ Li(2())v in Q,
!_Iu y h t(2(-))vn41 ] Q (3.4)
y |E= 0, y |t=0 = 0, ¥ |t=0 = 0.

Theorem 3.1. Let (t) be an arbitrary measurable function on [0,T] such that Z(t) € Q
a.e. on [0,T]. Let the boundary 89 be of class C["*/21+2, Then the problems (3.3) and (3.4)
with V = L2 ,(0,T) or L3Y,(0,T) admit unique solutions from the space H-I*2A-1(Q)

and the mapping

(<33
!
L]
+
<t

is linear continuous from L2,,(0,T) or LY,(0,T) into H-M2-1(Q).

Proof. Step 1. We recall first that all the solutions of the system (2.1) (and, in particular
(3.1)) belong to C'(Q) (see [17] for details). Therefore, the observations (1.3)-(1.5) are well-
defined. Furthermore (see Remark 2.1),

s(-): AR Q) x AR Q) x BB/ Q) - c(lo,T); A+ (Q)) ¢ HIMAY(Q),

So(-): HB/M(Q) x BB/ Q) x BB/ Q) — Ca(l0,T]; A/ (),

Cu([0,T]; H24(Q)) = C([0,T]; B (@) x ... x C([0,T]; H™(@)),

n

Si(-): HB/A¥ Q) x B/ Q) x BS/(Q) — c(lo,T); A2+ (@),

and all the above mappings are continuous.

11



Step 2. The following assertion deals with the regularity of the control operator L(Z(:)).

Lemma 3.1. Let all the assumptions of Theorem 3.1 be fulfilled. Then the mapping

b = Lo(3()p™ + Li(#())vnn (3.5)

is linear continuous from L2,,(0,T) or L%(0,T) into W'

Proof of Lemma 8.1. Indeed, from (2.4) we obtain for V = L2,,(0,T):

T

< La(2())™, S(MHeo 1, £} > = /v(")'(t) Gz(2(2))pzdt.
0
Hence, taking into account that, due to the embedding theorems ([13, 17]),

c(@) c HIH(q),

we obtain

<Lo(a (), SCHpn 1, £} > < (36)
T
<Ho Byomy [ 1 (0eiG0,0), -y 0a(30), 00 fan dt <
0

T
< const |9 [aary [ 11 (@asl8); -ovs @nles) IEgornes g <
Q

< const || v F0m % ol Vol € L20,T), Ve W.

The last estimate and the similar one for L¢((-)) yield (3.5) when V = L2,,(0,T). In turn,
when V = LY,(0,T), we obtain

|< La(2(-))o™, S(-){wo, 1, f} >| < (3.7)
< (o™ |[Leorory X I (22, (B()s )y + ooy P2a(#(),)) lzeeo) <

< const [| o™ |[peorory X | (022 (50)s -y oales)) lenqoy; Hivasgay) <

12




< const || o™ |lpewory X @llw Vo™ e LP(0,T), Ve W.

The proof of Lemma 3.1 is complefed. =]

Remark 3.1. From the chains (3.6) and (3.7) it also follows that for 4 € V = L2,,(0,T):

Lo(2())o!™, Li(3(:))onss € HTA2(Q), (3.8)

and for 4 € V = L%,(0,T):
Lo(£(-))o™, Ly(2(-))vas1r € HIMA3(Q). (3.9)

Step 3. We have proved that the right-hand sides of the identities (3.2) and (3.2)’ are linear
continuous functionals on Xa when V = L2,,(0,T) or LZY,(0,T). Now the proof of

Theorem 3.1 follows by applying the transposition argument [13]. o

We note that Theorems 3.1 has not established the continuity of the solutions of (3.3) and
(3.4) in time. However the terminal conditions for the systems (3.3) and (3.4) can be determined
as follows.

Multiply both parts of the equations (3.3) and (3.4) by an arbitrary solution of the system
(2.1) subjected to (2.1) with f =0 and apply formally the Green’s formula. This yields

< 1,9 lt=T> - < o, Yt |t=T> =< _Lz(i('))v("), Sl('){<P07 ¢l} >, (310)
< oY li=> = <90, U li=> = < =Lt(2(:))Vn+1, S1(-){w0, 1} > (3.11)

¥ {¢o, 01} € HE/M2 () x BB/ ().

The proof of Theorem 3.1 yields the following assertion.

Theorem 3.2. Let Z(-) be an arbitrary measurable function such that £(z) € 2 a.e. on

[0,T]. Let the boundary 9 be of class Cl"*/21+2, Then the mapping

v — {37 + @a y |t=T +§ |t=Ta ) |t=T +?7t |t=T}a

13




is linear continuous from L2,,(0,T) or L%, (0,T) into H-I"A-1(Q) x H-IVA-1(Q) x
H-IM2A-2(Q).

The above type of terminal conditions admits natural interpretation, namely — the identities
(3.10) and (3.11) imply the coincidence of the solutions of the equations (3.3) and (3.4) evolving
from zero - initial conditions and the solutions of the same equations evolving in backward time
from the terminal conditions specified by (3.10) or (3.11).

Indeed, consider, for example, the system (3.3) and let § be the solution of the following
initial-boundary value problem

g = A§+L(3()™  in Q, (3.12)

9le=0, §li=r= §le=r, % li=7 = ¥t |e=T,

which is treated in the sense of the identity

<9h¢u — Ap> =< L(3()™, ¢ > + (3.13)

+ < Sbt |t=Ta g |t=T> - < Sb |t=T7 gt |t=T>, v Sb € XA-

In the above X consists of all the solutions of the equation (3.1) subjected to zero - initial

condition when f ranges HI[;/ 2]+1(Q), namely,
pu=A¢ + f inQ, feHE™(Q), (3.14)

@le=0, @ |i=0= 0, @t |t=0= 0.

The following Lemma shows that

;. (3.15)

|
ll
<

Lemma 3.2. Let the boundary 80 be of class CI"/2+2 and 7, § be the solutions of the
problems (3.3) and (3.4) with V = L2 ,(0,T) or L%,(0,T). Then the mappings

14



¥ = {9 le=T, ¥t lt=T}, ¥ — {yle=1) ¥ le=T}>

where the terminal conditions are defined by (3.10) and (3.11) are injective.

Proof. We give the proof for the problem (3.3), (3.10). Observe that ¢» admits the following

representation:

¢ =+

where

‘P}t = A‘Pl in Q ’

¢1 |E= 0, ¢1 |t=T= ¢ |t=T, ¢} |t=T= ¢t |t=T’

¢?t = A¢2 + f in Q’
¢2 |E= 0, ¢2 |t=T= 0, %2 |t=T= 0.

Thus, one can rewrite (3.13) as follows

<o - AP* > = <LE()™, o' + 7> + (3.16)

+ < ¢: |t=T’g |f=T> - < ‘Pl It=Ta () |t=T>, v ‘,b € XA.

Let us recall that the set of all the pairs {¢! |¢=T, ¢} |t=r} embeds into H[D”/2]+2(Q)
xHI[;/zl'H(Q) (see Remark 2.1). Hence, we deduce from (3.16), (3.13) and (3.10)

2

<§9h — AP > =< LE)WM, >, Ve?e Xa.

This completes the proof. ]

15



4. Proofs of Theorems 2.1-2.2.
The proofs of Theorems 2.1-2.3 are based on the observability results obtained in [7].

Proof of Theorem 2.1. Consider the observability problem described by the system equation
(2.1) subjected to (2.1) with f = 0 assuming that an output z(¢) = {21(t), z2(t)} represents
the values of the gradient and velocity of the solution along the curve #(-), so that

Pea(3(2),1))

a(t) = : : (4.1)
Penl2(1),1))

22(t) = pi(E(2), 1), (4.2)

The following observability result for the system (2.1), (2.1) with f = 0, (4.1)-(4.2) has
been obtained in [7]: there exists such a class of curves Z(t) € @, t € [0,T] continuous on

[0,T) that the following estimate

Mo [| {G=(2(-))¢er Gi(2(N)¢e} llLs,01) 2 EY*(e(T), (-, T)), (4.3)

n+l

Mg =const > 0

is fulfilled for any solution of the system (2.1) with f =0, (2.1).

Remark 4.1. The estimate (4.3) represents the result of [8] formulated in the terms of

terminal conditions (that is the same for the conservative system).

Observe that the identities (3.10) and (3.11) yield

< @1, Y li=1> = < @0, ¥t li=r> = — < ST()La(3())0™, {0, 1} > - (44)
= < 81()LdZ(-))vn+1, {0, 1} >

Vie L2, (0,T), Y{po, 1} € HE(Q)x HEAH (@),

16



where

S1(:): W' — HMA-2(q) x g7/ (q).

Combining (4.3) and (4.4) implies, due (2.4)-(2.5), that the attainable set Y of (1.1), namely,

Y = {{yo, 1} | {51, =90} = S{(-)LeZ(-))vas1 + Si()L(2(:))v™, V = L2,,(0,T)},

is dense in H-[*/2-1(Q) x H-I"/A-2(Q) if (4.3) is verified for Z(-).
This completes the proof of the Theorem 2.1. |

Proof of Theorem 2.2.
Step 1. Let us recall that the general solution of the system (2.1), (2.1) with f = 0 admits

the following representation

o0

e(z,t) = E ck(t) wi(z), (4.5)

k=1
where

cx(t) = ok cos VAg (1= T) + j%sin\/mt—n, k=1,...,

por = [ po(e)wr@)dz, g = [ () wr(@)ds.

The series (4.5) converges with its first derivatives with respect to z and ¢t in C(Q) uniformly

over t € [0,T] and the following estimate holds [17]:

5t ) z,( ¢ > o <
:33,"7(1{” (1) lle@ys | =58 lle@ys 1| ee(-2) llemy}

< ¢ (“ ¥o ”?q(n/z]n(n) + || "2} ||§1[u/21+1(n))1/2, s=1,...,n, c¢p= const.

The following assertion was proved in [7] (although it was not explicitly formulated):
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Theorem 4.1. Let the closed time-interval 7= C [0,T], a constant 4 > 0, v <

(2v/n ¥ 1 co meas!/2{Q})~! and an integer i be given. Then there exists a finite number

J(iy)

of pairs {zzj),t{'}jﬂ. C 2 x 7 such that an arbitrary measurable curve Z(t), t € [0,7]

continuous on 7 and satisfying

it =zy), j=1,...,(,7),
ensures exact observability of the system (2.1), (2.1)' with f =0, (4.1)-(4.2) on H; with

the estimate

meas!/2{Q}
— 2¢v/n + 1coy meas!/2{Q}

EY*(po,1) < N I (e=(2(:), ), 2e(2(-)s ) llcngsry - (4:6)

i J (i)

Remark 4.2. There exist infinitely many set of pairs {z'( iy titi= that can form the skeleton

of a curve Z(-) required in Theorem 4.1.

Remark 4.3. As it follows from (4.6),

meas'/2{Q}

My = .
° 1 — 2v/n + 1coy meast/2{Q}

(4.7)

Step 2. Select an arbitrary sequence of positive numbers {6,}52,

6 - 0 when 1—0.

Set 7, = [0, T — 4] and take any curve &(-) such that the assertion of Theorem 4.1 holds true
(how to do this is described in [7]) forall 7 =7, ¢ =1, ... . Then, the equality

(2, (2(1), 1)y ..oy 0z, (2(2), 1), pe(2(2),2)) =0 a.e. in [0, T - &]

implies that ¢ =0 in Q x [0,T] if

{¢li=1, ¢t li=1} € L%{)(Q) x L%&)(Q)-

Therefore for any 9 € L2,,(0, T) such that 4 =0 on [T—é;,T], due to the duality relations,

namely,
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T-6;
[ ¥O1GE)0n Gila( o) dt =

= < S{()La(2()o™, {po, o1} > + < STC)Lu(E())vns1, {00, 1} >,

we obtain (identifying H(;) with its dual) the coincidence of two following finite-dimensional

spaces
PL,Y = Pi{{vo, s} | {m,—w0} = SI()Le(2())vnt1 + Si(IL2(2())o™),
b€ L341(0, T), 5=0 when t€[T-é,T]} = Hj;= H.
This completes the proof of Theorem 2.2. O

5. Proof of Theorem 2.3.

The scheme of the proof of Theorem 2.3 is, in fact, as much the same as the proof given in [2]
(pp. 194-195) for the duality relations of the general type. The proof given below is adapted for
our particular problem and is based on the estimate (4.3) involving L35,(0,T)—norm and the
regularity results of Section 3.

Step 1. Set

Z(0,T) = {z | 2(-) = {p=(3(-),"), @:(#(-),")}, {90, 1} € HS Q) A (@Q), f =0},

i.e., Z(0,T) is the set of all the possible outputs of the system (2.1), (2.1)" with f =0, (1.3)-
(1.5). Due to the embedding theorems [13, 17], Z(0,T) C L5,(T). Designate by Z*(0,T)
the completion of Z(0,T) in the norm of L3,(0,T), so that (L35,(0,T)) = Z*'(0,T).

Denote
P = G()Si(-): AF* Q) x gEAY @) - Z(0,T).

Let us assume that the curve #(-) has already been constructed according to [4] in order
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to verify (4.3). Then, due to the estimate (4.3), the operator P is injective and the inverse

operator into HJ () x L%(Q), i. e.,

P7': Z(0,T) — HA(9Q) x L}(Q)
is bounded on Z(0,7'). Hence, without loss of generality, we may consider P-! on the
completion of Z(0,7) in the norm of Lg%,(0,T), namely,

P-l: Z®(0,T) — HYQ) x L}Y(Q).

Endow the range of P~! with the “energy” norm.

Step 2. The inequality

EY2(P7'2) < Mo 2 ||pes

ntl

(0.T) (5.1)

which is valid for any z € Z*(0,T), allows to introduce the dual bounded operator P~!*,

P H Y Q) x I¥(Q) — IL,(0,T),

through the following identity

<P pz>=<9,Plz>g (5.2)

Viye HY(Q)x L3 Q) Vze Z*(0,T),

where < (-),(-) >E stands for duality relation between H}(Q)x L*() and HY(Q) x LA(Q).

associated with the “energy” norm (see Remark 2.6).

Step 3. Observe that, in order to study exact controllability of the system (1.1), (1.2), (2.7)

one has to analyze the range of the bounded operator P,
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p": L:‘_’;I(O,T), —_ H—[ﬂ/2]—2(9) x H—-[n/Z]—l(Q),

which is defined through the identity

< 15'2', {<P0, ¢1} >=< Z-’P{<P07 (Pl} >H5;'/2]+2(Q)XH5;,2]+1(Q) (5'3)

V2 € L(0,T), Vi{ve} € HMA(Q) x AT Q).
Step 4. Take an arbitrary ¢ € H~1(Q) x L*(Q), and set

5 = P10y, (5.4)

Then, due to (5.3),

< 2.,P{¢0’ ‘Pl} >=< f’.(P_l.J))’ {‘100’ ¢l} >Hg‘/2]+2(Q)XHB‘/2]+1(Q)’ (55)

V {po, 1} € HIMAY(Q)x girA+(q),

In turn, from (5.2) it follows

< #,P{oo, 1} > = < P79, Plpo, 1} > = < ¥, {¢0, 1} >mia)xL2() (5.6)

V {po,1} € HIMA2(Q) x HIAFY(Q).

Finally, recalling that HII;/ I2Q) x Hg'/ 2H1(Q) is dense in HI(Q) x L2(Q) and combining
(5.5) and (5.6), we obtain the conclusion of Theorem 2.3. o
In turn, combining (5.4) and (5.1) yields Corollary 2.1.
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