
Working Paper 
Guaranteed Control of Uncertain 
Systems: Funnel Equations and 
Existence of Regulation maps 

V.M. Veliov 

WP-92-62 
September 1992 

Bll ASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria 

Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313 



Guaranteed Control of Uncertain 
Systems: Funnel Equations and 
Existence of Regulation maps 

V.M. Veliov 

WP-92-62 
September 1992 

Working Papers are interim reports on work of the International Institute for Applied 
Systems Analysis and have received only limited review. Views or opinions expressed 
herein do not necessarily represent those of the Institute or of its National Member 
Organizations. 

EillASA International Institute for Applied Systems Analysis o A-2361 Laxenburg o Austria 

..MU Telephone: +43 2236 715210 o Telex: 079 137 iiasa a Telefax: +43 2236 71313 



Contents 

1 Introduction 

2 Lemma of the type of Filippov 

3 Characterization of the viability property 

4 An existence result 

5 The regulation problems 

6 Approximate regulation 

7 Guaranteed control of uncertain systems 

8 Discretization of regulation inclusions 



Guaranteed Control of Uncertain Systems: 
Funnel Equations and 

Existence of Regulation Maps 

V.M. Veliov 

1 Introduction 

The present paper is a continuation of the paper [28] and, in particular, contains the 
detailed proofs of the statements from the latter. 

The main problem that is considered here is the following one. Let the differential 
inclusion 

i E G(x, t )  + v(t) (1.1) 

presents an uncertain control system. Namely, let G : Rn x [to, TI + Rn be a set- 
valued mapping interpreted as the set of all control forces that can be applied at the 
position (x, t),  and let v(t) E Rn presents an uncertain external force. The value of 
v at the moment t is known only to belong to a given set V(t) C R': 

Given an estimation 

 to) E Xo C Rn 

of the initial position x(to), a target set MT c Rn and a state (viability) constraint 

the aim is to control the system (1.1) by selecting appropriate velocities from G(x, t )  
in such a way that whatever are the initial position (1.3) and the measurable realiza- 
tion v(.) of the uncertainty (1.2) the corresponding trajectory x(.) satisfies the state 
constraint (1.4) ant reaches the target MT at T: 



Exact knowledge of the current state x(t) (and possibly of the current value of the 
uncertainty v(t)) is supposed when choosing the velocity from G(x, t )  at the current 
moment t . 

The rigorous formulation of the problem will be given in Section 7. 

Problems of the above type have been investigated by many authors starting from 
the basic works of Krasovskii (see [14]) in the framework of the differential games. 
A crucial role in these investigations has been played by the notions of weak invari- 
ance (viability property) and invariance of set-valued mappings with respect to a 
differential inclusion [2, 13, 151 

The above mentioned properties ware characterized under different suppositions in 
the terms of appropriate infinitesimal objects like tangent cones or contingent deriva- 
tives (see e.g. [2, 10, 11, 12, 18, 251). An alternative approach, providing a suitable 
basis for constructive theory involves certain generalized differential equations called 
funnel equations [16, 17, 22, 23, 271. The latter approach is exploited in the present 
paper for characterization of the weak invariance (viability) property with respect 
to (1.6), if F is measurable in t and Lipschitz continuous in x. The approach is ex- 
tended to the state constrained case and to the case of weak invariance with respect 
to certain families of differential inclusions, arising whenever F depends on uncertain 
parameters as in (1 .I).  

To be precise, let us consider a family of inclusions 

where A is an abstract set of parameters, x E Rn, t E [to, TI. 

Definition 1. The set-valued mapping W(-)  : [to, TI + Rn is weakly invariant with 
respect to the inclusion 0 E g,(i, x , t )  if for every r E [to, TI and x E W ( r )  there 
exists an absolutely continuous function x(.) : [r, TI I+ Rn such that x ( r )  = x, (1.7) 
is satisfied for a.e. t E [r, TI and x(t) E W(t) for every t E [T, TI. W(.) is weakly 
invariant w.r. to the family (1.7) if it is weakly invariant w.r. to everyone of the 
inclusions in this family. 

In particular, if (1.7) consists of inclusion (1.6) and the pointwise inclusion (1.4), 
where graphY is closed, the weak invariance of W(-)  means that W(.) is weakly 



invariant w.r. to (1.6) and W(t) C Y(t), t E [to, TI. We shall consider also families 
of differential inclusions 

together with (1.4), where an uncertain function v(-) from a given set of functions 
V (= A) stays for the parameter a. In particular, we are interested in the family 
corresponding to the uncertain system (1.1),(1.2), where 

V = {v(.) ; v(.) - measurable,v(t) E V(t) for a.e. t E [to, TI). (1.9) 

Definition 2. The set-valued mapping W(.) : [to,T] + Rn has the stable invariance 
property w.r. to the differential inclusion 

if there exist a constant 6 > 0 and an integrable function p(-) : [to,T] H [0, +w] 

such that for each T E [to, TI and x E W(T) + 6B (B is the unit ball in Rn) every 
solution x(.) of (1 .lo) starting from x at the moment T exists up to the moment T 
and satisfies 

dist(x(t), W(t)) < exp(/: p(s) ds) dist(x, W(T)). (1.11) 

If the above requirements are satisfied for 6 = 0 only, the tube W(-) will be (merely) 
called invariant. 

In Section 5 we prove that for a mapping W(-) that is weakly invariant w.r. to (1.6) 
there exists a sub-mapping @(x, t )  c F ( x ,  t )  such that W(.) has the stable invariance 
property w.r. to the "closed-loop" inclusion (1.10). Since the regulation mappings 
@ that come in use may be discontinuous (u.s.c.) and non-convex valued, Definition 
2 requires a theorem for existence of a solution to the closed-loop inclusion (1.10). 
Such is proven in Section 4. All weakly invariant tubes W(.) are characterized in 
Section 3 as solutions to certain funnel equations. The funnel inequalities introduced 
there as approximate versions of the funnel equations and the lemma of the type of 
Filippov given in Section 2 serve as approximation tools. The regulation mappings 
corresponding to a solution tube of such a funnel inequality ensure "approximate" 
stable invariance of the tube (Section 6). In Section 7 we give a necessary and 
sufficient condition for solvability of the problem of guaranteed control formulated 
above, in terms of the solution of a boundary value problem for the corresponding 
funnel equation. An "approximate" regulation map is defined there, that uses an 
approximation of a solution to this boundary value problem. 



In Section 8 we show that the closed-loop inclusion (1.10), despite of the disconti- 

nuity and the non-convexity of @, can be treated by means of finite difference ap- 
proximations, at least in the case of time-independent weakly invariant sets (viability 
domains). 

For the sake of simplicity and coherence we suppose that the following conditions 
concerning (1.4) and (1.6) are satisfied throughout the paper, despite that some of 
them can be relaxed. 

A l .  F : Rn x [to, T] + Rn is convex and compact valued, t + F(., x) is measurable 
for every x E Rn. For every compact set S C Rn there are a constant m = m(S)  and 
an integrable upper semicontinuous function A(.)  = A ( -  ; S) : [to, TI H R U {+m) 

such that 

IF(x,t)l 5 m (local boundedness) , 
F( t ,  2') c F(x ,  t )  + X(t) lx - XI(  (local Lipschitz condition) 

for every t E [to, T] and x,x'  E S. 

A2. For every compact set So c Rn there is a compact S = S(So) such that if x(.) is 

a solution of (1.6) on an interval [tl,t2] C [to, TI and X ( T )  E So for some T E [tl,t2], 

then x(t)  E int S for every t E [tl ,  t2]. 

A3. grapf Y = {(t, x ) ;  x E Y(t)) is closed. 

We shall consider compact valued tubes W(.) only. Under the above conditions every 
compact valued weakly invariant tube W(.) with closed graph satisfies 

1. W(. )  is compact valued and upper semicontinuous; 

2. there is a constant M such that W(s) c W(t) + M(t  - s)B for every s, t E 

[to, TI, s L t. 

Further we denote by W[to, TI the class of all mappings W(- )  : [to, TI + Rn satisfying 
1) and 2) (each W(-)  with its own constant M). 

Whenever we consider the perturbed differential inclusion (1.8) we suppose that 

A4. V is given by (1.9), where V(.) E W[to,T] is convex valued; the mapping 

F(x ,  t )  = G(x, t )  + V(t) satisfies conditions A1 and A2. 



2 Lemma of the type of Filippov 

In this section we present an extension of a result due to Filippov [9], which estimates 
the uniform distance between an absolutely continuous function y ( . )  and the set 
of trajectories of the differential inclusion (1.6), by means of constant times the 
"discrepancy" 

1; dist (Y ( t ) ,  F ( Y ( ~ ) ,  t ) )  dt 

Instead of a single-valued function y ( . )  we take a mapping X ( - )  E W [ t o ,  TI and use 
as a local measure of the discrepancy of X ( - )  the quantity 

X ( t  - h ) ,  U ( X  - h F ( x ,  t ) ) )  , 
X E X ( ~ )  

where 

H+(P, Q )  = inf { a ;  P c Q + a B )  

is the Hausdorff semi-distance from P to Q. 

Lemma 2.1 Let conditions A1 and A2 be satisfied. Then for every X ( - )  E W [ t o ,  TI 
the function px(.)(.) is integrable on [to, TI. Moreover h can be replaced in (2.1) with 
l / k ,  k + +oo . 

Thanks to the above lemma we can define 

In the case of a single-valued X ( t )  = { y ( t ) )  with absolutely continuous y ( - )  the value 
px(.) coincides with the "discrepancyn in the Filippov's lemma. 

Theorem 2.1 (Extension of the Filippov's lemma.) Let conditions A1 and A2 be 
fulfilled and let X ( - )  E W [ t o ,  TI. Suppose that for some compact set S c Rn 

X ( t )  + exp (loT A(s) ds)  ~ x ( . ) B  c int S ,  t E [to, T] , 

where A ( - )  = A ( - ;  S )  is a Lipschitz constant corresponding to S according to A1 . Then 
there exists a weakly invariant tube W(. )  E W [ t o ,  TI w.r. to (1.6) such that 

~ ( t >  C ~ ( t )  C ~ ( t )  + exp (loT ds) Pxc.1~ 

for every t E [to, TI. 



The essential part of the proof consists of the following proposition that we use in 

the sequel. 

Proposition 2.1 If the conditions of Theorem 1 are fulfilled, then for every T E 

[to, T )  and x E X ( T )  there is a Lipschitz continuous selection x ( - )  of X ( - )  on [T ,  TI 
such that X ( T )  = x and 

for a.e. t E [T ,  TI .  

Remark. The proof of the proposition shows also that the Lipschitz constant of x ( - )  
can be estimated by a constant that is independent of T and x .  

Proofs. 

Proof of Lemma 2.1. Let M be the constant corresponding to X ( . )  according to 
the second requirement from the definition of the set W [ t o ,  TI (see page 4) .  Let S be 
a compact set containing X ( t )  for t E [to, TI and let m the constant corresponding to 
S according to supposition Al. Then 

1 
px,., I -H+(X( t  - h ) , X ( t ) )  + sup IF(x, t)l < M + m 

h+O+ h z ~ X ( t )  
(2.4) 

and px(.)( .)  is bounded. 

Now let us prove the last statement of the lemma. Denote for brevity 

and also 
cp(t, h )  = H + ( X ( t  - h ) , F ( X ( t ) ; t  - h,  t ) ) .  

For 0 < h' < h" one can estimate 

~ ( t ,  h f ' ) ~ ~ + ( x ( t  - h') + ~ ( h "  - h l )a ,  3(x(t); t - h", t ) )  

<H+(X( t  - h f ) , 3 ( X ( t ) ;  t - h', t ) )  + M(h" - h') + m(h" - h') 

='p(t, h') + ( M  + m)(h" - h'). 



Hence 

Suppose that hi + 0 is a monotone decreasing sequence such that 

Let k; be such an integer that hi E [k, t). Then using the last inequality one can 
estimate 

Hence 

which proves the last statement of the lemma. 

As a consequence, the measurability of px(.)(-) would follow from measurability of the 
function p( t )  = p( t ,  l /k )  for every fixed k. To prove the latter, fix a finite or count- 
able family of measurable functions {g;(.)); such that X ( t )  = cl {gi(t)); (Castaing 
representation of X( - ) ,  which is measurable thanks to the upper  emi icon ti nu it^). 
Then 

1 
F ( X ( t ) ; t  - l l k , t )  = cl U(g;(t) - f (g ; ( t ) , t ) )  

i 

and the measurability of the mapping t +- F(X( t ) ;  t - l lk ,  t )  follows from [3, Theorem 
4.21. It remains to mention that measurability of two mappings P(.) and Q(.) implies 
measurability of Ht (P(.) ,  Q(.)), as it follows from Corollary 8.2.13 and Lemma 8.2.12 

[31. Q.E.D. 

Proof of Theorem 2.1. Proposition 2.1 makes the proof straightforward. Actually, 
let x(.) be as in Proposition 2.1. Then (2.3) and the Filippov's lemma (in the form 
presented in [6]) imply the existence of a trajectory y(.) = Y[T, X I ( - )  of (1.6) on [T, TI 
such that 

Now define 

W(t)  = U{Y[T, xl(t) ; T E [to, TI, x E X(T)). 

By its definition W( - )  is weakly invariant with respect to (1.6), and (2.2) apparently 
follows from (2.6), which proves the theorem. Q.E.D. 



Proof of Proposition 2.1. Let S be as in the formulation of Theorem 2.1 and let 
m and A ( - )  be the constants from supposition A l .  Take arbitrarily T E [to, T) and 
x E X(T). According to [29, Proposition 4.11 there is a set A1 C [T,T] of measure 
zero such that every t E (T,T] \ A1 is a Lebesque point to F (x ,  .) for every x E S. 
That is, (because of the uniform boundedness of F) 

for every t E [T, TI \ A1 and x E S. Here and further 

H(P,  Q) = min{H+(P, Q), H+(Q, P)) 

denotes the Hausdorff distance between the compact sets P and Q in Rn. Condition 
A1 implies that if for some t (2.7) holds for every x E S and if X(t) is finite and t is 
a Lebesque point for A(.), then the convergence in (2.7) is uniform in x E S.  Hence, 
one can replace the second argument of H +  in (2.1) with 3 ( t  - h,t) ,  where 

possibly changing px(.)(-) on a set of measure zero. For brevity further we omit the 
subscript in px(.)(.) and px(.). 

Take an arbitrarily small 6 > 0. Let A2 be a set of measure zero which contains A1 
and such that every t E (to, TI \ A2 is a Lebesque point for A(.) and p(.) and X(t) is 
finite. Then for every t E (T, TI \ A2 there is h,(t) E (0, E )  such that 

1 6 
IPP) - j; Jt d s ~  5 

t-h 

and 
1 6 
jlH+ (X(t  - h), 3 ( t  - h, t)) 5 p(t ) + 5 

for every h E (0, hc(t)) (3 is defined by (2.8)). Combining the above two inequalities 
we obtain that 

X( t  - h) c 3 ( t  - h, t )  +Jt  p( s )d sB+  haB 
t-h 

(2.9) 

for every t E [T, TI \ A2 and h E (0, hc(t)). 

Let {A;) be a finite or countable collection of open ( in [T, TI) intervals, such that 

For t E r = [T,  TI \ Ui A; define 



The open (in [T, TI) intervals {A;), {(a,(t), bc(t))ltEr form an open covering of [T, TI. 
Let {a,, b;)):='=, be a finite subcovering. One can assume that it is ordered and minimal, 
i.e. that 

a;+l > a;, b;+l > b;, bj-1 < aj+l, i = 1, .  . . ,p ,  j = 2, .  . . , p  - 1 

Now we shall define a function x,(.) : [T, TI -, Rn, x,(T) = x, in the following way. 

By definition a1 = T and [al, bl] is some of the intervals from {A;). Define x,(bl) as 
an arbitrary element from the set Px(bI)z,  where we use the notation 

P y x  = {y E Y ;  Ix - yI = dist(z,Y)) (2.10) 

for the projection of z on the closed set Y. Define x,(.) as linear on [al, bl]. Thus 
z,(-) is Lipschitz continuous on [T, bl] with a Lipschitz constant M. 

Suppose that z,(.) is already defined on [T, bi-l] as a Lipschitz continuous function 
with a Lipschitz constant M + 2m + E ,  and that xc(bj) E X(bj), j = 1 , .  . . , i - 1. We 
shall extend it on [T, b;] preserving the above properties. Three different cases will be 
considered. 

I) Let (a;, b;) be one of the intervals from {A;). Then define z,(b;) as an arbitrary 
point from Px(b;)z,(b;-l) end extend it as linear on [b;-l, b;]. Clearly, the Lipschitz 
constant is M on [b;-l, b;]. 

2) Let (a;, b;) be an interval (a,(t;), b,(t;)) for some t; E r and let t; 5 b;-l. Then we 
extend z,(.) to [T, b;] exactly as in the case 1)-as linear with a Lipschitz constant 
M on [b;-l, b,]. 

3) Finally, let (a;, b;) = (a,(t;), b,(t;)) and t; > b;-l. Then, according to (2.9) 

Hence zc(bi-l) can be presented as 

where 

zi E X(t;) 



IhI 5 1, 1v;I 5 1. (2.14) 

Set xc(t;) = x; and extend xc(-) linearly on [b;-l, t;]. Then (2.11) together with (2.4) 
implies that xc(-) is Lipschitz continuous with a Lipschitz constant M + 2m + E on 
b;-l,t;]. Finally, extend xc(-) on [t;, b;] exactly as in the case I)  as linear with a 
Lipschitz constant M and such that xc(b;) E X(b;). 

Continuing in the same way we define xc(.) on the whole interval [T, TI. xc(-) is 
piece-wise linear with a Lipschitz constant M + 2m + E and satisfies xc(b;) E X(b;), 
i = 1,.  . . , p. Hence xc(t) E S for t E [T, TI and for all sufficiently small E. Let x(.) 
be a condensation point of {xk(-)) in the uniform metric, x(.) being thus Lipschitz 
continuous with a constant L = M + 2m. From the upper semicontinuity of X ( - )  it 
follows that x(-) is a selection of X(.). Thus, in order to complete the proof of the 
proposition it remains to verify (2.3). 

Let {xk(-) = x ~ , ) ~  be a subsequence that uniformly converges to x(-). According to 
the definition of xk(.) there are points 

I1 
T =s:<s; 5 s y 5  ... I s ,  <s;+~ = T  

(depending on k) such that 

1. Every interval [s:, sy] is of length at most ~k and 

where 

y; E 1; F(x~(s:), S) ds 

(see (2.11),(2.12),(2.13),(2.14)). 

2. The total length of the intervals [s:, S:+~], i = 1, .  . . , m is at most 

since the covering {a;, b;) of [T, TI is minimal. Here J is the set of those indexes 
j for which (aj, bj)  from the definition of xck(.) is of the type (ack(tj), bck(tj)). 

Let t E (T, T )  be a Lebesque point of p(.) at which i ( t )  exists. Then for an arbitrarily 
fixed 6 > 0 one can find h > 0 so small that 



Fix k so large that 
~k < 6h, )Ixk(.) - x(.)((c < 6h. 

Let p, q  E (1,.  . . , m )  be such that 

Then 

For every i E {p, . . . , q )  we have 

Ixk(s:) - x(t)l 5 I x ~ ( s : )  - x(s:)~ + (x(s:) - x(t)l 5 6h + Lh = clh. 

Hence 

H (l: F(xk(s:), s) ds, 1; F(x( t ) ,  s) ds) 5 clh 1: A(s) ds. 

Using this relation and the property 1) we conclude that there is 

E 14 F(x(t) ,  s) ds 

such that 

Moreover, 
1xk(~:) - ~ k ( ~ : l - ~ ) (  I ( L  t & k ) ( ~ :  - s:-l_1), 

which combined with (2.17) gives 

Using the property 2) and (2.15) we estimate the right-hand side by 

lt+h p(s) ds + ch lt+h A(s) ds + 6h2 + 2Lc6h. (2.19) 

Moreover, we have 



Combining (2.16)-(2.20) we estimate 

where E is a constant. Here we can take the limit in h tending to zero, supposing that 
t is a Lebesque point of p(-) and F(x ,  -) for every x E S (we use again [29, Proposition 
4.11). This gives 

d i s t (~ ( t ) ,  F(x(t),  t)) I p(t) + ES, 

which implies (2.3) since S > 0 is arbitrary. Q.E.D. 

3 Characterization of the viability property 

In this section we characterize the weakly invariance property with respect to a differ- 
ential inclusion or with respect to certain families of inclusions (containing point-wise 
inclusions and/or uncertain differential inclusions) by means of funnel equations. 

First consider differential inclusion 

X E F(x ,  t), t E [to, TI (3.1) 

supposing A1 and A2 . If X(.) E W[to, TI satisfies the "funnel" equation 

X( t  - h), U (x - hF(x,t)))  = 0 for a.e.t E (to, TI , 
xEX(t) 

(3.2) 

then px(.) = 0 in (2.1) and Theorem 2.1 implies that X(.) is a wealcly invariant tube 
for (3.1). The inverse is also true. 

Theorem 3.1 X(.) E W [to, TI is weakly invariant w. r. to (3.1) if and only if (3.2) 
is satisfied. 



The approximate version of (3.2) has the form of a "funnel" inequality: 

X ( t  - h ) ,  U ( x  - h F ( x , t ) ) )  5 p ( t )  
x € X ( t )  

for a.e. t E ( to ,  T I ,  where p = J: ~ ( t )  dt is presumably "small". The role of (3.3), and 
the other funnel inequalities below, for "approximaten regulation will become clear 
in Section 7. 

Now let us consider the state constrained case: (3.1) together with 

supposing that A 1  - A 3  are satisfied. In this case the funnel inequality analogous to 
(3.3) has the form 

for a.e. t E ( t o , T ] .  If X ( . )  E W [ t o , T ]  is a solution to (3.5), then X ( t )  C Y( t ) , t  E 

[to, TI ( X ( . ) ,  being u.s.c., is continuous in a dense subset and graph Y is closed). If S 
is a compact set such that X ( t )  c S ,  for t E [ to ,T] ,  and X is the Lipschitz constant 
corresponding to S + B according to Al, then Theorem 2.1 implies the existence of 
an weakly invariant tube W ( - )  E W [ t o , T ]  w.r. to (3.1) such that (2.2) is fulfilled 
with px(.) = J: p ( t )  dt, provided that px(.) is sufficiently small. 

From here we conclude that if X ( . )  E W [ t o , T ]  satisfies the equation 

for a.e. t E ( to,  TI ,  then X ( . )  is weakly invariant w.r. to (3.1),(3.4). The inverse is 
also true. 

Theorem 3.2 X ( . )  E W[to,  TI is weakly invariant w.r. to (3.1), (3.4) if and only if 
(3.6) is satisfied. 

Finally, consider the family consisting of (3.4) and the inclusions 

supposing that A 3  and A 4  hold. The corresponding funnel inequality has the form 



for a.e. t E (to, TI. Let us fix an arbitrary v(.) E V. Then the right-hand side 
of the corresponding inclusion in (3.7) satisfies (3.5) and applying Theorem 2.1 we 
obtain that X( t )  c Y(t) and if px(.) = p(t) dt is sufficiently small, then for every 
v(.) E V there is an weakly invariant tube W(.) = W,(.)(-) E W[to,T] w.r. to the 
corresponding inclusion in (3.7) such that (2.2) is satisfied. As a consequence, if X( - )  
satisfies the funnel equation 

for a.e. t E ( to,T],  then X(.)  is weakly invariant w.r. to the family (3.4), (3.7). 
Moreover, the inverse holds: 

Theorem 3.3 X(-)  E W[to,T] is weakly invariant w.r. to the family (3.4),(3.7) if 
and only if (3.9) is satisfied. 

Further we shall use also the following proposition. 

Proposition 3.1 If X(.)  E W[to,T] satisfies (3.3) with an integrable p(.) such that 
the conditions of Theorem 2.1 are fulfilled, then it satisfies also the inequality 

for a. e. t E [to, TI. 

Equations of the type of (3.2) and (3.6) were introduced in [17] for linear differential 
inclusions. 

Proofs 

Proof of Theorem 3.1. We have to prove only the necessity of (3.2). Let X(.) E 
W[to,T] be weakly invariant w.r. to (3.1). Let S be a compact set containing 
X( t ) ,  t E [to, TI. Take a point T E (to, TI which is a Lebesque point of F (x ,  - )  for 
every x E S and at which the function A( - )  corresponding to S according to A1 is 
finite. Then 

1im sup H (t 1; F(X, s) ds, F(X, T)) = 0. (3.1 1) 
h+O+ zES 



According to [29, Proposition 4.I.l almost every T is such. For an arbitrary 5 E 

X ( T  - h )  there is a trajectory x( . )  of (3.1) on [T - h,  TI such that X ( T  - h )  = 5 and 
x ( t )  E X ( t )  on [T ,  TI .  Thus x = X ( T )  E X ( T )  and 

where m and A( - )  correspond to S according to A l .  The last inclusion together with 
(3.11) implies (3.2). Q.E.D. 

Proof of Theorem 3.2. The sufficiency of (3.6) has already been proven. If X ( . )  
is weakly invariant w.r. to (3.1),(3.4), then it is weakly invariant w.r. to (3.1) and 

(3.2) is fulfilled, which together with X ( t )  c Y( t )  implies (3.6). Q.E.D. 

Proof of Theorem 3.3. Again we have to prove only the necessity of (3.9). Let 
X ( . )  E W [ t o ,  TI be weakly invariant w.r. to (3.4),(3.7). As in the proof of Theorem 

3.1, take an arbitrary t E (to, TI that is a Lebesque point of F ( x ,  -) for every x E S ( S  
is a compact containing X ( t ) ,  t E [to, TI ) .  Let Mv be the constant corresponding to 
V ( . )  according to the definition of W[to, TI (see page 4 )  Take an arbitrary v E V ( t  - h) .  
From Proposition 2.1 applied to the mapping F - {O} ,X ( . )  = V ( - )  it follows that 
there is a selections v( . )  of V ( - )  on [t - h,  TI which is Lipschitz continuous with a 

constant Mv (since pv(.)(s) - Mv).  Then exactly as in the proof of Theorem 3.1 we 
obtain 

X ( t  - h ) ,  U ( x  - h F ( x , t )  - hv( t )  
x € X ( t )  

I h e w ) ,  

where 8 is independent of v( . )  and tends to zero with h. Hence 

X ( t  - h )  + hv,  U ( x  - h F ( x , t ) )  5 hO(h) + ~~h~ 
x € X ( t )  

end since v E V ( t  - h )  is arbitrary we obtain (3.9). Q.E.D. 



Proof of Proposition 3.1. Let t E [to,T) be a Lebesque point of A(-), p(.) and 

F(x ,  .), x E S, at which X(t) and p(.) are finite. Take an arbitrary x E X(t) .  
According to Proposition 2.1 there is a Lipschitz continuous selection x(- )  of X(.) 
such that 

d i s t (~ ( s ) ,  F(x(s) ,  s ) )  l p(s) 

for a.e. s E [t, TI. According to the remark after Proposition 2.1 the Lipschitz 
constant L of x(.) can be assumed independent of x E X(t) .  Moreover, thanks to A1 

ol(h) = H(F(X, t),  l+h F(X, s )  ds) 

can also be thought independent of x E X(t )  + hLB (see the first paragraph of the 
proof of Proposition 2.1). Thus we have 

where o(h)/ h and ol(h)/ h tend to zero with h. This implies the desired result, since 
x(t + h) E X ( t  + h). Q.E.D. 

4 An existence result 

This section deals with existence of a solution in a class of differential inclusions 
with U.S.C. and, possibly, non-convex-valued right-hand sides. Well known examples 
show that such a differential inclusion does not have a solution, in general. Existence 
results requiring some additional properties like monotonicity or cyclic monotonicity 
were proven in [I,  4, 51. Here we focus on a specific class of differential inclusions that 
will turn out to contain the closed-loop inclusions of the type of (1.10) that will be 
considered in the next section. A brief comparison with the above mentioned results 
will be given in this section before the proofs. 

Let us start with the differential inclusion (1.6) supposing that conditions A1 and 
A2 are satisfied. We also introduce two functions $ : Rn x R H (-oo, +oo) and 
cp : Rn x R H (-00, +oo] that are supposed to satisfy the following conditions: 



i) $ is bounded and there are constants L, and Lt such that 

$ ( X I ,  t ') - $ ( x ,  t )  I L,llx - x'll + Lt(t' - t )  

for every x,x' E Rn, t , t f  E [ to ,T] ,  t' L t .  

ii) cp satisfies 
lim cp(x1, t') 5 cp(x, t )  

x l -bx  
tl-bt + 

for every x E Rn, t E [ to ,  T ) .  

Further we denote by 

$ ( x  + hy, t + h )  - $ ( x , t )  
D-$(x ,  t ;  y )  = h 

h+O+ h 

the lower Dini derivative of II, in the direction of ( y  , I ) .  Because of (4.1) D-$(x ,  t ;  y )  5 
LXIIY l l  + Lt. 

Now define 

a(., t )  = { Y  E F ( x ,  t ) ;  D-$(x ,  t ;  Y )  l cp(x, t ) )  (4.3) 

and consider the differential inclusion 

Theorem 4.1 Let diferential inclusion (1.6) satisfy conditions A1 and A2, let So c 
Rn be a compact set and S = S (So )  be as in A2 and let a(., t )  defined b y  (4.3) be 
nonempty-valued on S for almost every t E [to, TI .  Claim: for each T E [to, T )  and 
x E So diferential inclusion (4.4) with initial condition X ( T )  = x has a solution on 
[ T ,  TI ,  every solution is extendible up to the moment T and the set of all solutions is 
compact in C [ T ,  TI .  

Clearly the above theorem is interesting only if the function II, is non-differentiable 
and non-convex with respect to x (otherwise would be convex valued). Of this type 
are the applications given below. 

Let a tube W(. )  E W [ t o , T ]  be given, let S c Rn be a compact set containing W ( t )  
in its interior for t E [to, T I ,  and let A ( - )  be the Li~schitz constant corresponding to 
S according to A l .  Define 



Proposition 4.1 Let (1.6) satisfy conditions A1 and A2 and let W(-)  E W[to, TI 
be weakly invariant. Then the claim in Theorem 4.1 holds for differential inclusion 

(4.4) with given by (4.3), (4.5) and (4.6). 

The above proposition outlines one application of Theorem 4.1 that will be used in 
the next section. If W(t)  E W is a closed set then for 1C, given by (4.5) and x 4 W 
we have 

x - z  
D-$(x,t; y) = min (- 

ZEPWX I X  - Z I  , Y),  
where 

P w x  = {w E W; 1x - W I  = dist(x, W))  

is the projection of x on W. Now one can define the function cp in a different way as 
follows: 

m a x z ~ p ~ z  mi%,F(x,t)(-, Y )  if x 4 W(t),  
cp(x,t) = 

if x E W(t). (4.7) 

The right-hand side of (4.4) now takes the form 

@(x, t )  = {y E F(x,  t);  (zo - x, y) 2 min max (z - x, t) 
ZEPWX €€F(x,t) 

for some zo E Pwx} (4-8) 

and is apparently non-empty. Theorem 4.1 can be applied to obtain the following 
proposition. 

Proposition 4.2 Let (1.6) satisfy conditions A1 and A2 and let W be closed. Then 
the claim in Theorem 4.1 holds for differential inclusion (4.4) with given by (4.8). 

In the particular case F(x ,  t )  = dist(x, W)L? (4.4) becomes 

and Proposition 4.2 implies existence of a solution to this inclusion. This result follows 
also from [4, Proposition 21 and [I,  Theorem] in combination, since the right-hand 
side is sum of a cyclically monotone operator and a continuous function. However, a 

mapping given by (4.8) is non necessarily of this type (even in the time-invariant 
case), as the following example shows 

Example. Let n = 2, W = {(2,0),(0,2)} and F(x)  = co{(O,l),(-1,1.25)}. Here the 
corresponding mapping defined by (4.8) does not contain any sub-mapping that is 
sum of a cyclically monotone one and a continuous function. 



Proofs 

Proof of Theorem 4.1. Let T and xo be fixed as in the formulation of the theorem. 
Let S = S(So) be a compact set such that every trajectory x(-)  of (1.6) on [T,T] 
starting from xo satisfies x(t) E int S for t E [T, TI. We shall modify the mappings 
F, 9 and cp in the following way. Take a compact set such that S c int 3. Let y(.) 
be a Lipschitz continuous function on Rn such that 

and let 

Because of A1 and the above definitions, there are a constant m and an integrable 
function i(-) such that F is bounded by h in Rn x [to, TI and is Lipschitz continuous 
w.r. to x for fixed t with a Lipschitz constant i ( t ) .  Define 

Obviously 6(-, t )  is also nonempty-valued, now on Rn, for all t E [T, TI \ Ao, where 
meas A. = 0. 

For each x and t E [T, TI \ A. fix arbitrarily some y(x, t)  E 6 (x , t ) .  Denote by A a 
set of measure zero that contains A. and such that every t E [T, T )  \ A is a Lebesque 
point (from the right) of F (x ,  .) for every x E Rn (we use [29, Proposition 4.11). 

Take an arbitrary h E (0,0.5). According to (4.9) for every x E Rn, t 4 A there is 
a (x ,  t )  > 0 (depending also on h) such that 

There is a finite or countable collection of open (relative to [T, TI) intervals {(pi, 9;)) 
such that 



We shall define a function x h ( - )  on [ T ,  TI in the following way. 

Denote so = T ,  xh(sO)  = XC, and suppose that x h ( - )  is already defined on [ T ,  s k ] ,  
sk E [T ,  T ) .  Consider the following two cases. 

1 )  sk E (p; ,  q;) for some i. Then define 

2)  sk 4 U;(p;,  q;). Then consider 

ti = sup{a = a ( x ,  t )  ; J x  - xh(sk) l  5 %It - s k ( ,  t  4 A,  0 5 t  - sk 5 a h ) .  

The set in the right-hand side is nonempty since it contains a ( x h ( s k ) ,  s k ) .  Hence 
& 2 a ( x h ( s k ) , s k )  > 0. Let Z k ,  gk and a k  be such that 

According to (4.10) a k  5 h.  Denote 

- 
and let (according to (4.12)) g;(-)  be a measurable selection of F(Zk ,  -) on [ S k ,  S k  4- a k ]  

such that 

Then define 

s ~ + ~  = gk + a k ,  xh (gk )  = Z k ,  x h ( - )  - linear on [sk, g k ] ,  
(4.15) 

x h ( t )  = Z k  + slk g ; ( ~ )  ds  for t  E [ i k ,  sk+l] - 
Repeat the above recursive procedure until for some N it happens that s~  2 T - h. 
We shall prove that such an integer N actually exists. Suppose the opposite, namely 
that the sequence { s k )  converges to some t < T - h ,  and consider the following two 
cases. 

i) t E (p i ,  q;) for some i. Then sk E (p; ,  q;) for some (sufficiently large) k and by 

definition sk+l = q; > i, which is a contradiction; 

ii) f 4 U;(p;,  q;). Denote xk = xh ( sk ) .  From (4.13), (4.15) and A 2  we have 



which means that {xk} is also convergent and for the limit point ji. and every k it 
holds 

( Z  - xkJ  < h ( f -  sk). (4.16) 

Let cr = a(5,f). For a sufficiently large k 

i- sk < ha,  

which together with (4.16) gives tik > a and from (4.13) 

On the other hand a k  < t- sk < h a  < a12 since h E (0,0.5), which is a contradiction. 

Thus we have SN > T - h for some N = N(h). Let us extend xh(-) to [T,T] as 
xh(t) = xh(sN), t E [sN,T]. The family { x ~ ( - ) } ~  is equicontinuous and uniformly 
bounded, because of the definition of P (observe that xh(.) is Lipschitz with a constant 
fi on the intervals [sk, gk], according to (4.13)). Let 

for a sequence hk + 0 and a continuous x(.). We shall prove that x(- )  is a trajectory 
of 

i E P(x,  t )  (4.17) 

on [T, TI. For this purpose let us estimate 

D = 1' dist(ih(t),  P(xh(t), t ))  dt. 

Denote by I the set of those i for which xh(-) is defined in [s;, s ;+~] in the second 
way ii), and let 1 = (0, . . . , N} \ I (we set SN+I = T). Then using (4.13) we obtain 

< C[Ji' dist(=, P(xh(t) ,  t ) )  dt + Jsitl dist(g;(t), P(xh(t),  t)) dt] 
; € I  s' 

S; - S; S i  

S i t 1  

5 C(2fi(S; - s;) + dist(g:(t), P ( i ; ,  t ) )  dt + li A(t)fi(t - S;) dt) 
; € I  



5 2&(T - r ) h  + h i n r  j ( t )  dt + (fi + l ) h  <_ ch. 
T 

According to the Filippov's lemma [3] and the closedness of the set of trajectories of 
(4.17) in C[T, TI this estimate implies that x(.) is a trajectory of (4.17). 

We have X(T) = xo E So and p(x ,  t )  = F(x,  t )  for x E S ,  which implies that 
x(t) E int S and that x(.) is a trajectory of (1.6). Moreover, for every sufficiently 
large k we have xhk(t) E S ,  which means that the sign - can be removed from the 
letters a, F and cp in the above considerations. 

Now we shall prove that x(.) is a trajectory of (4.4). Since (4.4) has to be proven for 
a.e. t ,  let us fix an arbitrary t E (7, T) for which x(t) exists and belongs to F(x( t ) ,  t). 
Take a > 0 and let w(a) be such that 

Let k be so large that xk(.) = xhk(-) satisfies 

We shall estimate 
A = +(x(t + u), t + Q) - +(x(t), t). 

Let p and q (depending on k) be such that 

Then using (4.1) we obtain 

where c = 2L,(.iTz + I )  + 2Lt. 

Let J be the set of those indexes i from {p, . . . , q - 1) for which xk(.) is defined in 
the second way ii), and let J = {p, . . . , q - 1) \ J. We have 



+ C ( L z I z i  - xk(si)l + Lt lsi - g i J )  
i E  J 

+ C ( L z I x k ( ~ i + l )  - xk(si)(  + L t J ~ i + l  - sil) + ca2 
i € J  

I C('$(Zi + aiyi,  di + a;) - '$(Zi,  g i ) )  
i€ J 

+ C ( L , ( f i  + 1)hka; + Lthka;) + Lthk + co2 
ic J 

Since y ( . )  satisfies (4.2), for the given t there is a monotone decreasing function 
Q ( a )  + 0 with a + 0 such that 

for every (x ' ,  t') in a neighborhood of ( x ( t ) ,  t ) ,  t' 2 t .  Hence 

Observe that (4.19) holds even if cp(x(t) ,  t )  is negative, because one can easily estimate 
0 < a - x i €  a; 5 4a2,  but in this case cs depends on the value of cp(x(t) ,  t )  (otherwise 
C 3  = c l ) .  

On the other hand, using (4.18) we get 

Combining this with (4.19) we obtain 

which implies that i ( t )  E @ ( x ( t ) ,  t )  and the proof of the existence is complete. 



Now we shall prove the compactness of the set of trajectories of (4.4) starting from 

a given point (7, xO), T E [to, T), x0 E So. Clearly, an absolutely continuous function 
x(- )  is a solution of (4.4) if and only if it is a solution of (1.6) and satisfies the 
inequality 

D-$(x(t), t; 5( t))  5 p(x(t),  t )  for a.e. t E [T, TI. (4.20) 

Thus we have to  prove only that the set of solutions of (1.6) starting from a given 
point and satisfying (4.20) is closed in C[r,T]. Let {xk(.)} be a sequence from this 
set that converges uniformly to x(.) (thanks to A1 and A2 x(.) is also absolutely 
continuous). 

Below we apply to  the function ((t) = $(x(t), t )  the following assertion: if ( ( a )  satisfies 
the condition 

((t') - ((t) 5 L(t' - t )  for t' 2 t (4.21) 

then ((t) exists for a.e. t and 

This follows from the fact that ( is of bounded variation, and thanks to  (4.21) can 
be presented as a sum of a monotone increasing absolutely continuous function and 
a monotone decreasing function, both known to satisfy (4.22). 

If p(x(t) ,  t )  = +m for some t then (4.20) is fulfilled. Take an arbitrary t for which 
p(x(t) ,  t )  = a < +m and (( t)  exists ((4.21) obviously follows from (4.1)) and chose 

an arbitrary E > 0. 

From (4.2) it follows that p(x(.), -) is measurable and bounded by a + E on [t, t + 61 
if 6 is sufficiently small, and 

t + h  
( ( t  t )  L / ~ ( x ( s ) ,  S) d ~ .  

h-h+ h t 

Thus for all sufficiently small h > 0 we have 

and 

For every such h there is ko = ko(h) such that for k > ko 



Then 

Since cp(xk(s ) , s )  5 a + 2c for all sufficiently large k we can take limes supremum 
with respect to k and continue the above inequalities by 

which implies (4.20). Q.E.D. 

Proof of Proposition 4.1. The upper semicontinuity of A( . )  and the properties 1) 
and 2 )  from the definition of W [ t o ,  TI  a age 4 )  imply that $ and cp defined by (4.5) 
and (4.6) satisfy (4.1) and (4.2). Thus, in order to apply Theorem 4.1 we have to 
prove only that a(-, t )  is nonempty-valued on S for a.e. t  E [to, TI .  

Let T E [ t o , T )  be a Lebesque point of A ( . )  and F ( x , - ) ,  x E S (we use again [29, 
Proposition 4.11, according to which almost every T is such). Fix an arbitrary x E S 
and denote i = Pw(,)x. Since W ( - )  is weakly invariant w.r. to (1.6) there is a 
trajectory i(.) of (1.6) such that i ( ~ )  = i and i ( t )  E W ( t )  for t  E [ T ,  TI .  Then 

Using the Lebesque property of T we have 

1 
lim -dist(i + h i ,  W ( T  + h ) )  = 0 

h--rO+ h 

for some zj E F (i, 7 ) .  

Let y E F ( x ,  T )  be such that 

Then for any wh E Pw(t+h)(i + h i )  we have 



1 
5 I;m -dist(i + he, W(T + h)) + (y - $ 1  

h-+O+ h 
5 A(~)dist(x, W(T)),  

which implies y E @(x, T).  Q.E.D. 

5 The regulation problems 

Consider the differential inclusion 

3i: E F(x(t) ,  t ) ,  t E [to, TI (5.1) 

supposing that conditions A1 and A2 are satisfied. Let W(.) E W [to, T] be a weakly 
invariant tube w.r. to (5.1) and let S c Rn be a compact set containing W(t), t E 
[to, TI, in its interior. We focus on the following problem. Find a sub-mapping (set- 
valued feedback control) @(x, t )  c F(x , t )  such that the tube W(-) has the stable 
invariance property w.r. to the closed-loop inclusion 

i E @(x, t). (5.2) 

The ideas for the solution of this problem go back to Krasovskii (see [14]) in the 
framework of the differential games. A formal solution in the framework of the 
differential inclusions was given in [la] in the case of a convex valued tube W(.). We 
stress the fact that the stable invariance property is not implied in general by the 

invariance property (which corresponds to S = 0 in Definition 2, Section 1). The 
reason is that discontinuous non-convex valued mappings i9 are involved and neither 
the standard existence theory nor the standard perturbation analysis for differential 
inclusions are applicable. That is not the case in [la] where @ is convex valued due 
to the convexity of W(t). 

Let us define the mapping iP as in (4.3) with $J and cp given by (4.5) and (4.6). 

Theorem 5.1 Under the suppositions A1 and A2 the tube W(.) has the stable in- 
variance property w.r. to (5.2). 

The definition of stable invariance requires two things: 1) existence and extendibil- 
ity of the solutions starting "near" graph W(-);  2) relation (1.11). 1) follows from 
Proposition 4.1, while 2) follows from the following proposition. 



Proposi t ion  5.1 Let under the conditions of Theorem 5.1 x(- )  be a trajectory of 

(5.2) on some interval [tl , t2] and let x(t) E in tS  fo r  t E [tl , t2].  Then 

dist(x(t), W(t) )  < exp X(s) ds dist(x(tl), W(tl)) .  (1: ) 
The definition of the regulation mapping @ by (4.3), (4.5), (4.6) is not quite explicit 
since it uses the Lipschitz constant A(-) and the Dini derivative of +. However for 
practical purposes it is often sufficient to know some non-empty subset of @(x, t ) .  
Such can be defined in a constructive way as the set of all "extremal" directions 
from F ( x ,  t )  with respect to W(t)  (extremal aiming strategy of Krasovskii). Namely, 
define 

@,(x, t )  = U Arg max (z - x, y)  , 
~ € P W ( , ) "  y€F(x , t )  

where Argmax means the set of all points at which max is attained. Clearly @, is 
non-empty valued, u.s.c. in x and @(x, t )  = F(x ,  t )  if x E W(t). 

Proposi t ion  5.2 Let A l ,  A 2  be satisfied, let W(.) E W[to,T] be a weakly invariant 
tube w.r. to (5.1) and let S C Rn be a compact set containing W(t)  in its interior, 
t E [to, TI. Then there is a set R C [to, TI of measure zero such that 

for every x E S and t E [to, TI \R, where @,(x, t )  is defined by (5.3) and the regulation 
mapping @ is given by (4.3), (4.5), (4.6). 

Since @, coincides with F on graph W(.), the existence and extendibility of the solu- 
tions of the next inclusion starting from W(to) is ensured and we have 

Corollary 5.1 Under the assumption of Proposition 5.2 the tube W(-)  is invariant 
with respect to the inclusion 

x E @,(x, t )  . 

In the case of a constant weakly invariant tube W(t)  z W (viability set) one can 
define as in (4.8) 

@o(x, t )  = {Y E F ( x ,  t);  rnax (20 - x, y) 2 
zoEPwx  

min max (t - x , O  
~ E ~ W X  ~ E F ( x , ~ )  

(5.5) 

Obviously @,(x, t )  C Qo(x, t).From propositions 4.2 and 5.1 we obtain 



Corollary 5.2 W has the stable invariance property w.r. to the inclusion 

;. E @ O ( X )  t )  . (5.6) 

The difference between @, and can be illustrated by the following example in R2. 

Example. 

F(0.0) = c0 {(;) 7 (;) 9 (;)I 7 w = {(A) 7 (;)I * 

In this case 

Proofs. 

Theorem 5.1 is a consequence of propositions 4.1 and 5.1. In the proof of Proposition 
5.1 we use the auxiliary result presented in Lemma 5.1 below, versions of which have 
been used by many authors. We present the proof of our version for completeness. 

Lemma 5.1 Let A ( - ) ,  p(.) and e(.) be nonnegative integrable functions on [to, TI and 
g ( . )  be defined as 

where a is a nonnegative constant. Let f ( . )  : [ to ,T]  H R be an arbitrary function 

satisfying the conditions 

i) f (to) = a; 
ii) for every s, t E [to, TI ,  s 5 t ,  

iii)for almost every t E [to, T )  for which f ( t )  > g ( t )  

I, ( t  + h,  - ( t )  5 A(t) f ( t )  + ~ ( t ) .  
h-+O+ h 

Then f ( t )  5 g( t )  for every t E [to,T] 



Proof. Clearly the function j ( t )  = max{ f (t),  0) satisfies the above conditions i) - 
iii) (since g(.) is nonnegative) and f ( t )  I g(t ) implies f (t ) I g(t).  Therefore we may 
assume that f ( t )  > 0 for every t E [to, TI. Then ii) implies that f (-) is of bounded 
variation. 

Using well known facts from the theory of the functions with bounded variation we 
can present f (-) = fl  (.) + f2(-) ,  where fl (.) is an absolutely continuous function and 
f2(.) is monotone decreasing function that is differentiable almost everywhere and 
f i( t)  = 0 for a.e. t E [to, TI. Actually, f (-)  can be presented as 

f ( t )  = f ( t o )+  V + f  - v - f ,  
[ to ,tl [ to $1 

where V+ and V- denote the positive and the negative variation on [to$], respec- 
tively. Both functions in the right-hand side are monotone increasing, the firs one is 
absolutely continuous, as it follows from ii). The second function can be presented 
as a sum of an absolutely continuous function and a monotone increasing function 
having its derivative equal to zero for a.e. t. The latter function (with - sign) is just 
the function f2(.). 

Suppose that f (t) > g(t) for some t > to. From ii) and the continuity of g(-) it follows 
that there is an interval (T, t] in which f ( s )  > g(s) and f (T) = g ( ~ ) .  For 6 E [T, t] we 
have 

= f (s) d.9 I l ( h ( s )  f (s) + E(s)) ds. 

The Gronwall inequality together with f (T) = g ( r )  implies f ( t)  I g(t),  which is a 

contradiction. Q.E.D. 

Proof of Proposition 5.1. We shall apply Lemma 5.1 to the function 

Condition i) is fulfilled with a = dist(x(tl), W(tl)) .  Condition ii) follows from the 
absolute continuity of x(-) and the definition of W[to, TI (page 4). iii) follows from 
(4.3),(4.5),(4.6) and 

l;m f ( t  + h, - f ( t )  = D-$(z(t), t; i ( t ) )  5 X(t) f ( t) ,  
h+O+ h 



which holds for each t at which i ( t )  exists and satisfies (5.2) and x(t) 4 W(t)  (the 
last is apparently fulfilled if f (t) > g(t)). Then the proposition follows from Lemma 
5.1 with ~ ( t )  - 0. Q.E.D. 

Proof of Proposition 5.2. In the proof it will be convenient to use the modification 
in the form of (3.10) of the funnel equation (3.2). Under the conditions of Proposition 
3.1 (applied for p(t) = 0) W[to, TI(.) satisfies for a.e. t the equation 

Now let x E S and let t E [to,T) be such that (5.9) holds. We can suppose that 
x 4 W(t), since otherwise the claim is trivial. Take an arbitrary y E @,(x, t )  and let 
z  E Pw(,)x be such that 

( Z  - x, y) 2 ( z  - x, g )  for every E F(x ,  t). (5.10) 

From (5.9) we obtain the presentation 

z  = xh - hth + ~ ( h ) ,  E W(t + h), th E F(xh,  t + h), o(h)/h -+ 0. 

Since lxh - x 1 5 dist(x, W(t))  + hm + o(h) we have 

( x - 2 1 ~  -6) I o(h) 
dist(x, W(t))  

+ h(t)(dist(x, W(t)) + hm) + 
5 v(x1 t )  + hX(t)m + o(h)/h, 

where th E F(x ,  t )  is such that 

((h - t h  I 5 H(F(xh,  t), F (x ,  t)). 

Taking the limit we obtain D-+(x, t; Y) 5 v(x, t). Q.E.D. 



6 Approximate regulation 

The results presented in the preceding section have their "approximate" analogs. 
The essence of the issue is the following. Usually there is not a priori given any 
weakly invariant tube, such should be found first (by solving the corresponding funnel 

equation from Section 3 or based on some other viability conditions like in [24] or 
whatsoever) and then used for constructing of a regulation mapping. So the best 
one can hope is to use some "approximation" of a weakly invariant tube. In this 
section we show that a proper meaning of "approximation" to a weakly invariant 
tube can be given in the terms of the funnel inequalities introduced in Section 3, and 
that the constructions of regulation mappings from Section 5 when applied to such 
approximate weakly invariant tubes result in reasonable approximate solutions to the 
regulation problem. In this sense the regulation mappings from Section 5 are correct 
(with respect to approximations). 

To be specific, let us consider the following regulation problem: given the differential 
inclusion (5.1), the state constraint (1.4), an initial set Xo and a target MT c Rn 
find a regulation mapping @(x, t)  c F(x ,  t )  such that any solution to the closed-loop 
inclusion (5.2) starting from a point of Xo at to satisfies the state constraint (1.4) 
and hits the target MT at T. 

Suppose that conditions A1 - A3 are satisfied and that MT is compact. Then ac- 
cording to A2 there is a compact set 3 that contains the values of all the trajectories 

of (5.1) on [to,T] which reach the set MT at T. Let S = 3 + cB and let A ( - )  be the 
Lipschitz constant from A1 corresponding to S. 

Let W(.) E W[to, TI be a solution to the funnel inequality (3.5) satisfying also the 
end condition 

X(T) c M .  

where p = J: p(t) dt is such that 

for some 6 2 0. Define the regulation mapping @ as in (4.3),(4.5),(4.6), but with a 
slightly modified 9: 



Theorem 6.1 Let Xo C W(to) + 623. Then every solution x(-)  of digerential inclu- 
sion (5.2), with iP defined by (4.31, (4.5), (6.1), starting from a point from Xo exists 
up to the moment T and satisfies 

dist(x(t), Y(t)) 5 exp ( J t  A(s) ds) (dist(x(to), W(t0)) + J t  p(s) ds) 
t o  t o  

for every t E [to, TI, and 

dist(x(t), M) 5 exp (1; ds) (dist(x(to)7 w(to)) + J T  P(S) ds) 
t o  

Moreover, as in Section 5 the set iP(x, t )  defined above contains all "extremal" direc- 
tions of F(x,  t )  with respect to W(t): 

Proposition 6.1 Under the suppositions of this section there is a set fl c [to,T] of 

measure zero such that the set iP,(x, t )  defined by (5.3) is contained in iP(x, t )  (defined 
in Theorem 6.1) for every x E S + 23 and t E [to, TI \ fl. 

Proofs 

Proof of Theorem 6.1. The existence and extendibility requirement follows from 
Proposition 4.1. We need to prove only a corresponding modification of Proposition 
5.1. As in the proof of the latter we can apply again Lemma 5.1, this time for the 
functions 

f ( t )  =dist(x(t) ,W(t)) ,  ~ ( t )  = p(t). 

to obtain the estimations in Theorem 6.2. Q.E.D. 

Proof of Proposition 6.1. The proof is similar to that of Proposition 5.2. Equation 
(5.9) should be replaced with (3.10) and all consequent changes are obvious. Q.E.D. 

7 Guaranteed control of uncertain systems 

In this section we return to the problem of guaranteed control of an uncertain system 
from which we started in Section 1. Consider again the model of an uncertain control 
system 

; E G(x, t )  + v(t), t E [to, TI, (7.1) 



interpreted as in Section 1. Throughout this section we suppose that conditions A 3  
and A4 are satisfied and that Xo is compact. Our aim is to define a control strategy 
(regulation map) @(x, t ,v)  c G(x,t) ,  x E Rn, t E [to, TI such that for every v(.) E V 
and xo E Xo 

1) every solution of the differential inclusion 

starting from xo is extendible to [to, TI; 

2) every solution of (7.6) on [to, T] starting from xo satisfies (7.4) and (7.5). 

Theorem 7.1 A regulation map @ satisfying 1) and 2) exists if and only if the funnel 
equation (3.9) has a solution W(-) E W[to,T] satisfying the boundary conditions 

If W(.) is as in the above theorem according to Theorem 3.3 W(-)  is weakly invariant 
with respect to the family of inclusions (7.1) (parametrized by (7.3)) and (7.4) (that 
is, W(-) is a stable bridge in the terminology of Krasovskii). Then one can apply 
the constructions from Section 5 for F = G + v in order to obtain a regulation map 
solving the problem formulated above. Namely, if S is a compact set containing 
W(t), t E [to, TI, in its interior and A(.) is the Lipschitz constant of F corresponding 
to S (see A l ,  page 4), define 

for x $! W(t) and @(x, t, v) = G(x, t )  for x E W(t). According Theorem 5.1 W(-)  has 
the stable invariance property w.r. to (7.4),(7.6) for every v(.) E V, which, together 
with (7.7) and (7.8), implies 1) and 2). 



The above definition of the regulation map @ requires knowledge of the current value 
of the disturbance v(.). However, the set @(z, t, v) contains a subset that is indepen- 
dent of v. Actually, the mapping 

@, (z , t )=  U Arg max ( z - z , y )  
z € P w ( r ) ~  

u € G ( x , t )  

is such as it follows from (5.3) and Proposition 5.2 applied for F = G + v. 

The main point of this section is to elaborate the concept of stable invariance and 
funnel inequalities in order to  obtain "approximate" regulation maps on the basis of 
a known approximation to an weakly invariant mapping W(-). We use the results 
from Section 6 to  obtain the following. 

Theorem 7.2 Let W(-) E W[to, TI be a solution to the funnel inequality (3.8) with 
an integrable function p(.). Let W(.) satisfy the boundary conditions 

Denote 

where A(.) is the Li~schitz  constant of F (see A l ,  page 4) corresponding to a compact 
set S containing W(t), t E [to, TI in its interior, end let W(t) + r ( t ) B  C S, t E [to, TI. 
Then there is a regulation map @(z, t, v) C G(z, t )  such that for each v(-) E V and 
zo E Xo every solution z(-)  of (7.6) starting from zo is extendible to [to,T] and 
satisfies 

z(t) E Y(t) + r( t)B,  

z(T) E MT + r(T)B. 

A regulation map @ can be defined as in (7.9) but with the function cp given by (6.1) 
(that is, with X(t)dist(z(t), W(t)) + p(t)) in the right-hand side of (7.9). 

Proposition 6.1 and the independence of @, of v give that @,(z, t) c @(z, t, v) for 
every 2, t and v E V(t). 

Remark. Clearly, in the above consideration we suppose that the state z of (7.1) 
is directly and exactly observable. The much more complicated case of incom- 
pletelinaccurate measurement will be considered in a forthcoming paper. 



8 Discretization of regulation inclusions 

The regulation mappings @ defined in Section 6 are non-convex valued and only 
U.S.C. in x, in general. This gives rise to the question how to simulate numerically 
the trajectories of the closed-loop system (1.10). 

It is known [7, 21, 301 that the set-valued version of the Euler discretization scheme is 
convergent when applied to a differential inclusion with continuous and convex valued 
right-hand side. This means that the mapping "h ~ T r a j ( h ) "  is continuous at h = 0 
in appropriate natural Hausdorff metric, where h is the discretization step, Traj(0) 
is the set of trajectories of the differential inclusion (starting from certain initial 
point) and Traj(h), h > 0, is the set of trajectories of the corresponding discrete 
inclusion. Upper semicontinuity of the above mapping was proven under different 
conditions (weaker than continuity of the right-hand side) and for different classes of 
discretization schemes (see [8, 19, 20, 261 and the bibliographies there). However, the 
convexity of the right-hand side plays a crucial role in the above mentioned results. 
In this section we claim upper semicontinuity of the mapping " h ~ T r a j ( h ) "  for the 
closed-loop differential inclusion (1.10), provided that the regulation mapping @ is 
defined by (4.8) (that is, in the case of a constant set W). 

So we consider the differential inclusion 

with @ given by 

@(x, t)  = {y E F(x ,  t);  min (x - z, y) 5 max min (x - z, 0 )  
Z E P W X  Z E P W X  < ~ F ( x , t )  

supposing that conditions A 1  andA2 are fulfilled, that W is closed and that, in 
addition, F is continuous with respect to t. Given an integer N ,  introduce the 
uniform grid tf = to + kh, h = (T - to)/N, and consider the finite difference formula 

with the initial condition x r  = xo. The choice of the velocity yr E @(sf ,  t f )  at 
every step is arbitrary. Denote by xN(.) the piecewise linear interpolation of the 
points ( t f ,  xf ) ,  k = 0,. . . , N.  

Theorem 8.1 Under the suppositions of this section the sequence { x ~ ( . ) ) ~  is pre- 
compact in C[to, TI and every condensation point x(.) is a solution of (8.1). 



Remark. The convergence of the Euler scheme for (8.1) in the case of a tube W(.) 
dependant on the time (say, with i9 defined by (4.3),(4.5),(4.6)) is still an open 
problem. 

Proof  of Theo rem 8.1. Since xN(-)  is an Euler approximation corresponding to 
the differential inclusion (1.6), the condensation point x(-)  exists and is a solution to 
(1.6) (see e.g. [7, Corollary]). Thus we have to prove for a.e t the inequality 

where cpo is defined (c.f.(4.7) as 

cpo(x,t)= max min ( z -x , ( ) .  
z E P w x  t € F ( x , t )  

Let S be a compact set containing x(t), t E [to, TI, in its interior and let m correspond 
to S according to A l .  Take arbitrarily t E (to,T) such that ?(t) exists. If x(t) E W 
then both sides of (8.3) are equal to zero. Suppose that x(t) 6 W and let a1 > 0 be 
such that t + a1 < T, a1 < 1 and 

dist(x(s), W)  > 0 for every s E [t, t + all. 

Obviously cpo is u.s.c., therefore there exists a monotone increasing function w(.) : 
[O,+oo) I+ [O,+m), lim,,o+w(cr) = 0 such that 

for x E S ,  s E [ t , t  +al]. 

Suppose that (8.3) is not fulfilled and 7 > 0 is such that 

0 = min (x(t) - z ,x ( t ) )  L cpo(x(t),t)+r. 
z € ' P w x ( t )  

Take an arbitrary a E (0, all such that 

and fix N such that h < a2 and ((x(.) - xN(.)ll < a2. Since x(t) E int S we can 
suppose that xN(s) E S for s E [t, t + a]. Let p and q (both depending on N and a) 



Since y f  E @ ( x f ,  t f ) ,  there is z f  E P W x f  such that 

N N  N N  
( ~ r - ~ k , Y k )  < ( P 0 ( x k , t k ) ,  k = O , - - . , N .  

From (8.4) and (8.5) we obtain for k = p, . . . , q 

Now consider 

where c is a constant and we have used that z f  E P w x f .  From (8.7) 

N - = l X k  + hyk N N N  2 N 2  
lxk+l - z f12  = 12; - zPl2 + 2 h ( z k  - zk , Y k  ) + h I Y ~  I 

I 1xr - z f12  + 2 h f l -  h y  + h 2 m 2 ,  

which combined with (8.6) and (8.8) gives 

On the other hand 

A = l x ( tF )  + ( t r  - t F ) 3 ( t )  - z f 1 2  - I x ( t f )  - z;12 + 0 2 ( 4  

= I x ;  + ( t ,  - t p ) i ( t )  - Z f 1 2  - ll;) - Z r 1 2  + 0 3 ( 6 )  

N N 2  N 
IS ;  - z f12  - J X ,  - zP 1 + ~ U ( X ~  - ~ f , q t ) )  + o ~ ( u )  

I 2 a ( x ( t )  - z f ,  ~ ( t ) )  + 0 5 ( 4 ,  

where o;(a)  are functions such that o ; ( a ) / a  + 0 when a + O+. Combining with 
(8.9) we obtain that 

where 9 ( a )  + 0. If z is a condensation point of {z:} when a tends to zero and 
correspondingly, N tends to +oo (notice that q depends on N and a ) ,  then z E 
P w x ( t )  and (8.10) implies 

f l  - 712 > ( x ( t )  - z , W ,  

which contradicts the definition of f l  by (8.5). Q.E.D. 
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