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AN EXPERIMENTAL MULTI-OBJECTIVE GAME 

"HUMBLE SHALL BE REWARDED" - 
RULES, ANALYSIS AND PRELIMINARY CONCLUSIONS 

Andrze j P. ~ierzbicki' 

The papers presents an experimental multi-objective game with a 
simple mechanics and rather complicated payoff structure. The game has 
been devised as a tool of study how people learn - not only to play a 
game, but to recognize new strategic perspectives, how easily they 
change a pre-conceived problem formulation. The game can be also 
applied for testing creativity and learning capabilities of students at 
graduate level as well as of investigating the impact of professional 
and cultural backgrounds on adaptive decision making. The game 
illustrates the fact that real-life game-like situations are often 
multi-objective, while some objectives and their hierarchy or 
preference structure might be not apparent from the beginning. Effects 
of multiplicity of equilibria and the possibility of conflict 
escalation in such cases are also illustrated by the game. The paper 
presents the rules of the game, an analysis of its various aspects and 
some preliminary conclusions. 

1. The rules of the game. 

The game can be played by one or more pairs of participants. It can be 
2 played on a table, or in a computerized version . For the "table" version, 

the organizer provides for each pair: 10 plastic tokens (chips) in two 

different colors (say, 5 red and 5 blue); 200 yen (cents, any other small 

coins) in 10, 5 and 1 yen coins - 100 yen as an initial capital for each 
player; a box marked "Fund for next games", a written set of rules and a 

form on which the results of each round of the game are noted. If a player 

does not use up the funds received, he/she might keep them together with 

additional rewards obtained in the game; this contributes to one of the 

objectives in the game. 

1 
Institute of Automatic Control, Warsaw University of Technology, 

Nowowiejska 15/19, 00-665 Warsaw, Poland; in summer 1992 in the 
International Institute for Applied Systems Analysis (IIASA), A-2361 
Laxenburg, Austria. The game described in this paper was originally 
developed during a stay of the author in Kyoto Institute of Economic 
Research, Kyoto University, in 1989. 
2 A computer-based version of the game was recently implemented by Marek 
Makowski in collaboration with John Rohrbaugh, in the Project on 
Methodology of Decision Analysis at IIASA. 



Wierzbicki, A. P. An Experimental Game ... 

The game lasts 50 rounds or is stopped earlier if any of the players 

has used up his initial capital. In each round, both players take their 

tokens in hands and each selects from 0 to 5 tokens, in such a way that the 

other cannot see it. Then they put their closed hands with tokens on the 

table and open simultaneously. 

The player which has put more tokens on the table wins the round and 

gains winning points: 

* 2 if he/she won by 2 or more token difference; 

* 1 if he/she won by 1 toke difference; 

* 0 if he/she lost or there was a draw (equal number of tokens). 

Winning points decide who wins the entire game. The second objective 

is money. Both players start with "a vista" capital of 100 yen and: 

* If a player wins a round, the other must give him 10 yen. 

* If there is a draw, then each player puts 5 yen plus additionally 2 
yen for each token played into the box "Fund for next games". 

There are also additional rewards paid by the organizer after the game 

is stopped: 

* For each token "saved" - not played in a round - 1 yen of additional 
rewards is counted (if, say, player A displayed 4 tokens and player B 

displayed 1 token, 1 yen for A and 4 yens for B are noted). 

* The winner of so-called "lucky chance" round gets additional reward 
10 yen and the loser even 20 yen (to recompense hidhers emotional losses). 

"Lucky chance" rounds are defined as such that there was a difference of 1 

token and the winner played an odd number of tokens. 

If the game is stopped because a player has used up hidhers initial 

capital, the due payments in the last round are subtracted from the 

additional rewards. 

There are also some restricting rules. Players are not allowed to 

communicate when devising a strategy nor to comment on strategies before 

and during the game; they might think about cooperative strategies, but 

they must implement them through empathy or by suggesting them through the 

way they are playing, not through direct communication. If they start to 

communicate or if they are "too lucky", that is, if a "lucky chance" round 
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happens for more than 12 times in total or in more than 4 consecutive 

rounds of the game - no matter whether this happens unintentionally or 
through empathy with the opposite player - the game is interrupted, 

declared as invalid, and players must give up the money received. 

The winner of the entire game is the player who had more winning 

points; the accumulated financial rewards are a secondary objective. There 

is a kept record of best results (both winning points and financial 

results) in the history of playing the game. 

The game might be played either without preparation or after some time 

given for studying the rules and devising a strategy, in a single run or 

repetitively. To summarize the rules, the results of a single round of the 

game are represented by two tables of bi-matrix payoffs to players A and B 

given at the end of this text, where (i, J) denote the numbers of tokens 

played by respective players, (x,y) denote winning points, (w,z) denote net 

financial gains per round including all costs and rewards paid after the 

game is stopped. But the players are warned that, beside the two apparent 

objectives, there are also hidden objectives in the game. 

I Table 1 - payoffs in winning points for a single round of the game 1 

l i - I  (x,y) - winning points for moves (i,J): I 

Table 2 - payoffs in net financial gains in yen per round 

J 
i 

0 
1 
2 
3 
4 
5 

0 1 2 3 4 5 
(w,z) - net financial gains for moves (i,J): 

(0,o) 
(24,151 
(13,-5) 
(12, -5) 
1 1  - 5  
(10,-5) 

- 5 1 1  
6 1 
7 1 
8 1 
1 2 , 1 2  
(20,ll) 

(-5,101 
(-6,101 
(-7,101 
(-8,101 
(11,201 
(-15,-15) 

(-5,121 
(-6,121 
(13.22) 
(-9, -9) 
1 , 8  
(10,-8) 

(15.24) 
(-3, -3) 
(13,-6) 
(12, -6) 
11, - 6  
(10,-6) 

(-5,131 
(-6,131 
(-6,-6) 
(22,131 
1 1 7  
(10,-7) 
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A form for recording the results of the game is given in Appendix. 

2. An analysis of the game. 

While the mechanics of the game is rather simple, the rules of 

financial rewards are more complicated, with several purposes. The game 

should present challenge to participants; students are often most motivated 

by intellectual challenge. The financial rewards for playing the game are 

relatively small: they cannot dominate the winning points. Thus, each 

player in the game might have two objectives: to accumulate more winning 

points and to get higher financial reward. Various intuitive hierarchies or 

tradeoffs between these objectives might result from different cultural 

backgrounds. The complicated rules allow also to observe differences 

between the game played without preparation and after some time for 

analysis as well as in the capability to learn during the game. In fact, 

there are several layers of other objectives or perspectives of looking at 

the game implied by the rules, with corresponding distinct strategies of 

playing the game. The experimental runs of the game observed until now 

suggest that it is not easy and requires some creativity to change such a 

perspective and devise a more effective strategy. We shall present here an 

analysis of the game starting with the most natural perspectives. 

2.1. Equilibria in pure strategies. 

We can start the analysis by computing possible equilibria of a 

single-round game, treated single-objectively; pure strategies of players 

in such a game will be called moves or actions, combined actions of both 

players - multi-actions, combined payoffs or outcomes - multi-payoffs or 
multi-outcomes. Treated multi-objectively, the game illustrates some 

relations between Nash equilibria of partial single-objective games and 

so-called Pareto-Nash solutions of the mu1 ti-ob jective game (see e. g. 

Bergstresser and Yu, 1977, or Wierzbicki 1992). 

In Table 3, the simple parentheses ( 1 below a multi-payoff (x,y) 

indicate a Nash noncooperative equilibrium in pure strategies for the 

single-objective game in winning points (there are 4 symmetric pairs of 

them and a symmetric one, together 9, but none of them is strict), [ I 

indicate that this multi-payoff belongs to a multi-objective Pareto-optimal 

response set either of player A to the given move of player B or vice 

versa, finally { ) indicate that this point is a Pareto-Nash 
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noncooperative solution in pure strategies to the multi-objective game; 

these are such decisions and outcomes that are Pareto-optimal (efficient) 

for each player, given the decisions of other players. There are 3 

symmetric pairs or 6 of them. The same convention applies to Table 4 below; 

there are 3 pairs of Nash noncooperative equilibria in pure strategies in 

the single-objective game in financial rewards. 

Table 3 - pure strategy equilibria in winning points 

Table 4 - pure strategy equilibria in financial gains 

5 H. R. 1 

I+ 
b- 

2 

3 

4 

5 

(0,O) 

(w, z1 - financial gains: 

(15,241 (-5,131 (-5,121 5 ,  1 1  (-5,101 
{ [ (  11) [ I 

(24,151 (-3, -3) (-6,131 (-6,12) 6 ,  1 I (-6,lO) 
{1( 11) [ I [ I 
(13, -5) (13, -6) (-6, -6) (13,221 - 7  1 (-7,101 
[ I 1 I { [ (  11) [ I 

(12, -5) (12, -6) (22,131 (-9, -9) 8 ,  1 (-8,101 
[ I { [ (  11) 1 I 1 I 

1 1 - 5 1  1 1 - 6  1 1 - 7  1 1 - 8  - 1  1 (11,201 
[ I [ I { [ (  11) 

(10, -5) (10, -6) (10, -7) (10, -8) (20.11) (-15, -151 
1 I {1(  11) 

i 

J 

(x,y) - winning points: 
2 0 

0 

1 

2 

3 

4 

5 

3 1 4 

(0 ,2 )  

( 0 ,2 )  
1 I 
(0 .1)  

{ [  I )  

(0,O) 

(1,O) 
1 I 
(2,O) 
[ (  11 

(0,21 
1 I 
( 0 , l )  
[ I 
(0,O) 

(1,O) 
{ [  I )  

(2,O) 
[ I 
(2,O) 
( 1 

(0,O) 

(1,O) 
(1  I )  

(2.01 
1 I 
(2 .0)  

(2 .0)  

(2,O) 
( 1 

( 0 , l )  
{ [  I )  

(0,O) 

(1 .0)  
1 I 
(2,O) 
[ I 
(2 .0)  

(2.01 
( 1 

(0 ,2 )  

(0.2) 

(0 .2)  
[ I 
(0 .1)  

(0,O) 

(1,O) 
{1(  11) 

(0 .2)  
( 1 

(0.21 
( 1 

(0 ,2 )  
( 1 

(0 .2)  
( 1 

(0.11 
{1(  11) 

(0,O) 
( 1 
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When determining noncooperative Pareto-Nash solutions, we can start 
A A 

with defining the sets I(J) or J(i) of Pareto-optimal responses of one 

player to a given move of another one; in these sets, no single objective 

of a player can be improved without deteriorating other objectives. There 

are various ways of determining such sets or even directly the sets of 

Pareto-Nash solutions - see e.g. Wierzbicki (1986, 1992). For this simple 
example, however, we can employ a graphical way represented in Fig. 1. 

,. ,. 
Because the game is fully symmetric, we can assume I(i) = J(i) where 

,. ,. 
i = J = 0, 1, ..., 5. From Fig. 1 it follows that I(0) = J(O) = (1.2); .. ,. A A ,. A 

;(I] = J(1) = (0.2.3); I(2) = J(2) = (3,41; I(3) = J(3) = {2,4,51; I(4) = .. e. A 

J(41 = (51; I(5) = J(5) = (41. 
.. ,. .. ,. 

Since 1 E I(0) and 0 E J(1) as well as 0 E I(1) and 1 E ~(0). the 

multi-decisions (1.0) and (0.1) are a pair of Pareto-Nash noncooperative 

solutions to the multi-objective game; an analogous argument applies to the 

pairs of multi-decisions (3.2) and (2,3) as well as (5.4) and (4,5). It can 

be checked that no other multi-decisions (in pure strategies) satisfy the 

definition of Pareto-Nash noncooperative solutions. For example, take the 

multi-decision (3.5) that is a noncooperative Nash equilibrium in the 
,. 

single-objective game H.R. 1. For player B. 5 E J(3); however, for player A, 
A 

3 B I(5) = (4). But why does it happen? 

We can see the reason after examining the multi-payoff tables and 

Fig. 1. The Nash equilibria of the game H.R. 1 are not strict. If player B 

chooses j = 5, player A is actually indifferent in his response while 

playing the game H.R. 1; all his responses yield the same payoff x = 0. But 

if he has also another objective, this can and does exclude same of his 

responses, in particular the response i = 3. In the part of Fig. 1 

corresponding to j = 5, the outcome of the response i = 3 is Pareto- 

dominated by the outcome of the response i = 4. This is because we used the 

concept of strict Pareto domination in the definition of Pareto-Nash 

noncooperative solutions; if we used the concept of weak Pareto domination 

instead, we could observe that the outcomes of all responses of player A to 

j = 5 are in fact weakly Pareto-nondominated and all noncooperative Nash 

equilibria of underlying single-objective games would be also (weak) 

Pareto-Nash noncooperative solutions to the multi-objective game. 
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Fig. 1. Multi-objective outcomes of various responses i of player A 

(denoted by numbers at consecutive points indicated by + 

while Pareto-optimal responses are indicated by o 

to assumed moves j of player B; 

However, as this example illustrates, accepting weakly Pareto- 

nondominated outcomes would mean sacrificing common sense in order to 

obtain neat theoretical features. Any reasonable player A would reject 

weakly Pareto-nondominated outcomes of his responses to j = 5, as 

illustrated in Fig. 2, and keep to to the strictly Pareto-nondominated one, 

would choose i = 4. Thus, we should rather conclude that it is the weakness 

of the concept of (non-strict or weak) noncooperative Nash equilibrium that 

is responsible for this phenomenon, which would be eliminated when using 

only strict Nash equilibria (see also Young, 1991, for some further- 

reaching advantages of strict Nash equilibria). 

On the other hand, weak noncooperative Nash equi 1 ibr ia can sometimes 

also contribute to Pareto-Nash noncooperative solutions. Consider the 

noncooperative Nash equilibrium (5,4) for the game H.R. 1. It is strict for 

player A, since i = 5 is the unique best response to j = 4 in this single- 

objective game. However, it is weak for player B, since any response j to 
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i = 5 yields the same payoff y = 0; on the other hand, the second objective 

z in the multi-objective game contributes to choosing j = 4 as the unique 

Pareto-optimal response to i = 5 .  

To conclude this part of analysis of the multi-objective game in pure 

strategies, all parts of Fig. 1 are overlapped and a graph of all possible 

outcomes of the game is obtained, see Fig. 2. 

Fig. 2. Multi-outcomes of all possible multi-actions of players A 

and B in the multi-objective game "Humble shall be rewarded" 

(only more characteristic multi-actions are denoted by (i,j); 

multi-outcomes are indicated by + while Pareto-Nash 

noncooperative solution outcomes are indicated by o 1. 

Imagining a Cartesian product of these graphs is difficult, but we can 

check also by other means - e. g. preparing bar charts for four objectives 
of two players as outcomes of more characteristic multi-actions - that 
cooperatively Pareto-optimal outcomes (in the space of four objectives) 

correspond only to the multi-actions l , O ,  0 1 ,  (2,O) and (0,2). Of 

these four, only (1.0) and (0,l) are also Pareto-Nash noncooperative 

solutions - which indicates that achieving more than 1 winning point in a 
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round of such game played noncooperatively is rather difficult. No 

symmetric solution in pure strategies is cooperatively Pareto-optimal. The 

pairs (3.21 and (2,3) as well as (5,4) and (4,5) are also not cooperatively 

Pareto-optimal for the entire game, although they are noncooperative 

Pareto-Nash solutions to this multi-objective game. This is a frequent 

phenomenon in more complicated games; but some mixtures of these pairs are 

rather probable strategies when this game is actually played, because of 

conflict escalation phenomena that can easily develop in this game, see 

later comments. 

Some students preparing separately for this game and arriving at this 

point of analysis might interpret the title of the game in the sense that 

they should stay humble while not trying to accumulate too many winning 

points and should concentrate instead on best financial results. Since such 

results are obtained by playing 0 and 1 tokens and a strategy of playing 

them alternatively is actually prohibited (by the rule excluding too many 

"lucky chance" rounds), they might take it as a hint to develop a mixed 

strategy of playing 0 and 1 with some probability. 

2.2. Equilibria in mixed strategies. 

Consider thus a game H.R.2 restricted to decisions 0 and 1 only. There 

are two interesting mixed strategies. 

The first is obtained by computing Nash noncooperative mixed 

equilibrium strategy. Let pA(0) denote the probability of playing i = 0 by 

player A and let pA(l) = 1 - pA(0), pA(2) = pA(3) = pA(4) = pA(5) = 0 

because we consider the restricted game only; let the same conventions 

apply to pB(i). Computing the mixed equilibrium strategy is a simple 

exercise (as in the "battle of sexes" or "game of chicken" cases): it can 

be obtained that pA(0) = pB(0) = 3/7 = 0.43 corresponds to a 

noncooperative Nash equilibrium for the restricted game with the expected 

payoff 60/7 = 8.5 yen per round and the expected number of winning points 

0.243 per round (for a game of 50 rounds correspondingly 425 yen above the 

initial 100 yen and 12.1 winning points). 

The second is a mixed cooperative strategy: we assume that both 

players will apply the same probability pA(0) = pB(0) = p and use it 
2 

jointly to maximize their equal expected payoff 39p(l-p)-3(1-p) . The ,. * 
optimal cooperative value is p = 15/28 = 0.54 > pA(0) and the expected 
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payoff is also larger, 507/56 = 9 .1  yen per round; the expected number of 

winning points is also slightly larger, 0.249 points per round. 

However, the chances that the number of "lucky chance" rounds will 

exceed 12 are too high for both these strategies. Moreover, these 

strategies are highly unstable. Consider the noncooperative Nash 

equilibrium in mixed strategies. Any small deviation from such an 

equilibrium would lead to optimal responses of the other player that 

converge in a repetitive game to pure strategies - see Fig. 3; moreover, 
mixed strategies are here in fact dominated by noncooperative Nash 

equilibria in pure strategies (both the winner and the loser receive more 

payoffs when adopting pure strategies). 

This is one of the reasons for conflict escalation. Although both 

players might have assumed when starting the game that a restricted mixed 

strategy of playing 0  or 1 token would be the best one, but one of them - 
say, player A - might be tempted to increase the probability of playing 1 
token, thus winning more than his opponent. But player B is not really 

constrained to play only 0  or 1 token; he can respond by introducing a 

non-zero probability of playing 2 or 3 tokens. Then player A replies in 

kind - and they end playing 4  or 5  tokens, which they did not intend 

originally. 

unstable 
-- n 

Fig. 3. The optimal response functions in mixed strategies 
* * 

starting with small deviations from pA and p B' 

It is easy to prove that the restricted strategy of playing 0  or 1 

tokens cannot be a noncooperative Nash equilibrium for the full game H.R.2. 
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* 
Suppose player A decreases pA(0) and pA(l) to (I-q)pA(0) and 

* 
(1-q)(l-pA(0)), respectively, while including pA(2) = q > 0. When doing 

this, he increases his expected payoff by (13-8.5)q = 4.5q yen per round. 

If player B responds in kind, their expected payoffs decrease again, below 

the original 8.5 yen per round, but by repeating such analysis for pA(i), i 

= 3, 4, 5, we can show that any mixed strategy that does not include 

playing 5 tokens with probability greater than 0 cannot be a noncooperative 

Nash equilibrium for the full game H.R.2. On the other hand, when applying 

an algorithm for computing mixed Nash equilibria - say, one based on 
* 

repetitive linear programming - one obtains positive probabilities p (4) 
* A 

and pA(5), but probabilities for all other moves must be zero in the mixed 

strategy noncooperative equilibrium. 

* * * * 
In fact, pA(4) = pB(4) = 13/29 = 0.45 and pA(5) = pB(5) = 16/29 = 0.55 

are a noncooperative Nash equilibrium in mixed strategies for the full game 

H.R.2, with the corresponding expected payoff 0.69 yen per round and the 

expected number of winning points 0.247 per round. It is easy to check that 

the expected payoff for any of the players would decrease if he unilateral- 

ly included a non-zero probability of any other move. But again, this Nash 

equilibrium is highly unstable and dominated by the noncooperative Nash 

equilibria in pure strategies (5,4) and (4,s). On the other hand, applying 

a coordinated strategy of alternatively playing (5,4) and (4,s) is actually 

prohibited - by the rule about too many "lucky chance" rounds; in fact, 
even the Nash equilibrium in mixed strategies for one-round game is not an 

equilibrium of the dynamic game of 50 rounds, because the expected number 
* * * * 

of "lucky chance" rounds is then 50(p (4)pB(5)+pA(5)pB(4)) = 24.7 and A 
essentially exceeds the admissible number 12. Moreover, neither of the 

players would like to be the underdog in a perfectly symmetric game; thus, 

the possibility that both players would try to out-face each other by 

playing repeatedly (5,s) is quite high. 

When trying to determine a noncooperative mixed Nash equilibrium for * * 
the single-objective game H.R. 1 we obtain even worse result: pA(5) = pB(5) 

= 1, the only symmetric noncooperative Nash equilibrium is the pure 

strategy (5.5). 

But these are only noncooperative Nash equilibria in mixed strategies 

for single-objective games; there is also a continuum of mixed Pareto-Nash 

noncooperative solutions for the multi-objective game. In pure strategies, 
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the outcomes of each possible response of player A to assumed moves of 

player B formed a discrete, essentially non-convex set - cf. Fig. 1, 2. 

When considering mixed strategies, these outcome sets are convexified, each 

outcome in their convex cover becomes attainable, because probabilities of 

playing various moves can be interpreted as coefficients in convex 

combinations of discrete outcomes. 

We can thus apply for each player separately a standard method of 

multi-objective optimization on convex polytopes : every Pareto-optimal 

decision and its outcome can be obtained in such a case as the result of 

maximizing an aggregated objective - the sum of both maximized objectives 
with some positive weighting coeff icients3. We could have applied this 

method also for pure strategies, but at a risk of missing some Pareto- 

optimal responses and thus possibly some Pareto-Nash noncooperative 

solutions: a maximum of weighted sum of maximized objectives with positive 

coefficients is always Pareto-optimal, but not all Pareto-optimal solutions 

can be obtained this way in a non-convex case. Consider the response sets 

to j = 1 and j = 3 in Fig. 1, where by applying this method we would miss 

the Pareto-optimality of the responses i = 2 or i = 4 (although - fortun- 
ately - these responses do not contribute to the set of Pareto-Nash non- 
cooperative solutions). 

Thus, let us consider objectives xu = Ax + (1-h)w, yz = py + (1-p)z, h C1 
with h~(0; 1) and pe(0; 1). For any such h and p, there is a corresponding 

single-objective game H. R. (A, p) and its noncooperative Nash equilibria are 

Pareto-optimal for each player assuming given strategy of the opposite 

player, hence they are Pareto-Nash noncooperative solutions in mixed 

strategies to the original multi-objective game. Let us analyze some 

representative solutions. 

For he(0; 0.6) and pe(0;O. 6,) nothing changes in the structure of 

equilibria, only the probabilities of moves in the Nash noncooperative 

mixed equilibrium - originally of the game H. R. 2 if A= 0 and p= 0 - change 
continuously with X and p in the game H.R. (A, p): 

3 
At least theoretically. When applying a standard linear programming 

method to compute the maximum of the aggregated objective, we most likely 
obtain only the Pareto-optimal outcomes that are situated on a vertex of 
the polytope, not such that are situated on its verges or facets. There 
exist, however, ways to deal with this difficulty - and even to deal with a 
possible non-convexity of outcome sets, such as for pure strategies - see 
e. g. Wierzbicki (1986, 1992). 
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where pA(4) and pB(4) decrease and pA(5) and pg(5) increase while A, p 

increase. It is also easy to check that the corresponding expected 

financial gains and expected numbers of winning points decrease while A, p 

increase. Note that the mixed strategy of one player depends on knowing the 

weighting coefficients which the other player attaches to his two 

objectives. Since such an assumption is not realistic when actually playing 

the game, it is improbable that such a mixed strategy could be implemented, 

a conflict escalation would rather develop instead. Anyway, all these 

strategies are unstable and dominated by equilibria (5,4) and (4.5) in pure 

strategies. 

At A = p = 0.6 the structure of equilibria in pure strategies of the 

aggregated game changes. Consider the multi-payoff table for the game 

H.R. (A,p) with A = p = 0.6 below. The equilibria (5,4) and (4,5) remain 

strict, while the equilibria (1,0), (0.11, (3.21, (2,3) became weak at this 

particular value of A and p (compare the underlined entries in Table 5 

below); they disappear after any further increase of A, p. The equilibria 

(5.4) and (4.5) remain strict and dominate the unstable equilibrium in 

mixed strategies defined as above. This equilibrium is the only 

noncooperative equilibrium in mixed strategies for all h~(0; 11, p~(0; 1). 

Note in the tables below that no player would profit by unilaterally 

including a nonzero probability of any other move than 4 or 5, if the other 

player applies the mixed strategy defined above. In the following tables, 

we use some convenient scaling coefficients (10 or 5) for the aggregated 

mu1 ti-payoff (xwA, yz 1, in order to facilitate comparisons. As before, 
CC 

noncooperative Nash equilibria in pure strategies are denoted by ( 1; they 

coincide in this case with Pareto-Nash noncooperative solutions denoted by 

{ }. 

If there is an asymmetry in weighting coefficients, such as A = 0.7 

and p.= 0.4 illustrated by the multi-payoff Table 6, only some equilibria 

in pure strategies disappear - in this case (0.1) and (2,3). 
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Table 5 - equilibria for the linarly aggregated game, A = p = 0.6 

HR(A,p) .l 0 

Table 6 - equilibria for the linearly aggregated game, A=0.7, p=0.4 

0 

1 

2 

3 

4 

5 

5 1 

i IIOxwA,lOyz 1 - aggregated multi-payoff at A = p = 0.6 1 

Noncooperative Nash equilibrium in mixed strategies: 

pA(4) = 0.443; pB(4) = 0.431; pA(5) = 0.557; pB(5) = 0.569 

Expected winning points: E x = 0.240, E y = 0.252 points/round 

Expected financial gains: E w = 0.53, E z = 0.64 yedround 

(0.0) 

(79,451 
c ( 1 )  
(53, -15) 

(50,-15) 

(47,-15) 

(44, -15) 

2 

-- 

(102.60) 

(64,-20) 

(45,721 

(-9, -9) 

4 - 1  

(50,-18) 

(47,-18) 

(44, -18) 

(60,102) 
c-T 1 1 
(-12,-12) 

(58,-24) 

(60,-24) 3 

3 

(60,-20) 

4 

5 

(-15.43) 

1 8 4 1  

- 1 8  -18 

(73,391 
c o )  
(47,-21) 

(44, -21) 

4 

(56,-20) (56,-24) (56,-28) (50,-32) (-48,-48) (44.86) 

(52, -20) (52,-24) (52, -28) (52, - - -32 (86.44) (-60, -60) 
c o )  

(-20,521 

(-24,521 

(-28,521 

(-32.52) - - 

(-20,641 

(-24,581 

(-24,-24) 

(94.52) 
c ( 7-1 

Noncooperative Nash equilibrium in mixed strategies: 

pA(4) = pB(4) = 0.437, pA(5) = pB(5) = 0.563 

Expected winning points: E x = E y = 0.246 points/round 

Expected financial gains: E w = E z = 0.58 yedround 

(-15,401 

(-18,401 

(39,681 

(-27,-27) 

(40,-24) 

(44, -24) 

(-20,601 

(-24,eO) 

(52,941 
c-T 1 1 

(-36,-36) 

(-15.37) 

(-18,371 

(-21.37) 

(-24,351 

(-36,-36) 

(67.33) 
co) 

(-20,561 

(-24.56) 

(-28.56) 

(-32.50) 

(-15,341 

(-18.34) 

(-21,341 

(-24,34) 

(33.62) 
c o )  
(-45, -45) 
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As before, the weighting coefficient of player A determines the 

structure of equilibria preferred by player B also in Table 6. None new 

equilibria in pure strategies appear for all AE(O; 1) and p~(0; 1): if they 

would appear, this would mean additional Pareto-Nash noncooperative 

solutions - which is impossible, because we determined such solutions 

earlier by directly applying their definition. 

Note the following interesting asymmetry of the game. Player B attach- 

ed more preference to financial gain than to winning points; in order to 

devise his mixed strategy he had to know and take into account the prefer- 

ences of player A, who attached more preference to winning points than to 

financial gain. Therefore, player B had to apply a greater probability 

~ ~ ( 5 ) ;  however, this resulted in player B getting both more financial gain 

and more winning points, since it has placed his mixed strategy closer to 

the dominating, locally stable equilibrium (4.5) in pure strategies. This 

confirms that all noncooperative mixed equilibria in this game are unstable 

and an escalation of conflict is in this sense inevitable. 

2.3. The impact of stopping rules. 

However, all above analysis and conclusions apply only to an incomple- 

te model of the game that we have considered so far. We have already indic- 

ated that the game is actually a dynamic one - we must include in the 

analysis the stopping rules and some indicators of the current state of the 

game, see e.g. Basar and Olsder (1982). The stopping rules contain in fact 

powerful incentives to devise cooperative strategies in this game; there- 

fore, the above, incomplete analysis is quite inadequate. 

Note that we counted in the above analysis net financial gains only, 

while all additional rewards are paid to the players first after stopping 

the game. The game, however, stops before 50 rounds if one of the players 

has used up his "a vista" disposable capital starting with 100 yen. This 

capital is used up not only after he loses 10 rounds without winning, but 

even faster if there are some draws . Note that this capital suffices not 
quite for 7 "out-facing" rounds (5,s). Moreover, the game might stop before 

50 rounds if there are 5 consecutive "lucky chance" rounds or more than 12 

such rounds in total, in which case all winning points and financial gains 

are annulled. The probability of such an event in a 50 round game is very 

high, if the players apply the mixed strategy of playing 4 or 5 tokens. 
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However, each round of playing the game might bring additional 

rewards; thus, the game is different from repeated games with a fixed 

finite number of rounds and more similar to repeated games with infinite 

number of rounds. Both players are strongly motivated to "survive" entire 

50 rounds of the game. Moreover, each of them is motivated also to take 

care that the other player "survives". As an example, consider a scenario 

in which player A applies a mixed strategy of playing i E {0,1,. . . ,5) with 
equal probability pA(i) = 1/6, because he/she wants to avoid draws and 

decrease the probability of too many consecutive "lucky chances"; but 

player B wants to exploit this and plays J = 5 all the time. The expected 

results of such strategies are E x = 0, E y = 1.5 points/round, E w = -6, 

E z = 7.5 yedround. However, these are only net results, including the 

rewards paid after the game is stopped; the a vista capital of player A 

will diminish by 10 yen each round he is playing less than 5 tokens and 15 

yen if he is playing 5 tokens, 10.83 yedround on average. Therefore, the 

game will stop after about 10 rounds and player B will gain only about 15 

winning points and about 75 yen above the initial 100 yen, much less than 

he could achieve if he would prolong the game to 50 rounds by letting 

player A win from time to time. 

Thus, an adequate model of the game is dynamic, accounting for the 

current state of disposable capital of each player at every round. A full 

analysis of such a dynamic game is rather complicated and will not be 

presented here. However, essential features of best strategies in such 

dynamic game are clear: for almost 50 rounds, each player should treat the 

other one as a partner, not an adversary - and not out of compassion, but 
in his own best interest - watch carefully not only his own disposable 
capital but also that of his partner, let the partner win if that capital 

is dangerously low and thus help him to "survive" the entire game, think 

about best strategies of avoiding draws that diminish Joint disposable 

capital of both players. Only a few rounds before 50 the partnership might 

be "dissolved" and a noncooperative game can start, when the players 

believe that the disposable capital of each of them at this point is 

sufficient to last through a noncooperative play until the round 50. 

These essential features of strategies for the dynamic game can be 

approximated by introducing a third, hierarchically dominant obJective: 

"avoid draws", that is, minimize payments to the box "Funds for next games" 

(in order to maximize Joint disposable capital of both players), and by 
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insisting on symmetric strategies for almost 50 rounds of the game. The 

game in "avoiding draws" can be represented by following Table 7, where not 

net but immediate costs of draws are accounted for. For this game, it is 

possible to apply one of the standard methods of computing noncooperative 

Nash mixed equilibrium strategy with results represented also in Table 7. 

However, this game should be rather played cooperatively, as a game with 

implicit communication and a correlated strategy (see e.g. Myerson, 1991) 

by assuming that both players would jointly use the probabilities of each 

move to minimize the cost of draws (by a standard single-objective 

optimization technique); the corresponding results are also presented in 

Table. 7. 

Table 7 - immediate multi-payoffs for the game "avoid draws" 

I Noncooperative Nash equilibrium in mixed strategies: I 

(5,6) - immediate multi-payoff by avoiding draws 

(-5, -5) (0.01 (0.0) (0,O) (0.0) (0.0) 

(0,O) (-7, -7) (0,O) (0.01 (0,O) (0,O) 

(0.0) (0.0) (-9, -9) (0,O) (0.0) (0.0) 

Expected immediate costs of draws: E < = E 6 = - 1.465 yenlround 
Expected winning points: E x = E y = 0.67 points/round 

3 

4 

5 

Expected net financial gains: E w = E z = 4.31 yedround 

pA(0) = pB(0) = 0.290; pA(l 1 = pB(l 1 = 0.208; pA(2) = pB(2) = 0.161; 

Expected immediate costs of draws: E 5 = E 6 = - 1.452 yedround 
Expected winning points: E x = E y = 0.67 points/round 

Expected net financial gains: E w = E z = 5.06 yedround 

(0.0) 

(0.0) 

(0,O) 

(0.0) 

(0,O) 

(0.0) 

(0,O) 

(0,O) 

(0,O) 

- 1 1  - 1  

(0,O) 

(0.0) 

(0.0) 

-13, 1 

(0,O) 

(0.0) 

(0,O) 

(-15, -15) 
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We see that correlated mixed strategy gives indeed different results 

than the noncooperative mixed equilibrium: although the expected cost of 

draws is only slightly lower and the expected number of winning points 

practically the same, the expected financial gain is considerably higher, 

each player could expect 253 yen of net financial gains (above the original 

100) as well as about 33 winning points after 50 rounds. 

The probabi 1 i ty of a " lucky chance" round is 0.185 and the expected 

number of them in a 50 round game is 9.24, hence the players can rather 
4 safely apply this strategy. When following this strategy, however, little 

room remains for noncooperative play at the final rounds: after 47 rounds, 

the expected level of disposable capital is only 31.8 yen, hence only 3 or 

2 last rounds can be played in a noncooperative way. 

If the game is played cooperatively all 50 rounds, one could in fact 
5 sacrifice some disposable capital at the end of the game and consider an 

aggregated payoff for all three objectives with some positive weighting 

coefficients. But such an aggregated game should not be considered in the 

noncooperative sense - it is easy to check that it would lead again to 

results very similar to the noncooperative strategies for the game 

H. R. ( A ,  p )  and to conflict escalation. Thus, both players should understand 

this danger and the necessity to play cooperatively in their best long-term 

interests in the dynamic game. Moreover, it can be checked that reasonable 

results (corresponding to non-zero probabilities of all moves, necessary 

when avoiding draws by a mixed uncoordinated strategy) can be obtained in 

such an aggregated game only if the weighting coefficients at the 

objectives < and 6 are rather close to 1 - which practically means the 
hierarchical dominance of the value of avoiding draws. 

4 Still, there is a probability that the game will be stopped before 50 
rounds or even declared invalid if the players will be considered "too 
lucky" either because there will be more than 4 consecutive "lucky chance" 
rounds or more than 12 of them in total; see the note below. 
5 But we cannot go down with the disposable capital to zero. We are 
speaking here about expected net financial gains, winning points and 
disposable capital at the end of the game only in an approximate sense, 
because an unfortunate sequence of events could exhaust this capital and 
thus stop the game earlier. Precisely speaking, the expected net financial 
gains and winning points should be computed while using a nonlinear 
averaging scheme accounting for the probability of such events - such as in 
a Markov chain with a non-zero probability of stopping. When using only 
approximate, linear averaging, we must provide for a sufficient reserve in 
the disposable capital until the last round of the game. 
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2.4. Cooperative, alternating and coordinated strategies. 

The analysis of the game is yet incomplete - because until now, as it 
is usually done in game theory, we excluded the possibility of such 

communication between the players that would result in a coordinated 

strategy of alternating, reciprocated moves. Although explicit cornrnuni- 

cation is prohibited in the game, the sequence of moves of each player in 

consecutive rounds is an admissible communication medium. When using this 

medium, concentrating on avoiding draws and on "survival" of both players, 

an intelligent and perceptible player can achieve much better results than 

presented above. Hidhers first goal is then to teach the partner - the 
opposite player - to avoid draws completely. This can be done by developing 
adaptively, through the example of one's own strategy and through empathy, 

an admissible coordinated alternating strategy. The strategies of 

alternatively playing (0.1) and (1,O) or (2,3) and (3.2) or (4,5) and (5,4) 

are actually excluded by the rule prohibiting too many "lucky chance" 

rounds. But the concentration on these strategies results from a 

noncooperative treatment of the game, with dominant objectives of net 

financial gains and winning points. If we concentrate on avoiding draws 

instead, there are obviously several coordinated strategies not excluded by 

the rules of the game. Two of such strategies are particularly attractive. 

The first one is playing alternatively (0.5) and (5.0). It avoids 

draws completely and gives the maximum symmetric gains in winning points, 

although it results in rather low financial gains - but still 2.5 

yen/round, better than any noncooperative strategy that does not recognize 

the dominant objective of avoiding draws. Moreover, this strategy has two 

other important advantages. It is easy to teach the partner: when player A 

starts the game with playing alternatively 0 and 5 tokens, he gives to 

player B a clear enough signal to follow his example and develop a partner- 

ship and coordinated strategy through empathy. A difficulty can arise if 

player B wants also to implement the same strategy and starts with the same 

move as player A. However, intelligent players would resolve such difficul- 

ty by playing chance moves in next round, say, with equal probability of 

each move. If a next draw happens, they repeat the mixed strategy; if one 

of them wins, it is his turn to play 0 in the next round and let the other 

player win. 
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The second advantage of this strategy is its robustness: even if 

player B had not analyzed the game deeply enough and thinks about playing 

it in a noncooperative way, he cannot do much against such consequent 

strategy. Player B will be forced to relent if he can predict that in the 

next round player A will play 5 tokens - he will not be motivated to "out- 
face" player A by also playing 5, because he knows that he will anyway win 

half of the rounds. If player B is tempted by a higher financial gain and 

responds 4 tokens to a predictable 5 tokens of player A, thereby diminish- 

ing also the winning points of player A in such a round, player A should 

respond in kind: after 4 rounds of playing alternatively (5.4) and (4.5). 

it will be player B who is forced (by the rule about too many "lucky 

chances" 1 to change strategy and to give more winning points to player A. 

Later, player B can try to repeat the sequence of alternative (5,4) and 

(4,5), but not more than 3 times or 12 rounds in total - which would result 
in each player gaining about 280 yen instead of only 125 yen of financial 

rewards above the original 100 yen but in decreasing the number of accumul- 

ated winning points from 50 to about 44 after 50 rounds of the game. 

Once player B has learned to play alternatively 0 and 5 tokens follow- 

ing the example of player A, the latter can start to introduce the second 

one, more profitable but also admissible coordinated strategy of playing 

alternatively (0,2) and (2,O). This strategy results also in the maximum 

symmetric number of winning points but increases the net financial gain to 

4 yen/round. If the players applied alternatively (0,5) and (5,O) before, 

player A can give a signal and example to his partner by playing 2 instead 

of 5 tokens at his turn. Player B might again be tempted, by various moves. 

He could play 3 or more tokens when he predicts player A to play only 2 

tokens; player A should respond in kind at the next round (applying a kind 

of "tit for tat" strategy). But player B should have learned until then 

that conflict escalation is not in his own long-term interest. 

If a coordinated strategy of playing alternatively (0.2) and (2.0) is 

developed this way, the game can proceed to the round 40 with little or no 

loss of disposable capital. A carefully counted number of symmetric "lucky 

chance" rounds can be included, say, by playing 3 instead of 0 when the 

partner is supposed to play 2 and expecting him to reciprocate in the next 

round. After a long phase of alternating, cooperative play, the partnership 

might be "dissolved" somewhere between round 41 and 44: both players can 

start a noncooperative phase, trying to get better results than the 
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opponent. However, an intention of breaking a record in accumulated winning 

points requires rather that the partnership should be continued to the 

round 47 or 48. 

We come here to another, deeper layer of traps set by the rules of the 

game: in order to break a record in winning points, a player must let his 

partner win at alternative rounds. Does this imply that hidhers strategy 

must be fully predictable ? A predictable strategy is open to exploitation 

by the other player. If this exploitation is obvious, this would lead to a 

retaliation and conflict escalation - which a good player must avoid. 

However, this exploitation might be also subtle - a player might let his 
partner win alternatively in an almost every second round, but introduce 

small variations that might give him a some advantage. For example, since 

the alternating, cooperative play might be varied by introducing "lucky 

chance" rounds in various ways, the way of initiating and ending such 

intermissions might be aimed, say, at gaining some more winning points or 

additional rewards than the partner. Various attempts at such expert 

strategies were observed when the game was played by more advanced players. 

Finally, playing the game noncooperatively but subtly for a last few 

rounds is also possible. For example, a player might pursue the alternating 

cooperative strategy almost until the end, reserve some number of "lucky 

chance" rounds until the round 47, then initiate such rounds but modify 

them in the last round to get 2 winning points instead of 1. A specific 

strategy of playing last rounds must depend on the full state of the game - 
a vista capital and other accumulated results of both players, as well as 

on the sequence of last moves - and is thus rather difficult to prepare. It 
remains open, whether such noncooperative but subtle strategy aimed at 

breaking "the absolute record" - gaining more than 50 winning points - 
might be developed for the last two or three rounds of the game. 

All these coordinated strategies require implicit communication and 

present various challenges of correctly interpreting the signals given by 

the partner, of resolving unlucky chance draws, of not being tempted by 

short-term opportunities that might lead to conflict escalation. After 

organizing and studying a number of experimental runs of the game, the 

author found it to be a very good predictor of adaptability and the ability 

to learn and communicate of players. 
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3. Preliminary conclusions. 

The intended meaning of the title "Humble shall be rewarded" of this 

game is that players should deliberately give up short-term attempts to 

achieve high immediate winnings and certainly should not try to get better 

than the other player by brute force; they should recognize that it is in 

their best long-term interests to form a partnership or even to achieve an 

emphatic understanding with the partner. 

The game teaches several lessons - that any realistic decision 

situation should be rather treated as a dynamic process than a static, well 

defined game; that in such a dynamic process one can learn to recognize 

hidden but often more important objectives than those assumed as obvious at 

the beginning; that the definition of an opponent in a game can also change 

into that of a partner. When constructing this game, the author of the 

paper wanted to prepare yet another experimental illustration of the spirit 

underlying Rapoport "tit for tat" strategy: the belief that an informed, 
6 non-naive altruism is often best long-term strategy for ones own interest . 

The game "Humble shall be rewarded" was preliminary tested by 

experimental runs in various professional and cultural environments: by 

game theorists, by their graduate students, by international graduate 

students - with results that were sometimes predictable but often counter- 

intuitive. Some players - even specialists in game theory, no matter how 
long time was given for a study and analysis of the rules of the game - 
have difficulties with the development of the coordinated, alternating 

cooperative strategy. Only one pair of graduate students (an Australian and 

a Polishmen, without game-theoretical background) developed such a strategy 

when playing the game for a second time; the maximum number of winning 

points recorded was thus raised to 40. Another similar pair (an American 

and a Polishmen, also without game-theoretical background) has played the 

game brilliantly for the first time, very quickly learning, but having some 

difficulties in establishing an effective communication; the record of 

their play is given in Appendix. 

6 Such an interpretation of the philosophy of "tit for tat" strategy was 
stressed by Rapoport in several discussions; see also his book (1989). 
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These preliminary tests suggest that the game might have future 

practical applications: it could be used as a test of the ability to learn, 

adapt and communicate, important when hiring personnel for certain 

positions or when selecting graduate students. But the total number of 

experimental runs of the game - about 15 - is yet too small to allow for 
definite conclusions. A computerized version of the game was recently 

developed for the purpose of studying the properties of the game more 

closely, in an experimental design involving various conditions of 

information availability. 

This experimental game has also some other values, related to the 

intellectual challenge of its analysis or to its possible entertainment 

value. However, the author believes that main values of this game are 

educational - it illustrates several important points: 

- Many real-life game-like situations are in fact multi-objective, 
because it is not realistic to assume that the players would correctly 

estimate the preferences and the value or utility functions of their 

opponents ; 

- A multi-objective game has usually a large number - often a 

continuum - of Pareto-Nash solutions - and it is difficult to exclude some 
of them on purely theoretical grounds. This multiplicity of solutions can 

lead to conflict escalation processes; 

- It is an inalienable right of players (or, more generally, of 

decision makers in a more complicated game-like situation) to learn and 

change their minds about the importance and hierarchy of values and 

objectives. Such changes of perspective are often necessary to avoid 

conflict escalation and require some creativity; 

- Multi-objective games can be analyzed theoretically (see also 

Blackwell 1956, Contini 1966, Yu 1973, Zeleny 1976, Bergstresser and.Yu 

1977, Wierzbicki 1992), though their analysis might be quite complicated; 

- An essential reason of conflict escalation processes - be it in 

multi-objective games or in real life - is not the viciousness of opponents 
but their inability to communicate and learn. Thus, further theoretical 

studies should include adaptive coordinated strategies based upon various 

media of communication between the players; ideas such as expanding 

habitual domains by Yu (1990) or evolving conventions of strategies by 

Young (1991) might be helpful in such studies. 



Wierzbicki, A. P. An Experimental Game ... 

References. 

Basar, T. and G. J. Olsder (1982) Dynamic Noncooperative Game Theory. 
Academic Press, New York. 

Bergstresser, K. and P.L. Yu (1977) Domination structures and multicriteria 
problems in N-person games. Theory and Decision, Vol. 8, pp 5-48. 

Blackwell, D. (1956) An analog of the minimax theorem for vector payoffs. 
Pacific Journal of Mathematics, Vol. 6 pp. 1-8. 

Contini, B.M. (1966) A decision model under uncertainty with multiple 
payoffs. In A. Mensch, ed.: Theory of Games - Techniques and 
Applications, Elsevier, New York. 

Myerson, R.B. (1991) Game Theory - Analysis of Conflict. Harvard University 
Press, Cambridge, Massachusetts. 

Rapoport , A. ( 1989 Decision Theory and Decision Behavior. Kluwer Academic 
Pub1 ishers, Dordrecht. 

Wierzbicki, A.P. (1986) On the completeness and constructiveness of 
parametric characterizations to vector optimization problems. OR- 
Spektrum, Vol. 8, pp. 73-87. 

Wierzbicki, A. P. (1992) Multiple Criteria Games - Theory and Applications. 
X-th International Conference on Multiple Criteria Decision Making, 
Taipei, July 1992. 

Young, H.P. (1991) The Evolution of Conventions. Working Paper 91-10-043 of 
the Santa Fe Institute. 

Yu, P.L. (1973) A class of solutions for group decision problems. 
Management Science, Vol . 19, pp. 936-946. 

Yu, P.L. (1990) Forming Winning Strategies, An Integrated Theory of 
Habitual Domains, Springer-Verlag, Berlin-Heidelberg. 

Zeleny, M. (1976) Games with multiple payoffs. Int. Journal of Game Theory. 
V01.4 pp. 179-191. 



Wierzbicki, A. P. - 25 - An Experimental Game. .. 

Appendix: a record of playing the game "Humble shall be rewarded" 

Player A: NNNN (an American) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
graduate student, theoretical physics and engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Player B: MMMM (a Polishmen) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
graduate student, computer science and decision support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(this is an example; for further use delete the entries) 

In the table below, enter the number of tokens played in the columns i 
and j. In the column "Winner" enter A. B or D if there is a draw. If the 
winner won by 1 token difference, mark the column "By 1 token". If, addit- 
ionally, the winner played an odd number of tokens, mark the column "Lucky 
chance". The columns "Winning points" and "Addl. (additional) rewards" are 
filled out according to the rules (0, 1 or 2  winning points, 1 yen of 
additional reward for each token not played, 10 yen to the winner and 20 
yen to the loser of a lucky chance round). 

Round 

- 

By 
1 token 

i(A) Lucky 
chance 

- 
1 

2  

3 

4 

j(B) 

=- 

D 

B 

A 

Winner 

1 

1 

3 

Winning points 

1 

4 

1 

2 2 D  

A 

0 .  

0  

2  

0  

Addl. rewards 

B ----- 
0  

2  

0  

0  

A 

4 

4 

2  

3 

B 

4 

1 

4 

3 
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