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Recent work in stochastic programming has mostly been aimed at the design of so- 
lution procedures and the development of accompanying software; an overly brief review 
of the present state-of-the-art is provided in $1. This effort should be continued and ex- 
panded, and should remain the central concern of the research in stochastic programming. 
However, to support the application of stochastic programming in a practical environment, 
there are a number of fundament a1 questions that still go begging for appropriate answers. 
This paper, based on my lecture at the International Conference on Stochastic Program- 
ming in Udine (Italy) in 1992, takes stock and goes through a list of the challenges that 
must be met if one is going to have the adequate technical tools to validate the stochastic 
programming model in the context of decision making under uncertainty, and to justify 
the approximations that must be accepted to render the problem solvable by existing or 
projected computational means. 

1. Algorithmic procedures 

As already mentioned, remarkable progress has been made during the last few years in the 
development of solution procedures for stochastic programming problems. Certainly the 
expanded capacity and the ever increasing celerity of computers have played a role in these 
advances, but also much of the credit has to go to the development of new techniques, the 
setting up of data structures, and not in the least, to the ingenuity of those that have been 
involved in the writing of the software. In very broad terms, software and algorithmic 
development in the field is in the following state: 

1. There are now a number of general purpose subroutznes, even commercial level 
software, for problems of the following type: With 

= ( A  . . . , A b ) for I = 1, . . . , L, 

one is interested in the solution, in particular in the first stage solution X I  = (x: , . . . , xf ), 
of the following optimization problem: 

.& 
1=1 t=1 

t 

subject to C A:,x: = bf ,  t = l ,  ..., T; l = l , . . . , L ,  
r=l 



Such problems are known as mult is tage ( l inear)  recourse problems with discretely dis- 
tributed random elements. The constraints xi = x: if <'  =< k are the nonant ic ipa t ive  

+ t  + t  
restr ict ions that reflect the fact that decision at time t can only depend on the observation 
made up to stage t .  

Usually, = . . - 51 - - - = <[, i.e., there is no randomness associated with the first stage 
data, and then, one must also have x: = - .  . x: - = x f ,  i.e., the first stage decision doesn't 
depend on <. The motivation for modeling decision problems as stochastic programs comes 
mostly from the search for a "robust" first stage decision, i.e., one that will put the decision 
maker in a rather good position whatever, or almost whatever, be the the outcome of future 
events . 

2. There are a number of algorithmic procedures that can be applied in quite general 
situations: quasi-gradients methods, stochastic decomposition and certain methods based 
on the aggregation principle. These procedures can't usually compete, at least not at their 
present stage of development, with procedures that take advantage of the specific structure 
of the problem (linearity, for example), but they often provide the only possible approach 
in certain specific instances. 

3. Finally, there are a number of methods tailored to specific classes of applications: 
like the use of logarithmic penalties for problems with chance-constraints, or extended 
linear-quadratic techniques for (discrete time) stochastic control problems, and so on. 

The potential user has a rather rich choice of techniques, but not many modeling tools 
are available, both at the theoretical and computational level (preprocessing, e.g.). He has 
to confront rather complex issues like how to give to uncertainty a probabilistic description, 
or how to include the attitude of the decision maker towards risk, or still, how will the 
gathering of information be incorporated in the decision making model. Although rather 
sophisticated models can be build for each one of these components of a decision under 
uncertainty problem, the rules of the game are that it must be done so that a computational 
approach remains possible! Certainly, approximations will enter the picture in a significant 
manner, but there are also many other questions that need further investigation. 

2. Modeling decision making under uncertainty. 

The components of a bare bones stochastic programming model are 

- a decision vector that must satisfy certain constraints: x1 E XI ;  

- a random variable ( whose value will only be observed after xl has been selected; 

- an evaluation (cost, possibly) of the decision in terms of the observed outcome. 

At a more operational level, this involves 

a. a cost function f lo(xl)  + Q(<,xl)  =: f (< ,x) ,  with flo(xl) ,  the immediate costs asso- 
ciated with the choice of X I ,  and Q(<, X I )  the future costs; 

b. the probability distribution P of the random variable ( about which one may have 
only partial information, usually because there is a lack of statistical data; 



c. and, decision criteria, that can take one of the following forms: 

- an appraisal function, v : R -+ R, leading to the following formulation, 

- probabilistic constraints, such as 

- multicriteria, tracking objectives, and so on. 

In theory, at least, one should be able to rely on utility theory to always reduce the 
problem to one of maximizing the expectation of a utility function. But, such a utility 
function is often very difficult to assess, and many decision makers do not necessarily view 
their objective as one of maximizing. Think, for example, about the theory developed 
around the concept of "satisfycing." The modeler might be induced to introduce con- 
straints, and when these constraints involve random quantities, it leads to probabilistic or 
chance constraints. The stochastic programming model with joint chance constraints then 
reads: 

min f1o(x) 

fl i(x) < 0, i = 1 , .  . . ,s ,  

prob [ fli((,x) 5 0, i = s + l , .  . . , m ]  5 a. 

The inclusion of such constraints can be motivated by 

- contractual requirements fixing the reliability level of a given system; 

- innate knowledge of the level of unreliability that will be accepted by customers, the 
public, managers, etc.; 

- convenience of formulation that doesn't require the sometimes involved calculations 
required to determine future (or recourse) costs. 

However one should realize that whatever be the reason that led the modeler to the 
inclusion of chance constraints, they need to be "evaluated." In one way or another this 
means identifying a model where the chance constraints have been replaced by a (recourse) 
cost function. The question then becomes one of exploring the relationship between various 
stochastic programming models. So far, there have been very few examples of investigations 
of this type, consult for example [37, 91. There is one result relating stochastic programs 
with simple recourse and stochastic programs with (separable) chance constraints. 

Let's consider the following two problems: 

min ( c ,  x) 
x 

such that (ai, x) = Pi, i = 1,. . . , s, 

p r ~ b [ ( t ~ , ~ ) > J ~ ] > a ~ ,  i = s + l ,  ..., m, 

x 2 0. 



and 

Suppose both problems are solvable. Let xCC be an optimal solution of the stochastic 
program with chance constraints (CC) and assume that the chance constraints are active 
at xcc. Then xCC is also an optimal solution of (RP)  if 

where rlc is the (optimal) multiplier associated with the chance constraint 

prob  t ti,^) 2 ti] 2 Q i  

On the other end, if xrp is an optimal solution of the stochastic programs with simple 
recourse (RP) ,  then xrp is also an optimal solution of (CC) if 

where 
rTP = (-ti,vrP), vrP E aEQ(xrP). 

The proof follows rather directly from writing down the optimality conditions for these 
two problems. 

This result provides a way to evaluates the "cost" to be attached to shortages as a 

function of the ai. Although, it only covers a very restricted class of models, it demon- 
strates that there is a "duality" between chance constraints and "recourse" (or penalty) 
costs. The reference to duality isn't arbitrary; the standard dual of a stochastic program 
with recourse involves constraints that must be satisfied in the average (a  probabilistic 
constraint). 

Another example in the same vein comes from the popular Markowitz model for 
portfolio management. An investor has a choice between various financial instruments 
whose rate of return is uncertain. In theory, again, the investor should maximize expected 
utility, but the catch is that this utility function isn't usually available. Instead, the 
Markowitz approach is to "draw" the so-called efficient frontier: for given expected return, 
one solves a quadratic program that identifies the portfolio minimizing variance. A diagram 
is produced that maps variance versus expectation. It is then up to the decision maker 



to choose a point on this efficient frontier. We are dealing here with an approximation to 
the original problem, and the quest ion is to know how appropriate it is to proceed in this 
manner. As part of this analysis, one would like to identify the class of utility functions 
that would generate similar solutions. For the Markowitz model such an analysis has been 
done to a large extent [19]. 

The challenge is to clarify the relationship between stochastic programming models, in 
particular between models involving reliability considerations and those based o n  costs, and 
to  develop tools that would validate the replacement of a stochastic programming problem 
by another problem whose structure might be quite different. Much of this passes through a 
better understanding of opt imality conditions, duality results, et c., but in addition, one has 
to develop a much deeper understanding of the interpret ation to give to these conditions 
and a better evaluation of the role played by various modeling options. 

3. The distribution problem 

As far as a decision maker is concerned, the solution of a stochastic optimization model is 
a feasible point that yields the best distribution of costs. Thus, in terms of the following 
formulation: 

minE{v(f(x,())},  X E S C I R ~ ,  

where v : + is an appraisal function (i.e., v(B1) < v(6) if 6 5 6') and f : Rn x Z + 

is a random lsc function describing costs, a solution x* E S is such that the distribution 
BZ* = f (x*, () is preferred to the distribution 8, = f (x, () for all x E S. Quite often v is 
just the negative of a utility function, but we are not going to insist on continuity (a  basic 
property of utility functions), and we do not want to load the interpretation to be given 
to v with the full axiomatic machinery that comes with utility functions. 

It is however, very unusual to have at the outset of the modeling process, sufficient 
information about preferences to be able to construct an appraisal function. In fact, the 
building of a stochastic model is, or should be, used as a means of discovering the shape 
of the appraisal function. This means that we should have at our disposal the capability 
of generating for a given x, the distribution of f (x, (). If this function f is very simple, 
one may be able to obtain an explicit expression for this distribution by analytic means. 
And in particular if f is real-valued, we have at our disposal a wide array of results about 
convergence, statistical estimates, etc., that can be included in the tool kit. For example, 

if f (x, [) = 1x - [ I ,  then 8, has density p(x - .) + p(x + a )  where p is the density of (; 
Figure 1 illustrates the shape of this density for p a beta density functions and x not to 
far from the expectation of (. 

But f is only exceptionally real-valued, typically f is of the following type: 

where fro might itself be defined through an infimum. This is not a "simple" function! 
And there is little hope of being able to find a closed form expression for the distribution 



Fig. 1. Density of cost function: lx - < 1 .  

of B, = f(x,() .  Only numerical/graphical procedures can be expected to produce useful 
information about the distribution of B,. Mathematical analysis however can help provide 
the background that would validate the numerical approaches and, hopefully, improve their 
efficiency. 

Returning to the earlier expression for f ,  with 

one has 

fio(x1) + f 2 0 ( ~ 1 , 2 2 ( ~ 1 ,  I ) ,  I) whenever X2 n Sz(x1, I )  # 8 ;  
otherwise; 

where 

assuming that this latter optimization problem has a solution whenever it is feasible. 
Generally, the argmin function (x I) H z2 (xl I) is rather complicated and isn't conducive 
to analytic manipulations. 

It thus appears that the only viable approach to finding the distribution of 6, is by 
sampling (, calculating and recording the value of f (x, I )  and, possibly, making use of some 
approximation techniques to obtain either the distribution or the density function of B, or 
at least an approximating one. The issues that need to be addressed are the following: 

1. Can sampling be validated? In other words, if H V  is the empirical distribution for 6, 
obtained via v independent samples of (, does H V  converge to the true distribution 
of B,, and at what rate? 

2. What can be done to make the sampling procedure as efficient as possible? Can 
the convergence rate be improved by relying on variance reduction techniques, for 
example? 

3. Could one use curve fitting techniques? More specifically, is it possible to know the 
general shape of the distribution or density functions associated with 8, when f (z, J )  
is a "typical" cost function. 



All of these questions can be studied without the need to refer to the dependence on x 
and that's how the distribution problem is usually formulated. Let's now do this: Given 
g : En x 5 + El a cost function, and ( a random vector with values in E and distribution 
P,  the distribution problem is to find the distribution of 

8 = inf g(z,(). 
z E R n  

- 
We may as well assume that for all [ E E, e([) := inf g(z, [) is finite. The case when 
8 = cm with positive probability is without interest. In terms of the stochastic optimization 
model(s) that motivated our interest in the distribution problem, 8 = cm with positive 
probability would correspond to f (x, () = oo with positive probability, and such a x is not 
an acceptable solution of the stochastic optimization problem. Let H be the distribution 
of 8, and HV the distribution obtained via v independent samples of c, say 

Under the (purely technical) assumption that g is a random lsc function, one has that 8 is 
a well-defined random variable with values in E. From standard results in mathematical 
statistics, it then follows that 

Hv ;r'H a s .  ; 

by ;;-t, one means narrow convergence (equivalently called weak or weak* convergence) of 
the probability measures HV to H. The proof of a.s.-narrow convergence usually relies 
on the law of large numbers. We are thus dealing with a classical question to which one 
can apply all the results we know about the convergence of empirical measures [28, 361, 
in particular in the study of the convergence rate. However, the situation isn't totally 
classical in that the function [ H e([) doesn't always have all the desired differentiability, 
or even continuity, properties. The challenge is to extend the classical results about the 
convergence of empirical measures so that one could also apply them in the context of the 
distribution problem. 

Ideally, one would want to draw samples of ( using a measure on Z based on the 
distribution of 8!. However, this is exactly what we don't know. We could however achieve 
some gain (variance reduction), if we had access to a function, say $ a ( [ )  that would 
approximate [ H infzERn g(z, [). 

To justify the use of curve fitting techniques to obtain an approximating distribution 
or density function for 8, after a few samples have been collected, would mean that there 
is a priori information about the shape of such functions. At first, it may appear that no 
particular characteristics could be identified for either the distribution function H, or the 
density function h of 8. Indeed, a special case of the distribution problem is 



And 8 will then have the same distribution than €, whatever it might be. But this is 
hardly the type of problem that one would have to deal with in the context described 
earlier. An appropriate paradigm would be the following: for all [, the function g(., [) is 
convex, inf-compact (bounded level sets and lower semicontinuous) and bounded below by 
0. Good examples would be: 

if Az = [, z > 0; 
otherwise; 

with c a nonnegative vector, or the simple function g(z, [) = Iz - [I. This might suggest 
that the shape of the density function depicted in Figure 1 is "typical". Figure 2 gives the 
empirical (based on 200 samples) density of the value of the random linear program: 

min x2 + 1.223 + x4 
such that 3x1 + 2 3  - 4x4 = el 

- X I  + 2x2 - 2x3 + ~4 = €2 

2x1 + 2 2  - 4x3 + 2 4  = €3 

21 > 0, . . . ,  2 4  > 0 

with uniformly distributed on [- 1.5,1], e2 with a triangular distribution on [-I, 11 and 
t3 normally distributed with mean 1 and standard deviation 1. 

Fig. 2. Empirical density of the cost function of a linear program. 

The challenge is thus: t o  ident i fy  a parametric class of densi t ies  and  d is t r ibut ion  
func t ions  associated wi th  t he  r a n d o m  variable 8 w h e n  g is of a cer ta in  type? 

The only serious attempt in this direction, via asymptotic analysis, is due to Prekopa 

[29]. But the problem formulation in [29] doesn't quite fit the paradigm that we are 
proposing here. In fact, the results in [29] would suggest that the distribution of 8 is 
asymptotically normal, and from our earlier discussion it should be clear that this is only 
exceptionally the case. 



4. Modeling uncertainty 

The basic premise in the building of stochastic programming models for decision making 
under uncertainty is that all parameters are known in a probabilistic sense, i.e., that their 
probability distribution is well determined. In the context of the following model: 

min Elf (x, €11 = j f (x, E) P(dE), 
2EX 

it means that the probability distribution P is given. This is seldom the case in practice! 
Of course, if e is a random variable that describes certain natural phenomena (weather 
patterns, the distribution of elementary particles, e.g.) or the characteristics of a large 
population (voting patterns, genetic properties, e.g.), then sufficient statistical data might 
be available so that P can be determined with a very high level of reliability. But more 
often, not enough information is available so the assumptions under which one can rely on 
statistical methods to obtain the probability distribution of random phenomena are not 
satisfied. Mostly, statistical methods require that enough data be available so that one can 
claim that the "asymptotic domain" has been reached. In most stochastic optimization 
problems e is a multi-dimensional random vector and statistical procedures for estimating 
its probability distribution require a huge amount of data that is almost never available, 
especially if e is modeling behavioral patterns such as future demands for given products, 
price systems for raw commodities, etc.. 

If that is the case, one may wonder if there is any value in even considering stochastic 
programming models for such problems. Possibly, deterministic models might be equally 
valuable in helping the decision maker. At this point, however, a reality check might be 
needed. The basic objective of the modeling of a decision problem as a mathematical 
program is usually to provide help in reaching a "good" -if not optimal- decision. As- 
suming that there is uncertainty about the value to be assumed by some parameter, would 
it be better to base the decision on the solution of a model that assigns a fixed (unique) 
value to this parameter, or on the solution of a model that would a least allow for the 
possibility that this parameter could take on two different values? Think of this parameter 
as representing sales forecasts or flood predictions, for example. In these simple terms, it 
is obvious that the second model will lead to a better decision. And, if rather than two 
possibilities, one allows for a number, finite or not, of possible values for this parameter, 
the solution of the model is bound to provide the basis for an even better decision. In a 
nutshell, this is the reason why stochastic optimization models are highly superior to de- 
terministic models whenever the parameters of the problem are not known with certainty 
and complete accuracy! 

Allowing for the possibility that parameters might take on more than one value raises 
immediately the question of assigning relative weights, or equivalently frequencies, or still 
equivalently, a probability distribution, to the possible values of the parameters. At this 
point, one would have to come to grips with the fact that in all, but a few rare cases, 



not enough information will be available to calculate a reliable estimate of the probability 
distribution. In fact, in the worst of cases, no statistical data will be available at all. For 
example, when a parameter describes a phenomenon that has never been observed (think 
of the market response to innovative products). In such instances, the "experts" will have 
created the probability distribution. Thus, almost all stochastic optimization models that 
one has to deal with in practice will have been formulated with a probability distribution 
for the random parameters that is a quite rough approximation of the true distribution. 

The question is then what level of confidence should one have in the solution gener- 
ated by the stochastic optimization model? One way to settle this, is to show that the 
dependence of the solution on the probability measure isn't too strong. More precisely, if 

then, for e > 0 relatively small, 

whenever Q isn't too far from P .  This is what has been observed in practice, so the 
question seems to be more one of validating what is already known intuitively. There are 
also other issues, mostly related to the validating of sampling procedures -that also has 
the effect of replacing one probability measure by another- that require similar results 
about the sensitivity of the solution on the probability measure. 

The study of the dependence of the solution(s) on some parameters leads in one form 
or another to proving epi-continuity for the (essential) objective function. In turn, this will 
yield the continuous dependence of the solution(s) since epi-continuity implies generally the 
continuity of the argmin mapping. In the context of our earlier formulation of stochastic 
programming problems, it means showing that 

is epi-continuous (at x*, an optimal solution): 

(a) for all Pv 2 P ,  xu -+ x*: liminf, J f(xV,[) Pv(d() > J f(x*,() P(d[); 

(b) for all PV ;;+ P, there exists xu -+ x*: limsup, S f (xV,  () Pv(d[) I J f(x*, () P(d[); 

here also ;;-t means narrow convergence of the probability measures. One then writes, 

If the PV are the empirical measures generated from a sample, say [I,  t2 ,  . . . , tV, of t ,  i.e., 

Pv (A) = la([*) V A measurable , 
V 

k = l  



the PV are random measures (they depend on the sample), and one has to establish a.s.  
e p i - c o n s i s t e n c  y, i.e., 

Quite a number of results of that type are already known. A complete bibliography would 
fill at least a couple of pages. As far as epi-continuity is concerned, one could refer for 
example to [8, 25, 31, 111, and for a.s. epi-consistency, the question is basically solved by a 
law of large number [21, 41. 

Although these results suggest already that the solution of stochastic programs have 
continuity properties, that's not quite enough. We need "quantitative" statements, e.g., a 
statement of the type: for e > 0, 

is Lipschitz continuous with "small" Lipschitz constant; Lipschitz continuity for mappings 
being appropriately defined and an appropriate metric being selected on the space of prob- 
ability measures. That such results are possible is suggested by the Lipschitz continuity of 
E-argmin with respect to the epi-distance for convex optimization problems [3]. At the the- 
oretical level, it would thus be sufficient to relate the epi-distance between two stochastic 
optimization problems, say 

to some distance between the probability measures P and Q. Some results of this nature are 
already available [32,34], involving usually a rough upper bound for the Lipschitz constant. 
That's not quite satisfactory yet. The challenge is to c o m e  u p  w i t h  L i p s c h i t z  c o n s t a n t s  f o r  
t h e  e-argmin m a p p i n g  t h a t  are  a s  s h a r p  a s  possible a n d  relat ively  easy  t o  calculate ,  i.e., are 
implementable! A different approach that could achieve the same objective would be to 
obtain error bounds, example of such efforts are [7, 11, 15, 13, 141. 

When the approximating measures have been obtained through sampling, "quanti- 
tative" statements can only be probabilistic in nature. One would expect that the main 
probabilistic tools to obtain convergence rates, viz. the central limit theorem, the law of 
iterated logarithms and results about large deviations, could be adapted to the problem 
at hand. However, this adaptation isn't straightforward. All the classical results rely on 
a certain level of smoothness of the functions involved, whereas that's exactly what isn't 
available. But some of these hurdles have been overcome in a number of situations [lo, 
20, 26, 27, 33, 35, 161. In this area, that one could label "asymptotic analysis of sto- 
chastic programs", there remain many open questions, some of which are technically quite 
challenging. 



However much "asymptotic analysis" might lead to a better understanding of the 
behavior of the solutions of stochastic programs under increased sampling when the prob- 
ability distribution of the random variables is known, it falls short of coming to grips with 
the, too common, problem of small samples, i.e., when all the information available con- 
sists of a few observed values of the random vector (. The challenge is to  device procedures 
and their justifications that would provide confidence levels for the solution of a stochastic 
program when the random vector ( is only known through a small sample. Here more than 
purely technical results may be required. There is some statistical literature dealing with 
the problem of small samples, but the estimation problems - o n e  can interpret the finding 
of the solution of a stochastic program with limited information about the probability dis- 
tribution as one of estimating the optimal solution- considered in the statistical literature 
are order of magnitudes simpler than those being considered in this context. There may 
be a need to construct a new paradigm to arrive at an appropriate interpretation of the 
problem and its solution. 

5. Probabilistic structures for multistage problems 

A multistage stochastic problem differs from a deterministic dynamic model in that at 
each stage t ,  the decision maker will be allowed to observe the values assumed by some of 
the random variables, say tt, and that its decision xt at stage t can only depend o n  the 
observations recorded so far: 

Thus, schematically, the decision process consists of a sequence of observations followed 
by decisions: 

The probabilistic information available to the decision maker can be represented in the 
form of a tree, to be called the scenario tree. Each path through the tree identifying a 
particular sequence of realizations [ = (C1, t 2 , .  . . , tT); the nodes, where the branching 
occurs, corresponding to "stages". Figure 3 represents a scenario tree when the random 
vector ( has a discrete distribution. This is the canonical form in which the information 
about the random elements of a T-stage stochastic program will be fed to a solution routine, 
cf. [6] for a description of the SMPS-format. 

There are many issues related to the organization of the data base describing the 
scenario tree, not the least of which is to provide the user with tools that would allow for 
compact representations via network- type representations, Markov chains, etc.. Also, work 
is needed to make available modeling tools that would simplify the task of feeding the data 
to the solver routines. This could be done in the context of GAMS, Model-talk, AMPL, 
for example. The importance of these endeavors in making stochastic programming an 



6' - - - - - - - - - - - - - - -  5' -----.-----.----- 5" 
L scenarios 

Fig. 3. Scenario tree, discrete distribution. 

effective decision making tool can not be overstated. But technically, these issues are more 
organizational in nature, in many ways more directly related to data base manipulations, 
and will not be discussed here. 

On the more mathematical end of the spectrum, the basic challenge is t he  replacement  
of a scenario tree b y  a m u c h  t r i m m e r  one! Of course, the resulting stochastic program will 
still generate the same, or nearly the same, optimal solution. There are various versions 
of this question: 

1. The scenario tree is trimmed by relying exclusively on the probabilistic structure. For 
example, certain branches are replaced by their expectations or conditional expecta- 
tions, certain subtrees are removed, etc.. 

2. The scenario tree is trimmed by relying on the probabilistic structure but also on the 
problem structure. For example, information is used about the costs associated with 
the various branches of the tree. 

3. Slim scenario trees are identified that provide upper and lower bounds for the problem 
at hand and procedures are laid down for improving these bounds. 

An issue that needs to be clarified is what must be understood by the "same optimal 
solution." Clearly, if one tree is replaced by another tree, one cannot expect that the 
solutions of the stochastic programs: 

be identical, since their domain of definition might be quite different. Nor do we expect 
necessarily that the values of these programs be similar. Since our main concern is with 
the decisions suggested by the stochastic program it is also in those terms that we need to 
define the preservation of optimal solutions. This means that we expect the two problems 
would generate solutions that would be identical, or nearly identical, in the first stage. 

Another approach to scenario tree trimming is by sampling. At this point, the chal- 
lenge is to develop a cons is ten t  sampling procedures t o  generate scenario trees that would 
provide, once the resulting stochastic program is solved, reliable estimates of the optimal 
solution. One possibility would be to generate the tree sequentially, i.e., sample el ,  then 



given tl, sample t2, and so on. Another possibility, is to generate samples of [ and use 
these samples to build a scenario tree with a given architecture (with a pre-determined 
number of branchings at each stage). 

6. Dynamic stochastic optimization problem 

Section 5 already touched on some questions related to discrete time dynamical models, 
here we want to address more specifically those questions raised by continuous time models, 
in particular, stochastic control models. Let's use the following formulation of a stochastic 
optimal control problem as the framework for our discussion: 

dxt = g(t, s t )  dt + h(t,ut) dWt, 

50 = t o ,  
where the control u and the state x are stochastic processes defined on [0, TI, W a semi- 
martingale, for example, a d-dimensional Brownian motion, and to is a random vector 
determining the initial conditions. The functions j, g and h are assumed to be such that 
the objective's integral functional and the stochastic differential equations describing the 
dynamics are well defined. The space U of admissible controls is restricted to those that 
are nonanticipative with respect to information available at time t, and typically that 
is to be understood as meaning that the controller has been able to observe the actual 
state-trajectory from time 0 up to t ,  i.e., 

Vt : ut must be Ft-measurable 

with Ft := ~ ( x , ,  0 5 s < t )  the sigma-field generated by past observations. More sophis- 
ticated formulations will also allow for partial observation of the state, for observations 
possibly corrupted by (random) noise, and so on. 

The main objective pursued in stochastic optimal control is the design of a "feedback 
control", i.e., a function that will map the available information into an optimal decision. 
This is also the case for stochastic programming models when recourse decisions are viewed 
as functions of the past realizations t .  In terms of the preceding stochastic control 
problem, this would mean that we would observe Wt ,  and choose ut as a function of the 
sigma-field generated by the W, for s 5 t, rather than Ft . This is the basic difference 
between stochastic programming and stochastic optimal control models. In some important 
applications, it is ~ossible to infer from the observation of the state, the values taken on by 
the stochastic process Wt ,  but that is not the case in general. For a more detailed discussion 
of the relationship between stochastic programming and stochastic control models, one can 
refer to [39]. The fact that the multistage stochastic programming model always implies a 
discrete time modelization of the underlying dynamics, whereas stochastic control models 



allow for both continuous and discrete time modelization of the dynamics isn't all that 
significant. 

It may appear at first that restricting the control processes to those that are measur- 
able with respect to one sigma-field rather than another wouldn't really have that much 
impact on the structural properties of the problem. The reason it does is that the Ft 
depend on (u,, s < t) and this dependence could be nonlinear. For a few unconstrained 
stochastic optimal control, with no constraints on the state and simple constraints on the 
controls, such as the one formulated below, it may be possible to use stochastic calculus 
techniques to find a closed-form expression for the optimal control function. But, unfor- 
tunately, an approach purely based on analytic tools can only go so far. Usually, one has 
to resort to the calculation of solutions by means of algorithmic procedures. There are 
a number of possibilities. For stochastic control problems with state space of relatively 
low dimension (5 4), techniques based on Markov chain approximation is developed in 
[24]. Another approach, that replaces the (stochastic) differential equations by difference 
equations via the discretization of the time axis, brings us in the realm of stochastic pro- 
gramming models. However, the modelization of the problem that was well-suited to the 
potential use of stochastic calculus, quite often turns out to be ill-suited to the use of sto- 
chastic programming techniques. To render this somewhat more concrete, let's consider 
the following example. 

The Black and Scholes model for the option pricing of risky assets leads to the following 
system of stochastic differential equations: 

duo (t ) = rdt 
vo (t) 

(riskless asset, rate of return: r)  

where v; is the (option) price associated with the i-th asset, a; is the average rate of return 
(drift), W is a N-dimensional Wiener process, D ~ D  is positive definite, and ei the unit 
vector with a 1 in the i-th component. With this as the underlying price process, one can 
write down a stochastic differential equation for the evolution of the value of a portfolio. 
Let Xt  be the value of the portfolio, i.e., total wealth, with r ; t  the proportion of the total 
wealth invested in asset i at time t ,  then 

N where Ct is the consumption at time t ,  rot = 1 - xi=, r ; t  is the portion of the wealth 
invested in the riskless asset, and ll is a vector of 1's. The manager of this portfolio 
is interested in a nonanticipative investment policy ( r t ,  t < r) and consumption plan 
(Ct, t 5 r), also nonanticipative, that would maximize 



where r = inf [ t 2 0 I XI = 0 ] is a stopping time (bankruptcy), y a bankruptcy payment, 
,f3 is a discount factor, and U is a strictly increasing concave utility function. 

This model proposed by Merton, was studied extensively in a series of far reaching 
articles [17,18] that revealed the nature of the solutions. It could serve as the basis of 
an assets/liability model, but then additional constraints have to be included (limitation 
on the portion of the wealth that could be invested in certain particular assets, etc.). 
When this is the case, it isn't possible to use the characterization of the optimal solution 
provided by [17], and analytic methods, in particular stochastic differential calculus, are of 
rather limited help. One has to resort to computational schemes to find a solution of this 
problem. In practical terms, this means a time discretization which leads to a stochastic 
programming model. In doing so, the concavity of the objective function will be preserved, 
but the discretization of the stochastic differential equations describing the evolution of 
wealth, leads to equations involving bilinear terms Xt.rrit and we end up with a concave 
function to be maximized on a nonlinear manifold. It is not a convex optimization problem. 

We have here a clear example of a problem whose formulation was ideally suited 
to the techniques of stochastic calculus but which when discretized lead to a (stochastic 
programming) problem that would be considered quite ungainly. Convexity, which is quite 
important in the design of algorithmic procedures for mathematical programming models, 
turns out to be somewhat irrelevant when using stochastic calculus where convexity only 
gets used to guarantee that the local solution obtained by setting some gradient equal to 
0 is also a global solution. 

When the information available to the controller is based on the state xt of the system 
rather than the underlying stochastic process Wt ,  convexity -assuming it was present 
at the outset- is usually lost. In such cases, one must resort to dynamic programming 
techniques and these can only be used effectively when it makes sense to work with discrete 
state and control spaces (of very low cardinality) [23, 241. 

In summary, efficient solution procedures of (stochastic) optimization problems are 
mostly going to be based on mathematical programming techniques. And, the formulation 
of stochastic optimization problems as stochastic control problems doesn't lead in general 
to problems that are well-suited to the application of mathematical programming tech- 
niques, the challenge is t o  develop "continuous" versions of t he  stochastic programming 
(w i th  recourse)  models  t ha t  would allow for the  descript ion of t he  dynamics  by  differential 
equations. One possible approach is to study the limit of multistage stochastic programs as 
the number of stages tends to oo. We already know that limit problems must be obtained 
as epi-limits, but in what topology? And also, the class of problems for which such a pas- 
sage to the limit is possible will have to be identified. Another approach is to immediately 
pass to a continuous-time formulation, cf. [5] for one such attempt. 



7. The value of information 

Let's proceed with the discussion in terms of the following problem: 

min EP {f (x, F) )  := J f (x, F )  P ( d 0  
zERn 

with optimal solution xP. The actual cost f (xP, () to the decision maker is only determined 
after the value of ( has been observed, say (. Let us assume that more precise information 
can be collected about the distribution of ( at some cost, e.g. a more detailed statistical 
analysis of the environment might yield a more precise description of the distribution of 
(. However, before engaging in such an inquiry, we would like to obtain an estimate of the 
value of such information. More generally, we might have access to more and more refined 
forecasts for the value to be assumed by (, for example by means of samples of larger and 
larger size, and the question is then, not just to go ahead with the inquiry, but in choosing 
the level at which the investigation should be conducted. 

Let's designate by Q the (new) probability distribution that would be assigned to the 
random vector ( after some further information has been collected. Let xQ be the solution 
of the stochastic program 

min EQ {f (x, C)} := J f (x, 0 Q(d0  
zERn 

where P has been replaced by Q. The actual cost f (xQ, () to the decision maker, again can 
only be determined after the value ( of ( has been observed. The value of the additional 
information is then, 

Val(&) = EQ {f (xP, 0 - f (xQ, €1) 
However at the outset, the new probability measure Q that would be assigned to ( isn't 
known with certainty. Typically what is known, is that the new distribution Q will belong 
to a certain class of probability measures, and that some Q's are more likely than others. 
This suggests introducing the notion of a sensor: a probability measure on the space M 
of probability measures on Z, the support of the random vector (. For example, if ( is 
real-valued, the support of a sensor S could be the family of gaussian distributions with 
standard deviation a (fixed) and mean p, with p a random variable with distribution P .  
Such a sensor would provide a model for the following situation: in order to collect more 
information about the value to be assumed by (, we shall get a sample from the population. 
The size of the sample determines a, but we do not know a priori the sample mean (which 
should have the same distribution as (). The value of a sensor S is then 

val S := val(Q) S(dQ). / 
This model for assessing the value information was proposed in [2]. There have been 
alternative proposals for modeling changes in information via nested sigma-fields. It can 



be shown that such models are special cases of models based on sensors, and they aren't 

able to fully capture the type of statistical investigation described earlier. 

So far, the full calculation of the value of sensors has only been experimental, and 
involved only very simple stochastic programming problems. The same approach applied 

to a more realistic class of problems could very well be computationally prohibitive. The 
challenge is to incorporate information gathering in the decision process in a computation- 
ally feasible fashion. To do so it will be necessary to study the mathematical properties of 
sensors, and in particular make available a (sub)differential calculus for sensors that could 
be exploited in an algorithmic setting. 

8. Partial informat ion. 

The decision process of a multistage stochastic program follows the pattern: 

Let 

Ft = u ( i  t )  = sigma-field of events observed up to time t . 

Since more and more events can be observed as t increases, one always has .Ft / with t .  
If we let x = ( X I , .  . . , xT), and (re)define xt : E + Rn' with 

- 
;. = {t = (tl, . . . ,  t t , . . . t ~ ) } ,  support of ( 

the set of solutions must be restricted to 

i.e., to those x's that satisfy the nonanticipativity constraints. 

Quite often, one doesn't have access to full information about the value assumed by 
tt, the sigma-field of observable events is then Gt c F t .  Again assuming that we have 
complete memory of all events that have been observed so far, one also has Gt /*. The 
decisions must be restricted to 

Since Bt c Ft, NG is a linear subspace of N;. Passing from x E NF to x E NG doesn't 
really much change the nature of the original problem, in particular convexity will be 

preserved. 

A well developed duality theory has shown that there is price system that can be 

associated with the nonanticipativity constraints, similarly one can at tach a price system 
to the constraints generated by the further restricting x to NG [30]. 



One new challenge would be to consider models where only partial i n f o r m a t i o n  i s  
available, but  o n e  doesn't necessarily have Gt c Gt+17 i.e. i n f o r m a t i o n  i s  n o t  increasing 
w i th  t .  That is the case when earlier observations are lost, or the information about 
earlier observations is only available in condensed form. Depending on the process that 
will generate the sigma-fields Gt, convexity might be lost, in particular if the condensing 
or loss of information depends on earlier decisions. 

9. Stochastic integer programming. 

Let's consider the two-stage stochastic integer program: 

where 

&([,XI = min { ( q , ~ )  I Wy = h(F)  - T([)x, y E ~ $ 1 .  
The function x H Q([, x) has the same properties as that of the marginal value of a linear 
integer program. Although, the overall shape might be that of a convex function, it is 
discontinuous; a typical 1-dimensional example appears in Figure 4. 

Fig. 4. The function x H Q(<, x). 

In contrast to this, when P is absolutely continuous, the function E Q  (EQ(x) = 

J Q([, x) P ( d [ ) )  is continuous under rather general conditions [38], and even when P is 
discrete, the size of the discontinuity jumps will be relatively small (by comparison to the 
discontinuity jumps of the functions Q([, -)). Integrating with respect to P corresponds to 
taking a convex combinations of the functions Q((, .) and this has both a smoothing and 
convexifying effect. 

In some cases it is possible to proceed via smoothing which replaces discontinuous 
functions by approximating ones with prescribed differentiability properties, consult [12], 
for example. But such an approach has definite limitations. A more challenging, but also 
more promising, approach is t o  find a subst i tute  for t h e  recourse problem tha t  wouldn't  
require t h e  second s tage variables t o  be integer. More specifically, we want to replace Q 



by a function Qa which would also defined as the value of a certain optimization problem 
(but without integer restrictions on the variables), so that EQ EQa. For stochastic 
programs with simple recourse, there have already been some path breaking contributions 
in this direction [22]. 
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