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Foreword 

The paper deals with approximate and exact controllability of the wave equation with interior 
pointwise control acting along the curve specified in advance in the system's spatial domain. 
The structure of the control input is dual to  the structure of the observations describing the 
measurements of velocity and gradient of the solution of the dual system, obtained from the 
single pointwise moving sensor. A relevant formalization of such a control problem is discussed, 
based on transposition. For any given time-interval [O, TI the existence of the curves providing 
approximate controllability in H-["/~]-'(R) x H-["/~]-~(R) (where n stands for the spatial 
dimension) is established with controls from L;+*(O,T). The same curves ensure exact con- 
trollability in L2(52) x H-'(52) if controls are allowed to  be selected in Lril (0, T).  Required 
curves can be constructed to  be continuous on [O,T). 

The used techniques are based on the observability results involving a priori energy estimates 
of an instantaneous type. 

iii 
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1. Introduction and Problem Formulation. 

Let 52 be a bounded domain of an n-dimensional Euclidean space Rn with a boundary afl. 
In 52 we consider the following initial-boundary value problem for the wave equation of an 

arbitrary dimension: 

In (1.1) the control input is described by the term L(i(-))8, where 8 = (vl, . . . , v,+l)' E V 

is an (n + 1)-dimensional control and V = L:+l(~,T) or LZl(O,T) .  The linear operator 

L( i ( - ) )  specifies the structure of control input along the curve i ( - ) ,  

selected in advance. 



Most of the work on controllability of distributed parameter systems is devoted to  the sys- 

tems with controls which are distributed either over the system's spatial domain or over the 

boundary of this domain. Because of their infinite-dimensional nature, distributed controls are 

not always readily implemented in practice. Therefore, the considerable attention has been 

given to pointwise controls which are technically easier to realize. To our knowledge the results 

dealing in this context with controllability of distributed parameter systems of hyperbolic type 

have been restricted only by the case of stationary pointwise control, namely, when 

L(i( t ) )  = v(t) 6(2 - Z), i.e. i ( . )  r 5. 

The regularity of the hyperbolic time-invariant systems with stationary pointwise control has 

been studied in [16, 8, 11, 191. Exact controllability of the wave equation in the space a ' ,  

where is defined as the completion of the space of smooth initial conditions +O, 4' with 

4" = 0 on i%2 in the norm ( g  qh2(Z, t)dt)'I2 (with 4 being the solution of the wave 

equation associated with 4", 4') has been established by means of the Hilbert Uniqueness 

Method in [ll]. A number of results concerning approximate controllability for the one and two 

dimensional wave equations with stationary pointwise control has been obtained in [5] on the 

basis on non-harmonic analysis. 

Due to finite speed of propagation, the stationary pointwise controls are able to  ensure 

exact controllability only if T is big enough. Another difficulty arising here is that related 

to  the multiplicity of the eigenvalues of the system in question, which is often either unknown 

or unbounded. Introduction of moving pointwise controls allows to  overcome this difficulty. 

Furthermore, this type of control does not depend upon the speed of propagation: for any 

required time-interval a special curve for control can be found. 

The main aim of this paper is to study - on the basis of a relevant formalization - both 

approximate and exact controllability of the system (1.1)-(1.2) in the case when the control 

operator L( i ( - ) )  is dual to the observation operator G(i( . ) )  representing at every instant of 

time the values of the velocity and gradient of the solution cp of the homogeneous dual system 

along the curve i ( t ) ,  t E [O,T] , namely, 



We stress that the observations of type (1.3)-(1.5) provide the information about the energy E 

of the conserwatiue dual system which is one of its most important physical characteristics, 

This makes such a type of observations be of considerable interest and, consequently, leads to 

the structure of control input that is of our interest in this paper. Thus, the aim of our study is 

controllability of the system (1 .I), (1.2) with the control operators that, by duality, can formally 

be represented as follows, 

where the symbol corresponds the duality associated with V (see the next section for 

details). This type of control - being finite-dimensional at every moment of time - allows, 

however, to obtain a number of both approximate and exact controllability results. For any 

given time interval [O,T] the existence of the curves providing the system (1.1)-(1.2), (1.6)- 

(1.8) with approximate controllability in H-~"/~I- '  ($2) x H-["I~]-~(R) is established for the case 

when controls belong to Li+, (0, T )  (Theorems 2.1 and 2.2). It is also proved that if controls 

are selected from LFil (0, T) ,  the same curves ensure exact controllability in L2 ( a )  x H -'(R) 

(Theorem 2.3). The used techniques are based on the "energyn estimates for solutions that are 

treated here a s  ones of an instantaneous type. 

Remark 1 .1 .  The control operators (1.7), (1.8) are similar (to some extent) to those used in 



[4] by L. F. Ho, who studied the problem of exact controllability for the one-dimensional wave 

equation with locally distributed controls. 

Remark 1.2. Martin in [14] suggested an approach based on the results of Sakawa [18] (based, 

in turn, on harmonic analysis) t o  the controllability and observability problems for the one- 

dimensional parabolic systems with scanning sensors (for observability of the one-dimensional 

heat equation see also [lo]). The optimal control problems for the parabolic systems with 

different types of moving and scanning controls have been studied in [15, 11, see also [6]. 

Remark 1.3. The details about the space L?i1 (0, T )  can be found in [3]. 

The paper is organized as follows. The next section lists the main results of the paper: 

Theorems 2.1-2.3. On the basis of transposition [13] Section 3 discusses the regularity of the 

solutions of the system (1.1). It is shown that although the initial-boundary value problem (1.1) 

with the non-smooth right-hand sides (1.6)-(1.8) is allowed to  have the solutions discontinuous 

in time in the spaces of interest, the mapping between them and the terminal conditions is 

injective. A similar situation with boundary controls has been discussed in [9]. The proofs of 

Theorems 2.1-2.2 are given in Section 4. Theorem 2.3 is proved in Section 5. The schemes of all 

the proofs are based on the framework of the general duality theory of observation and control 

and on the observability results involving the estimates in the norm of L2+I(0, T) ,  obtained in 

PI. 
We proceed now with the formulation of the main results. 

2. Main results 

Let us recall first two well-known definitions of controllability. 

Definition 2.1. The system (1.1) is said t o  be approximately controllable in the Hilbert 

space H if its attainable set 

Y = { {Y lt=T, Yt It=T) I Y satisfies (1.1)) 

at t = T is dense in H. 

Definition 2.2. The system (1.1) is said to be exactly controllable in the Hilbert space H 

if Y = H. 

The formulation of the main results requires a number of auxiliary notations. We begin by 

the introduction of the adjoint system associated with (1.1): 



(Ptt = A(P + f in Q ,  

assuming that { v o ,  ( P I ,  f ) ,  (we use the notation {(a) ,  ( a ) ,  (.)) = ((-), (-),(.))I) belong to the 

Hilbert space 

Hjj ( f2)  = ( 4  I 4 E H  ' ( R ) ,  4 Ian = . . . = ~ [ ( ' - ' ) / ~ 1 4  Ian= 0 ) ,  

Remark 2.1. The system (2 .1 ) ,  (2.1)' admits a unique solution from the space H [ ~ / ~ ] + ~ ( Q )  

and the following estimate holds true (see [17] for details): 

Let S ( t ) ,  t  E [0,  TI denote the operator representing the general solution of the system 

( 2 4 ,  

S ( . )  : $0 x 91 x F + W ,  S(.){(Po, (Pl, f) = S1(.){(Po, (PI )  + S2( ' ) f  = (P, 

where W is the Hilbert space consisting of all the solutions of (2 .1 )  taken on ( 0 ,  T )  endowed 

with the norm 



2 2 
1 1  P llw = (11 ~0 J I~[n /wz(n)  + I I  (PI I I H i n l z ~ t l ( ~ )  + I 1  f l l~[nlzl+l(p))  

112. 

Set next 

where W,, Wt are the spaces for the gradients and the velocities of the solutions of (2.1) 

associated with W. 

The controllability problem for the system (1.1), (1.6)-(1.8) - being dual for the observability 

problem with scanning observations (1.3)-(1.5) - requires the introduction of controls through 

the respective functionals. Therefore, we introduce (formally for a while) two linear continuous 

functionals defined by controls G E V on a0 x a1 x F : 

Remark 2.2. Everywhere in this paper the symbol < u*, u > is used t o  describe the duality 

between the Banach space U (U 3 u) and its dual U' (U' 3 u*) - the space of the linear 

continuous functional on U. In more complicated cases we shall write explicitly - < u*, u >u . 

In accordance with (2.2), (2.3), the operator L,(i(.)) is defined by the following identity: 

In turn, the operator Lt(i(.)) is defined by 



so that 

{ L z ( 5 ( . ) ) ,  L t ( 5 ( . ) ) )  : V + W'. (2.5)' 

Remark 2.3. The observations (1.4)-(1.5)  and, consequently, the control operators (2.4)- 

(2.5)' require a considerable regularity of the solutions of the dual problem (2 .1)  increasing with 

the growth of n. We shall discuss this in the next section. 

T h e o r e m  2.1 ( A p p r o x i m a t e  Cont ro l lab i l i t y ) .  Let the boundary 8 R  be of the class 

c[n/21+2 . Then there exists a class of curves f(.) continuous on [O,T)  that make the sys- 

tem (1 .1) ,  (1 .2) ,  (1.6), (2.4)-(2.5)' with V = L i + l ( ~ , ~ )  be approximate controllable in 

~ - [ " / 2 1 - 1 ( ~ )  x ~ - [ " / 2 1 - 2 ( ~ ) .  

Denote by { X k ) g l ,  { W ~ ( - ) ) P = ~  the sequences of eigenvalues and respective eigenfunctions 

(orthonormalized in ~ ~ ( 4 2 ) )  for the spectral problem 

so that 

Let L$) (R)  (i = 1, . . .) stand for the subspace of L 2 ( R )  spanned by the functions 

w k ( . ) ,  k = 1 ,  . . . i. 



Recalling that the eigenfunctions are orthogonal in any of the spaces HD [n121+s(cl), s = 1,2 

with respect to  the scalar product 

[n/21+2(n) xHk/21+1(R) we can introduce the (orthogonal) projection operator P(;) from HD 

endowed with the norm associated with (2.6) on its finite-dimensional subspace 

Denote the latter by H(;). 

The next result may be interpreted as an intermediate one between approximate and exact 

controllability. In fact, Theorem 2.2 establishes exact controllability of the projections of (1.1) 

on all the finite-dimensional subspaces dual to  those spanned by eigenfunctions. In order to  

do this, it suffices in every particular case to  construct moving controls only on the part of the 

interval [0, TI, namely, where the curve i(.) is continuous. 

Theorem 2.2 (Exact Controllability in Finite Dimensions). Let the boundary df2 

be of the class c [" /~]+~.  Then the assertion of Theorem 2.1 holds true for controls 6 vanishing 

in some neighborhood of t = T. Moreover, let the spaces HD [n121+s(fl), s = 1,2 be endowed 

with the norm associated with (2.6) and let be identified with its dual. Then for any given 

sequence 0 < 6; -+ 0 there exists such a class of curves i(-)' that for any i = 1, . . . the 

projection of the attainable set Y of the system (1.1)-(1.2), (1.6), (2.4)-(2.5)' on Hi,) with 

controls 6 E L:+,(O, T )  vanishing in [T - 6;, TI coincides with Hi,), i.e., 

Remark 2.4. Although in Theorem 2.2 the basis of the eigenfunctions has been consid- 

[n121+2(n), ered, the result remains true (by applying Galerkin's method) for any basis in HD 

ort honormalized in L2(R). 

The following remark plays an important role in the statement of Theorem 2.3. 

Remark 2.5. Let HI and Hz be a pair of the Hilbert spaces such that H1 embeds 



continuously into H2 and let H1 be dense in Hz. In this situation we can identify Hh with 

some subspace of Hi .  

The following theorem states the main result of the paper with respect t o  exact controllability. 

Theo rem 2.3 (Exact Controllability). Let the boundary 80 be of the class c [ " / ~ ] + ~ .  

Then there exists a class of curves f (.) continuous on [0, T )  that make the system (1 .I), (1.2), 

(1.6), (2.4)-(2.5)' with V = Lril(O,T) be exactly controllable in L2(R) x H-'(0). 

Corol lary 2.1. Let all the conditions of Theorem 2.3 be fulfilled. Then, in order t o  drive 

the system (1.1) to  the terminal state {y It=T, yt I t = T )  E L2(R) x H-l(R), i t  suffices to  use 

bounded controls satisfying 

where E*'/~(., -) is the norm dual to the energy one, namely, t o  

and the constant Mo is defined by the estimate (4.3), (4.7) providing exact observability of the 

dual system. 

Remark 2.6. Due to  PoincarC's inequality, 

I l  d . , t >  lI~z(n)  5 const I I  cp=(.,tl I l ~ y n ) ,  

the "energy" norm is equivalent to the standard one of the space H,'(R). 

3. Auxiliary results. 

In this section the regularity of the solutions of the systems (1.1), (1.6)-(1.8) is discussed, based 

on transposition [13]. Special attention is given to  the treatment of the terminal conditions. 

Indeed, the non-smoothness of control terms might generate, in general, the discontinuity in 



time of the solutions in the spaces of interest. It will be shown, however, that the mapping 

between the triplet {y It=o, yt It=o, y) and the terminal conditions is injective. 

Consider the following auxiliary problem 

(P I~=T = 0, (Pt It== = 0, 

assuming the boundary 80 to be of the class c [ ~ / ~ ] + ~ .  

Denote by XA the space of all the solutions of (3.1) when f ranges H ~ ' ~ ] + ' ( Q ) .  Endow 

XA with the norm 

Note XA c W. iFrom Remark 2.1 it follows that the operator 

is an isomorphism of Xn onto H ~ / ~ ~ + ' ( Q ) .  Following [13], we shall establish that if 

~=( i ( . ) )v (" ) ,  Lt(i(.))vn+l E XA 

the following identities 

< ti, vtt - A(P > = < ~ , ( f  (-))&I, (P >, V (P E XA,  

<%,(Ptt - A(P> =<Lt(f(.))vn+l,  (P>, ~ ( P E X A ,  



define by transposition the unique solutions from H-[~/~]- ' (Q) of two following initial- 

boundary value problems: 

Theorem 3.1. Let i ( t )  be an arbitrary measurable function on [0, TI such that Z(t) E 0 

a.e. on [O,T]. Let the boundary a0 be of class c [ ~ / ~ ] + ~ .  Then the problems (3.3) and (3.4) 

with V = L:+l(~,T) or LZl(O,T) admit unique solutions from the space H-["/~]-~(Q) 

and the mapping 

is linear continuous from L i + l ( ~ ,  T )  or Lr(l (0, T )  into H-[~/~]-'(Q). 

Proof. Step 1. We recall first that all the solutions of the system (2.1) (and, in particular 

(3.1)) belong to  C1(Q) (see [17] for details). Therefore, the observations (1.3)-(1.5) are well- 

defined. Furthermore (see Remark 2.1), 

and all the above mappings are continuous. 



Step 2. The following assertion deds with the regularity of the control operator L(i(.)). 

L e m m a  3.1. Let d l  the assumptions of Theorem 3.1 be fulfilled. Then the mapping 

.i, + ~ , ( f  (.))v(") + Lt( f ( . ) )~n+l  

is linear continuous from L;+,(O, T )  or L$~(o, T )  into W'. 

Proof of Lemma 3.1. Indeed, from (2.4) we obtain for V = L:+l(O, T )  : 

Hence, taking into account that, due to  the embedding theorems ([13,17]), 

we obtain 

< ~z(f(.))v("),  S(.){cpo, cpl, f }  >2 I 

The last estimate and the similar one for Lt(i(-))  yield (3.5) when V = Li+l(O,T). In turn, 

when V = LrJl(O, T) ,  we obtain 



The proof of Lemma 3.1 is completed. 13 

Remark 3.1. F'rom the chains (3.6)  and (3.7)  i t  also follows that for 6 E V = L : + l ( ~ , T )  : 

and for ir E V = L $ ~ ( O , T )  : 

Step 3. We have proved that the right-hand sides of the identities (3 .2)  and (3.2)' are linear 

continuous functionals on Xa when V = L : + l ( ~ , T )  or LEi l (O ,T) .  Now the proof of 

Theorem 3.1 follows by applying the transposition argument [13].  • 

We note that Theorems 3.1 has not established the continuity of the solutions of (3 .3)  and 

(3.4)  in time. However the terminal conditions for the systems (3.3)  and (3 .4)  can be determined 

as follows. 

Multiply both parts of the equations (3.3)  and (3 .4)  by an arbitrary solution of the system 

(2 .1)  subjected to (2.1)' with f = 0 and apply formally the Green's formula. This yields 

v {w, ( P I }  E H ~ / ~ ] + ~ ( R )  x H E / ~ ] + ~  ( 0 ) .  

The proof of Theorem 3.1 yields the following assertion. 

Theorem 3.2. Let i ( - )  be an arbitrary measurable function such that i ( t )  E R a.e. on 

[0, TI.  Let the boundary a R  be of class c [ " / ~ ] + ~ .  Then the mapping 



is linear continuous from L:+l (0, T )  or L r i l  (0, T )  into H-["/~]-~(Q) x H-[" /~] -~(R)  x 

~- [n /21-2(~) .  

The above type of terminal conditions admits natural interpretation, namely - the identities 

(3.10) and (3.11) imply the coincidence of the solutions of the equations (3.3) and (3.4) evolving 

from zero - initial conditions and the solutions of the same equations evolving in backward time 

from the terminal conditions specified by (3.10) or (3.11). 

Indeed, consider, for example, the system (3.3) and let # be the solution of the following 

initial-boundary value problem 

which is treated in the sense of the identity 

< #, $tt - A$ > = < L,(i(.))v("), $ > + 

In the above kA consists of all the solutions of the equation (3.1) subjected t o  zero - initial 

condition when f ranges H;~~]+' (Q ), namely, 

.@ Ic= 0, (2) It=o = 0, $t It=o = 0. 

The following Lemma shows that 

L e m m a  3.2. Let the boundary aR be of class c [ " /~ ]+~  and 1, 5 be the solutions of the 

problems (3.3) and (3.4) with V = LK+I(O, T )  or LFil(O,T). Then the mappings 



Y + {Y lt=T, Yt It=T), Y + {Y It=T, ~t It=T), 

where the terminal conditions are defined by (3.10) and (3.11) are injective. 

Proof. We give the proof for the problem (3.3), (3.10). Observe that @ admits the following 

represent ation: 

where 

Thus, one can rewrite (3.13) a s  follows 

["/21+2(f)) Let us recall that the set of all the pairs {(pl I t = T ,  (pi It=T) embeds into H D  

x H~'~]+ ' (R)  (see Remark 2.1). Hence, we deduce from (3.16), (3.13) and (3.10) 

< $,(pi: - ~ ( p ~  > = < ~ , ( i ( . ) ) v ( ~ ) ,  (p2 >, V (p2 E XA. 

This completes the proof. 



4. Proofs of Theorems 2.1-2.2. 

The proofs of Theorems 2.1-2.3 are based on the observability results obtained in [7]. 

Proof of Theomm 2.1. Consider the observability problem described by the system equation 

(2.1) subjected to (2.1)' with f = 0 assuming that an output z(t) = {zl(t), z2(t)} represents 

the values of the gradient and velocity of the solution along the curve f (-), so that 

The following observability result for the system (2.1), (2.1)' with f = 0, (4.1)-(4.2) has 

been obtained in [7]: there exists such a class of curves f (t) E R ,  t E [0, T] continuous on 

(0, T) that the following estimate 

Mo = const > 0 

is fulfilled for any solution of the system (2.1) with f = 0, (2.1)'. 

Remark 4.1.  The estimate (4.3) represents the result of [8] formulated in the terms of 

terminal conditions (that is the same for the conservative system). 

Observe that the identities (3.10) and (3.1 1) yield 



where 

Combining (4.3) and (4.4) implies, due (2.4)-(2.5), that the attainable set Y of (1.1), namely, 

is dense in H-['"/~]-'(R) x H-["/~]-~(S~) if (4.3) is verified for i(.). 

This completes the proof of the Theorem 2.1. 

P m f  of Theomm 2.2. 

Step 1.  Let us recall that the general solution of the system (2.1), (2.1)' with f = 0 admits 

the following representation 

where 

The series (4.5) converges with its first derivatives with respect to z and t in C(Q) uniformly 

over t E [0, TI and the following estimate holds [17]: 

5 (11 W I I ; [ - l~] tz (~)  + 11 91 Jl;[n/lltl(n))1/2, 8 = 1,. . . , n, Co = const. 

The following assertion was proved in [7] (although it was not explicitly formulated): 



Theorem 4.1. Let the closed time-interval r c [O,T], a constant y > 0, y < 

( 2 4 m  co meas1/2{~))-1 and an integer i be given. Then there exists a finite number 

J( i ,7)  
of pairs {rij), i;lIjzl. C R x r such that an arbitrary measurable curve i ( t ) ,  t E (0, TI 

continuous on r and satisfying 

i({) = zi,), j = 1,. . ., J( i ,y) ,  

ensures exact observability of the system (2.1), (2.1)' with f = 0, (4.1)-(4.2) on H(;)  with 

the estimate 

Remark 4.2. There exist infinitely many set of pairs {zi,), tj}iii7) that  can form the skeleton 

of a curve i ( - )  required in Theorem 4.1. 

Remark 4.3. As i t  follows from (4.6), 

Step 2. Select an arbitrary sequence of positive numbers {68)g0=1 

6; + 0 when i + O .  

Set r; = [0, T - 6;] and take any curve i ( - )  such that the assertion of Theorem 4.1 holds true 

(how to  do this is described in [7]) for all r = r;, i = 1, . . . . Then, the equality 

(VZ, ( i ( t ) ,  t),  . . . , cp,,(i(t), t), cpt(i(t), t)) = 0 a.e. in [0, T - 6;] 

implies that  cp = 0 in R x [0, TI if 

{V I ~ = T ,  ~t ( t = ~ )  E Lfi)(R) x ~fi)('). 

Therefore for any .i, E L:+l(O, T )  such that .i, = 0 on [T - 6;, TI, due to  the duality relations, 

namely, 



we obtain (identifying H(;) with its dual) the coincidence of two following finite-dimensional 

spaces 

6 E L:+,(o, T), 6 1 0 when t E [T - 6,,T]} = Hii) = H ( ; ) .  

This completes the proof of Theorem 2.2. 

5. Proof of Theorem 2.3. 

The scheme of the proof of Theorem 2.3 is, in fact, as much the same as the proof given in [2] 

(pp. 194-195) for the duality relations of the general type. The proof given below is adapted for 

our particular problem and is based on the estimate (4.3) involving Lr+l(O, T)-norm and the 

regularity results of Section 3. 

Step 1. Set 

i.e., Z(0, T )  is the set of all the possible outputs of the system (2.1), (2.1)' with f = 0, (1.3)- 

(1.5). Due to the embedding theorems [13, 171, Z(0, T )  c Lr+l(T). Designate by Zm(O, T)  

the completion of Z(0, T )  in the norm of Lr+l(O, T), so that (L,"+l(O, T))' = Zoo'(O, T). 

Denote 

C14+2(n) P = G(.)Sl(.) : HD x H ~ / ~ ] + ~ ( R )  + Z(0, T). 

Let us assume that the curve i ( . )  has already been constructed according to [4] in order 



to verify (4.3). Then, due to  the estimate (4.3), the operator P is injective and the inverse 

operator into H,'(R) x L2(R), i. e., 

is bounded on Z(0,T). Hence, without loss of generality, we may consider P-' on the 

completion of Z(0, T )  in the norm of L?+,(O, T),  namely, 

Endow the range of P-I with the Uenergy" norm. 

Step 2. The inequality 

which is valid for any z E Zw(O, T),  allows to introduce the dual bounded operator P- I* ,  

P - ~ *  : H - ~ ( R ) x  ~ ~ ( 0 )  + L;;~(o,T), 

through the following identity 

where < ( . ) , ( a )  > E  stands for duality relation between H ~ ( R )  x L2(R) and H[~(R) x L2(R). 

associated with the Uenergy" norm (see Remark 2.6). 

Step 9. Observe that, in order to study exact controllability of the system (1.1), (1.2), (2.7) 

one has to analyze the range of the bounded operator P*, 



which is defined through the identity 

< P*z*, {VO, vl} > = < 9, P(v0,vl) > H~ [ n / 2 ] + 2 ( n ) x H [ n / 2 ] + 1  
D (n)  

V 2' E L:;,(O,T), V {m,v1) E H [ ~ / ~ ] + ~ ( R )  x H [ ~ I ~ ] + ~ ( R ) .  

Step 4. Take an arbitrary 4 E H-'(R) x L2(R), and set 

i* = p-l*& 

Then, due to  (5.3), 

< i*,P{m, 911 > = < P*(P- '*~) ,  {M, M) >Hb" ,21+2(n)XH~121+l  ( Q )  ' (5.5) 

In turn, from (5.2) it follows 

< ~*,P{w,vI) > = < p-'*4, P{vo, 91) > = < 4, {'PO, 711 > H ; ( o ) x L ~ ( Q )  (5-6) 

Finally, recalling that H E I ~ ~ ' ~ ( R )  x HE12]+'(R) is dense in HA(R) x L2(R) and combining 

(5.5) and (5.6), we obtain the conclusion of Theorem 2.3. 0 

In turn, combining (5.4) and (5.1) yields Corollary 2.1. 
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