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Abstract 

We develop a variant of an interior point method for solving two-stage stochastic linear 
programming problems. The problems are solved in a deterministic equivalent form in 
which the first stage variables appear as dense columns. To avoid their degrading influ- 
ence on the adjacency structure AAT (and the Cholesky factor) an iterative method is ap- 
plied to compute orthogonal projections. Conjugate gradient algorithm with a structure- 
exploiting preconditioner is used. 

The method has been applied to solve real-life stochastic optimization problems. Pre- 
liminary computational results show the feasibility of the approach for problems with up 
to 80 independent scenarios (a deterministic equivalent linear program has 14001 con- 
straints and 63690 variables). 

Key words: interior point method, two-stage stochastic programs, conjugate 
gradient algorithm. 





Preconditioned Conjugate 

Gradients in an Interior Point 

Method for Two-stage Stochastic 

Programming 

Jacek Gondxiol 

1 Introduction 
We are concerned with the solution of two-stage stochastic linear optimization problem 

minimize crxl  + E,(cT(w)x2) 

subject to Toxl = bl (1) 

T(w)x1 + W(u)x2 = b 2 ( 4  

x1,x2 2 0, 

where XI  E Rnl and 2 2  E Rn2 are decision vectors at time 1 and 2, respectively; cl, To 
and bl are cost function, constraint matrix and right hand side vector for time 1 decisions; 
c ~ ( w ) ,  T(w), W(W), b2(w) are the cost function, constraint matrices and right hand side 
vector for time 2 decisions which are unknown at time 1. We assume an underlying 
probability space (0, F, P), w E R and we write T(w), W(w), b2(w) to indicate that 
they are random and depend on the outcome w. Further, we assume that R is finite, say 
with S elements. With each element s E (1, . . . , S ) ,  a scenario can be associated, i.e. a 
realization c2(w), T (a), W(w), b2(w). 

Two-stage stochastic programs represent an important class of real-life problems that 
arise from many different applications from optimal control through financial and net- 
work optimization. Their common feature is that we make some immediate decisions (at 
time I ) ,  subject to first stage constraints, without the knowledge of future random events. 
After the random variables are realized, further decisions at time 2 are made, subject to 
additional constraints and incurring additional costs. The overall objective is to minimize 
costs at time 1 plus expected costs at time 2. 

There exist several solution methods for two-stage stochastic linear problems: spe- 
cializations of the simplex method [8, 9, 131, different variants of decomposition schemes 
[2, 3, 24, 30, 31, 321 and other computationally attractive approaches [26, 29, 341. 

The progress in interior point methods (IPMs) for linear programming [19, 141 makes 
them also attractive candidates, worth to be tried. An advantageous feature of IPMs 
is that they converge very rapidly, in 20 to 50 iterations, almost independently of the 
problem size. Their major disadvantage is sometimes very large computational cost of a 
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single iteration that is in practice dominated by an orthogonal projection of a vector onto 
a null space of the (scaled) linear constraints operator. All efficient general purpose inte- 
rior point codes [14] compute these orthogonal projections through a direct approach - 
(Cholesky or Bunch-Parlet) symmetric factorization [7]. There exist structure-exploiting 
specializations of these direct approaches for stochastic optimization. 

The method of [4, 51 handles the whole block of the first stage columns with the Schur 
complement mechanism. The approach proved to be efficient for problems in which the 
number of first stage variables, nl is not excessive. Additionally, as shown in [16], it 
~arallelises in a scalable way. 

The method of [6] applies symmetric, indefinite, Bunch-Parlett decomposition to the 
augmented least squares system and delays pivots corresponding to dense, first st age 
columns to prevent excessive fill-in. It parallelises promissingly and generalizes to multi- 
stage problems. 

Let us also mention quite a different approach [20] that reformulates two-stage prob- 
lems to another deterministic equivalent form with all dense columns split into shorter 
pieces. However, the method preserves efficiency only for problems with a small number 
of realizations for which the number of nonanticipativity constraints (that link replicated 
first stage variables) is not too large. 

In the approach presented in this paper we propose to use an iterative method to 
compute orthogonal project ions, namely, the conjugate gradient algorithm. Clearly, to 
make the approach competitive we need a good preconditioner that "understands" and 
exploits well properties of a two-stage problem. Fortunately, such a preconditioner can 
be found for these problems. 

Careful analysis of the special structure of a two-stage stochastic optimization prob- 
lem (done in Section 3) naturally leads to the choice of a block-diagonal preconditioner, 
separable with respect to  different realizations of the first stage variables. Our precondi- 
tioner is described in detail in Section 3.2. To make the paper self-contained, in Section 2 
we briefly recall a primal-dual predictor-corrector interior point method and conjugate 
gradient algorithm for solving linear system of normal equations. The method presented 
in this paper has been implemented and applied to solve Sen's telecommunication net- 
work design problem [33]. Section 4 addresses our preliminary computational experience. 
Finally, in Section 5 we give our conclusions. 

2 Primal-dual method and conjugate gradient al- 

gorithm 

In this section we recall fundamentals of the (infeasible) predictor-corrector primal-dual 
met hod and the conjugate gradient algorithm applied to solve normal equations that arise 
in orthogonal projections. 

2.1 Primal-dual algorithm 

The first theoretical results for the primal-dual algorithm come from [21, 181. Descriptions 
of its efficient implementations can be found in [19, 221 and in the survey [14]. 

Let us consider a primal linear programming problem 



minimize cTx, 
subject to Ax = b, 

x + s = u ,  
5,s > 0, 

where c, x, s, u E Rn, b E Rm, A E Rmxn and its dual 

T maximize bT y - u W,  

subject to ATy + z - w = C, 

z, w > 0, 

where y E Rm and z, w E Rn. 
Next, let us replace the nonnegativity of constraints in the primal formulation with 

logarithmic barrier penalty terms in the objective function. It gives the following loga- 
rithmic barrier function 

The first order optimality conditions for (4) are 

Ax = b, 
X + S  = u, 

~ ~ y + z - w  = c 7 

X Z e  = pe, 
SWe = pe, 

where X, S, Z and W are diagonal matrices with the elements xj,  sj, zj and wj,  respec- 
tively, e is an n-vector of all ones, z = pX-le, and p is a barrier parameter. 

A single iteration of the basic primal-dual algorithm makes one step of Newton's 
method applied to the first order optimality conditions (5) with a given p and then p is 
updated (usually decreased). The algorithm terminates when infeasibility and comple- 
mentarity gap are reduced below a predetermined tolerance. 

Having an x , s , z , w  E R;, y E Rm, Newton's direction is obtained by solving the 
following system of linear equations 

where 

( b  = b - AX, 
Ju = U - x - s ,  

and T 
Jc = c - A  y - z + w ,  

- 
A O O O O  
1 0 1 0 0  
O AT O I -I 
Z O  O X 0  
0 O W 0  S - 

denote the violations of the primal and dual constraints, respectively. 

- - 
J b  

J u 

J c 

pe - X Z e  
- pe - S W e  - 

- - 
Ax 

AY 
As  
AZ 

- Aw - 

, = 



The set of linear equations (6) reduces to the augmented system 

or further to the normal equations system 

2 T (AD A )Ay = AD2r + h, (8) 

where 

o2 = (x-I z + S-I w)-l, 
r = t, - ~ - ' ( p e  - XZe)  + S-'(pe - SWe) - S-'W~,, (9) 
h = tb. 

Computing (Ax,  Ay) from (7) or Ay from (8) is usually (when a direct approach [7] 
is applied) divided into two phases: factorization of the matrix to  some easily invertible 
form followed by solution that exploits this factorization. 

Once direction (Ax,  Ay, As, Az, Aw) has been computed, the maximum stepsizes cup 
and c u ~  that maintain nonnegativity of variables in the primal and dual spaces are found. 
Next, a new iterate is computed using a step reduction factor c u ~  = 0.99995 

After making the step, the barrier parameter p is updated and the process is repeated. 

2.2 Predictor-corrector technique 

Factorization of the matrix (7) or (8) is usually at least an order of magnitude more 
expensive than the solution. The factorizations of systems (6) often take 60% to  90% of 
the total CPU time needed to solve a problem. It is thus natural to look for a possibility 
of reducing their number to the necessary minimum, even at the expense of some increase 
of a cost of a single iteration. 

The predictor-corrector technique proposed by Mehrotra [22] decomposes a direction 
vector (Ax,  As, Ay, Az, Aw) (denoted with A)  into two parts 

where A, and A, denote affine-scaling and centering components, respectively. The term 
A, is obtained by solving (6) with p = 0 and A, is the solution of equation (6) with the 
right hand side vector 

(0,0,O, pe - XZe,  pe - S W ~ ) ~ ,  

where p > 0 is some centering parameter. The term A, is responsible for "optimization" 
while A, keeps the current iterate away from the boundary. 



Let us observe that the affine scaling (predictor) direction A, solves the linear system 
(6) for the right hand side equal to the current violation of the first order optimality 
conditions for (2)-(3), i.e. with p = 0. This direction is usually "too optimistic" - if a 
full step of length one could be made in it, the LP problem would be solved in one step. 
Predictor-corrector makes a hypothetical step in this direction. The maximum stepsizes 
in the primal, cup, and in the dual, c u ~ ,  spaces preserving nonnegativity of (x, s) and 
(z, w), respectively are determined and the predicted complementarity gap 

is computed. It is then used to determine the barrier parameter 

where g = xTz + sTw denotes current complementarity gap. 
For such value of p ,  the corrector direction A, is computed 

and, finally, the direction A of (11) is determined. 

2.3 Conjugate gradient algorithm 

- - 
A O O O O  
I O I O O  
0 0 I -I 
2 0  O X 0  
0 O W 0  S - - 

As mentioned in the previous section, linear system solutions needed in order to compute 
the predictor (6) and corrector (13) terms of a Newton direction A costitute the bulk of 
work in the primal-dual method. Both these equation systems reduce (see, e.g., [14]) to 
the symmetric but indefinite augmented system of linear equations (7) and further to the 
symmetric and positive definite normal equations system (8). 

- - 
0 
0 
0 

pe - AX,AZ,e 
pe - AS,AW,e - - 

Almost all general purpose primal-dual implementations apply direct approach [7] 
(symmetric factorization) to one of the abovementioned linear systems. Naturally, the 
same factorization is used twice when solving systems to obtain predictor and corrector 
terms. 

Iterative methods for solving (8) could never prove really competitive [17, 231 in the 
context of solution of general large-scale linear programs. The reason for that came always 
from the difficulty of finding an inexpensive preconditioner. However, in some cases, 
as e.g., when the LP constraint matrix is specially structured (or when the Cholesky 
factorization is ~rohibitively expensive), a good structural preconditioner can be found. 
This st atemerlt applies, in particular, to large scale multicommodity network optimization 
128, 271. 

It is more natural to apply the conjugate gradient algoritm to the positive definite 
normal equations system (8) than to the augmented system (although the latter is also 
possible [lo]). Let us consider the following symmetric, positive definite system of linear 
equations 

HP = 9, (14) 

, (13) 

- - 
Acx 
ACY 
Acs 
AG 

- Acw - 

= 



where H = A D ~ A ~ ,  A E Rmjn, p,q E Rm. (We assume that the underlying stochastic 
program has linearly independent constraints, i.e. rank(A) = m.) 

It is natural to interpret the conjugate gradient algorithm as a method to solve the 
unconstrained (positive definite) QP problem 

minimize ( !jpT H~ - qTp), (15) 

Equation (14) is the first order necessary optimality condition for (15) and due to positive 
definitness of H, the sufficient condition as well. 

In each step of the conjugate gradient algorithm [ll] we choose the search direction 
dk to satisfy 

d C ~ d ;  = 0, 2 = 1,2, ..., k - 1, (16) 

i.e. we force dk to be H-conjugate to dl, d2, ..., dkdl. Next, we minimize QP objective (15) 
along dk, which leads to the choice of stepsize ak. A formal presentation of the conjugate 
gradient algorithm is given in the figure below. 

Conjugate gradient algorithm 

Input 
H = A D ~ A ~ :  normal equations matrix, 
q: right hand side of (14); 

Parameters 
E: required accuracy of solution, 
k,,,: the maximum number of c.g. iterations; 

Initialize 
Po = 0 
To = q 

Algorithm 
for k = 1, ..., kmax 

if Ilrk-lll 5 E then 
P = Pk-1 
quit 

else 
T T 

P k  = r k - i r k - 1  I r k - z r k - 2  (PI = (9 
dk = r k -1  + Pkdk-1 (dl = ro )  
Q k  = r:-lrk-l/GHdk 
pk = Pk-1 + ~ k d k  
r k  = r k -1  - a k H d k  

endif 

Let us observe that since H is positive definite, there exist at most m H-conjugate 
(hence linearly independent) directions dk. Consequently, conjugate gradient algorithm 

6 



converges in at most m iterations (if exact arithmetic were used). More precisely, the 
conjugate gradient algorithm converges in mo iterations [ll] where mo is the number of 
different eigenvalues of H. 

Unfortunately, matrices AD2AT in interior point methods show a tendency to be 
extremely ill conditioned. Hence, pure conjugate gradient algorithm applied to (14) shows 
hopelessly slow convergence. Additionally, the use of finite precion results in round-off 
errors which sometimes make it impossible for the algorithm to converge. 

To remedy this we use a preconditioner, i.e. a matrix C such that 

is well conditioned. In such case equation (14) is replaced with 

The following conditions are usually imposed on the preconditioner C: 

1. effort to compute C is significantly smaller than that of computing direct factoriza- 
tion of H, 

2. C is easily invertible, 

3. H has small number of different eigenvalues. 

The first requirement is a necessary condition to make preconditioned conjugate gradient 
algorithm (PCG) competitive with the direct approach. The second one aims at reducing 
the cost of its single iteration. Satisfying the third one ensures fast convergence. 

The reader will easily find out that a preconditioned conjugate gradient algorithm 
presented in the figure below is nothing else than a conjugate gradient algorithm applied 
to (18). 



Preconditioned conjugate gradient algorithm 

Input 
H = c - ~ A D ~ A ~ C - ~ :  (preconditioned) normal equations matrix, 
@: right hand side of (18); 

Parameters 
E :  required accuracy of solution, 
k,,,: the maximum number of c.g. iterations; 

Initialize 
fi0 = 0 

Algorithm 
for k = l ,  ..., kmaz 

if l ( i k - l l l  < E then 
11 = F k - 1  

quit 
else 

P k  = fF- l r"k- l  / ~ F - ~ f k - 2  ( P I  = O >  
Jk = i t - ,  + (J l  = io) 
at = i E l i k - l / d T ~ $  
j k  = F k - 1  $ a k J k  - - 
ik = ik-l - a k H d k  

endif 

Note that an implemented algorithm exploits the decomposition 

in multiplications B i k .  For example, the denominator in the definition of a k  is computed 
as folows 

where 
iik = D A ~ c - ~ ~ ~  E R ~ .  

In other words, in order to avoid an explicit formulation of the adjacency structure, 
whenever possible we take advantage of the decomposition of H. 

3 Preconditioner for two-stage problem 

We are now ready to take a closer look at the structural properties of a deterministic 
equivalent formulation of a two-stage problem and to derive a specialized preconditioner. 



3.1 Special structure of the two-stage problem 

In a deterministic equivalent formulation of (1) we associate matrices Ti and W; with the 
scenarios i = 1,2, ... , S and write the following second stage LP constraints 

Tixl + Wixli = b2;. (22) 

This leads to  the deterministic equivalent formulation of the problem 

minimize cTx1 + c?=, (cZx2i) 
subject to  Toxl = bl 

Tixl + Wix2; = b2i, i =  1 ,2  ,..., S, (23) 

xl 1 0, 2 2 ;  2 0, i =  1 ,2  ,..., S. 

Now (23) is a large-scale linear program with a block-angular constraint matrix 

Let us observe that without the first block of columns matrix A becomes block diago- 
nal. Unfortunately, the first stage columns cause dramatic fill in the adjacency structure 

This has an immediate negative influence on the Cholesky factor of AAT that becomes 
almost completely dense regardless of the sparsity of A. 

To avoid this degrading influence [4, 51 suggest special treatment of the whole block 
of the first stage columns T:  it can be seen as a symmetric rank-nl (nl  is the dimension 
of X I )  corrector to a diagonal (hence very sparse) adjacency structure of the second stage 
columns. In this approach the first stage columns are taken into account through the 
Schur complement mechanism. An advantage of it is a possibility of an almost scalable 
parallelization due to  complete separability of computations over independent scenarios. 
A clear disadvantage is a need to make an assumption that all Wi matrices have full 
row rank. This assumption is seldom met in practice, which manifests itself in a serious 
instability of the Schur complement approach. Another disadvantage is a fast growth of 
computational effort with the number of the first stage columns, nl .  

We hope to be able to  overcome most of these difficulties with the use of an iterative 
method to solve equations with AD2AT. (Moreover, we will never formulate this matrix 
explicitly.) 

3.2 Block-diagonal precondit ioner 

For ease of presentation in this section we shall omit primal-dual scaling matrix D2 and 
we shall refer to the adjacency matrix of the form AAT (instead of AD2AT). 



Let us partition matrix A  into submatrices T  and W  corresponding to the first stage 
variables and the second stage variables, respectively 

where 

T  = ] ... and W W 1  1 .  
Ts w s  

With this notation, the adjacency matrix becomes 

It seems quite natural to require the preconditioner to share block diagonal structure of 
W W T  

C  = (29) 

Let us observe that such a preconditioner offers a reasonable compromise for the require- 
ments 1-3 of Section 2.3. It obviously satisfies conditions 1 and 2. Unfortunately, in 
general it may be far from meeting requiremet 3. Let us now examine more carefully the 
matrix H of (17) 

where 

Diagonal blocks C; of the preconditioner are (sparse) Cholesky factors of some matrices 
closely related to the diagonal elements of AAT in (25). Namely, 

C O C ~ = T O T ~  and C ; C ~ = ~ T ; T ~ + W , W ~ ~  i = I  ,..., S, (31) 

where a  is a real number from interval [0, I.]. Note that this particular form of the 
preconditioner aims at improving the numerical properties of a single realization (scenario) 
and it "does not see the problem as a whole". The conjugate gradient algorithm remains 
responsible for merging information available from scenario preconditioners to  get the 
solution of (14). 

We suppose it is constructive to analyse the influence of parameter a  on the precon- 
ditioned matrix H .  



The choice of cu = 0 corresponds to only preconditioning the second stage contribution 
to (28). Simple calculations show that in such case 

with 

Two additional requirements have to be satisfied for such a preconditioner to be successful. 
First, To and every W; have to have full row rank to make C; of (31) well defined. Secondly, 

" " T  to prevent negative influence of the symmetric rank-nl corrector TT on the conditioning 
of H one would like the columns of 5? be orthogonal to each other. If the latter condition 
were satisfied, then matrix H would have at most nl + 1 different eigenvalues. (The reader 
can easily check that each column of 5? is then an eigenvector of H.) 

Unfortunately, due to  ill conditioning of A D ~ A ~  matrix, the preconditioner of (31) 
with cu = 0 is far from satisfying the second requirement. 

The choice of cu = 1 in the preconditioner (31) corresponds to quite a different space 
transformation. In contrast to the previous preconditioner, this one does not try to cluster 
all except nl eigenvalues of H around the same value of 1. Instead, it introduces variable 
scaling that brings all diagonal blocks of H to identity matrices and (hopefully) keeps the 
off-diagonal blocks small. Although the eigenvalues of H are not clustered, the conjugate 
gradient algorithm is supposed to converge faster due to better scaling of H .  

In this case the always present ill conditioning of AD2AT matrix manifests in too 
large a contribution of the neglected off-diagonal blocks c,~'T,T~c;~. This, in turn, 
slows down the convergence of the conjugate gradient algorithm. 

We tested experimentally several preconditioners of type (31). Apart from extreme 
values cu = 0 and cu = 1, we tried the preconditioner for many intermediate values of a. 
The best practical convergence of the algorithm has been observed for cu E [0.01,0.:1]. The 
results presented in the following section have been obtained with cu = 0.01. 

4 Numerical results 

The method described in this paper has been verified computationally. The predictor- 
corrector primal-dual code HOPDM (Higher Order Primal Dual Method) of [l, 121 has 
been extended to handle two-stage stochastic pro rams. The results reported in this 
section have been obtained when it was run on a 8 UN SPARC 10 workstation with 32 
MBytes of memory. HOPDM is written in FORTRAN 77 and has been compiled with 
the SUN F77 compiler; option -0 has been used. 

We report on the performance of the algorithm applied to solve the Sen's [33] telecom- 
munication network design problem. The dimensions of the problem are ml = 1, n l  = 
90, m2 = 175 and n2 = 705. Table 1 summarizes the characteristics of the different 
variants of the problem. 



Table 1. Characteristics of Sen's problems. 

Table 2 offers some quantitive data regarding the solution process with the method 
presented in this paper. It contains the number of iterations to reach 8-digit accurate 
solution, CPU time in seconds and the average and maximum numbers of conjugate 
gradient iterations to solve the underlying normal equations. We required the precision 
E = lo-' of orthogonal projections and we allowed at most k,,, = 6 x nl = 540 PCG 
iterations to be done. 

The analysis of results collected in Table 2 shows that although the method is not 
very efficient, it is able to solve even nontrivial problems with a considerable number of 
scenarios in a still acceptable time. 

Columns of A 
885 

1680 
3270 
6450 
8040 

15990 
23940 
3 1890 
39840 
47790 
55740 
63690 

Problem 
SEN.l 
SEN.2 
SEN.4 
SEN.8 
SEN. 10 
SEN.20 
SEN.30 
SEN.40 
SEN.50 
SEN.60 
SEN.70 
SEN.80 

A clear advantage of it are the very small storage requirements that only linearly grow 
with the number of scenarios. The largest problem solved SEN.80 needed about 20MBytes 
of memory to be run. Moreover, a dominating term in these requirements was a set of 
"long" vectors used to handle the logic of the primal-dual method and work arrays needed 
to implement the conjugate gradient algorithm. The storage for the preconditioner was 
only 5% of it since every diagonal block C; had 1650 nonzero elements, so even for an 80- 
scenarios problem, the preconditioner needed only 80 x 1650 = 132,000 double precision 
numbers (this is equivalent to about 1 MByte of memory). 

Fast growth of the number of PCG iterations with an increase of the number of 
scenarios is a discouraging result. We hoped to keep this number around nl = 90 but 
this was the case only for the number of scenarios that did not exceed 20. Unfortunately, 
for a larger number of scenarios conjugate gradient algorithm revealed slower convergence 
showing the limits of the block-diagonal preconditioner presented in this paper. The 
required accuracy E = lo-' could not have been obtained even within k,,, PCG iterations. 
Due to this lack of precision in the calculation of orthogonal projections, in case of two 
largest problems SEN.70 and SEN.80 computations were terminated with only four and 
three exact digits of optimum, respectively. 

Scenarios 
1 
2 
4 
8 

10 
20 
30 
40 
50 
60 
70 
80 

Finally, we would like to comment on a surprizing fenomenon that we observed. The 
number of PCG iterations changes always in the same manner in seccessive iterations 
of the primal-dual method. It is small in the beginning (definitely smaller than nl). It 
increases to its maximum in the "middle" of optimization, say between getting the first 
accurate digit of optimal result and getting about 4-5 digits accurate. In the following, 
final phase of optimization, this number rapidly drops to less than n1/2. This means 
that the block-diagonal preconditioner lacks accuracy in the middle of optimization but 
continuously improves with the progress towards optimum. 

Rows of A 
176 
35 1 
70 1 

1401 
1751 
350 1 
5251 
7001 
8751 

10501 
12251 
14001 



Table 2. Solution statistics for Sen's problems. 

* - only four and three digit optimum attained, respectively. 

Problem 

SEN.l 
SEN.2 
SEN.4 
SEN.8 
SEN.10 
SEN.20 
SEN.30 
SEN.40 
SEN.50 
SEN.60 
SEN.70 
SEN.80 

A natural explanation of such behavior is that the closer to the optimum, the clearer 
separation into active and inactive constraints and bounds can be observed. A conse- 
quence of it is a good separation of diagonal elements of D2 into those which converge 
to zero and those which remain large (see, e.g., [14], Section 5). The contribution of 
small elements of D2 to AD2 AT becomes negligible and the effective rank of (first stage) 
columns that the preconditioner has to take into account decreases very fast. 

5 Conclusions 

We have presented a new approach t o  the solution of two-stage stochastic optimizat'ion 
problems that applies preconditioned conjugate gradient algorithm to compute projections 
in the interior point method. The particular block-an ular structure of the two-stage 
problem has been exploited to define an efficient bloc f -diagonal preconditioner. The 
method has been shown to be practicable when applied to  solve a real-life optimization 
problem known from the literature. 

Solution 

Although the method does not offer fast convergence, it has several advantages e.g.: 
storage efficiency and a straightforward generalization to  multi-stage stochastic programs. 
Let us also observe that almost all linear algebra operations in it can be separated into 
tasks that depend only on a single scenario and interact very little with each other. Thus 
the method proposed can probably be parallelized in a scalable way (see, e.g., [15]). 

Iters 
11 
12 
15 
2 1 
22 
30 
3 7 
43 
5 1 
54 

55* 
56* 

Preconditioned c.g. iterations 
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CPU time 
18.2 
50.4 

145.5 
491.7 
729.1 

2877.0 
7383.0 

13276.6 
26960.8 
29123.8 
42854.8 
51171.3 

Average 
28 
39 
50 
61 
6 7 
98 

223 
240 
256 
264 
293 
309 

Maximum 
4 1 
62 
65 
79 
9 1 

193 
540 
540 
540 
540 
540 
540 
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