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Abstract 

A class of stochastic optimization problems is analyzed that cannot be solved by deterministic 
and standard stochastic approximation methods. We consider risk control problems, optimiza- 
tion of stochastic networks and discrete event systems, screening irreversible changes, pollution 
control. The results of Ermoliev, Norkin, Wets [ll] are extended to the case of problems in- 
volving random variables and general constraints. It is shown that  the concept of mollifier 
subgradient leads to easily implementable computational procedures for stochastic systems with 
Lipschitz and discontinuous expectation functions. New optimality conditions are formulated 
enabling to design stochastic search procedures for constrained optimization of discontinuous 
systems. 
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O N  NONSMOOTH PROBLEMS 
O F  STOCHASTIC SYSTEMS 

OPTIMIZATION 

Yuri M. ERMOLIEV 
Vladimir I. NORKIN 

1 Introduction 

A tendency towards a stability, the minimization of unbalances and the search for an equi- 

librium and efficiency are natural features of man-made systems. Optimization is needed on 

various stages of system analysis: in the collection and reconciliation of initial data, parameters 

identification, sensitivity analysis and policy assessment. A realistic search of policies enforcing 

changes for better, for example, reducing vital violations, deviations from limiting resources, 

social and environmental standards, requires rigorous or heuristic optimization tools. Smooth 

(classical) optimization techniques have been motivated by applications in mechanics, physics 

and statistics. The analysis of man-made systems with complex interactions between man, na- 

ture and technology calls for new approaches that do not rely on the smooth behavior of the 

system and exact information on its performance. 

In this paper we analyse problems arising in optimization of complex stochastic systems 

exhibiting nonsmooth behavior, abrupt and possibly catastrophic changes. Nonsmooth and 

discontinuous behavior is typical for systems undergoing through structural changes and new 

developments. The discontinuity is an inherent feature of systems with discrete variables (in- 

divisibilities), such as manufacturing systems, communication networks, neural nets. In the 

impulse control, the discontinuity (the size of a jump) itself is a control variable. The lack of 

scientific information on gradual changes of a system forces analysts to deal with the so-called 

data-based models where actual changes are represented as transformations between a discrete 

set of observable states. In risk control, a possibility of an abrupt change is the nature of the 

problem. A failure may trigger jumps of the system from one space to another and the main 

dilemma for a control policy is to  "hit or miss" an appropriate point in the evolution of the 

system in order to  prevent irreversibility. 

The concept of nonsmooth and abrupt change is emphasized in the study of environmental 

systems by such notions as critical loads, surprise, chemical time bomb phenomenon. There are 

excellent reviews of discontinuous, imperfectly reversible change in ecological systems (Holling [24]) 



and sociotechnical systems (Brooks [5]). The  significance of "extreme events" arguments in cli- 

mate impact studies was developed by Parry [38] and has been summarized by Wigley [55] as 

follows: "Impacts accrue... not so much from slow fluctuations in the mean, but from the tails 

of the distributions, from extreme events. In many cases, an  extreme can be defined as an  event 

where a... variable exceeds some "threshold". Clark [7] argued tha t  such a nonlinearity requires 

risk based approaches t o  asses and control possible impacts and the deviation of extremes from 

threshold levels may be significantly important.  

There are a number of methodological challenges involved in the control of abruptly changing 

(nonsmooth) stochastic systems. One obvious obstacle is the lack of scientific information on 

involving uncertainties and thresholds. Often less evident challenge is the lack of analytical tools 

t o  assess the propagation of abrupt  changes, uncertainties and related risks through the system. 

The  main problem is t o  analyze the interactive roles played by uncertainties, changes and policy 

responses across the spectrum of spatial and temporal scales. 

In this article we analyse practical problems and key shortcomings of existing methods calling 

for new evolvements of optimization tools. Behavior of a nonsmooth system a t  local points may 

not allow t o  predict i ts behavior (in contrast t o  classical smooth systems) even outside an 

arbitrary small neighborhood. In such a case, the main idea is t o  develop approaches relying 

on a "global view" of systems behavior, or ,  as Ho [23] argued, bird's-eye viewpoint of system 

responses. T h e  concept of mollifier subgradients (see Ermoliev, Norkin, Wets [ I l l )  provides 

such an  opportunity. 

The  rest of the article is organized as follows: In Section 2 some important classes of stochas- 

tic systems with nonsmooth performance indicators are analysed. Two types of discontinuities 

are distinguished: discontinuities of sample performance indicators (sample functions) and dis- 

continuities of expected performance indicators (expectation functions). Section 3 introduces 

the complexity of nonsmooth problems even in the cases where the interchange of integration 

and differentiation operations is possible. This case already imposes essential obstacles t o  de- 

terministic and standard stochastic approximation methods. As we see, the concept of mollifier 
J 

subgradient enables t o  bypass local stabilities, opt ima or equilibria. In particular it  allows t o  use 

finite-difference approximation type procedures for locally Lipschitz and discontinuous functions. 

This section and the next discuss also the infinitesimal perturbation analysis for discrete event 

systems (Ho and Cao [22], Suri [52]). In Section 4 notions of mollifier and cosmic convergence 

(Rockafellar and Wets [45]) are used t o  formulate the  optimality conditions for discontinuous 

problems in a form tha t  opens up the way for stochastic search procedures under rather general 

constraints. Proofs are given in Section 5. Section 6 includes concluding remarks indicating 

some numerical experiments and further research directions. 



2 Nonsmooth Stochastic Systems 

Let us consider some important cases of stochastic systems, where performance indicators have 

nonsmooth character. By analyzing them we identify necessary evolvements for the existing 

optimization techniques. 

2.1 Hit or miss control policy: basic optimization procedures 

The main difficulties in the optimization of discontinuous systems are easily illustrated by the 

following simplest example of "hit or miss" decision problems arising in risk control. Assume 

that a t  some point in the evolution of a system (ecosystem, nuclear power plant, economic 

system), if the policymaker does not intervene and control ongoing processes, i t  could lead to a 

"failure" with considerable and possibly irreversible damages. Suppose that the system can be 

used during time interval [O,T], but the actual life time r may be shorter: we can shut down 

the system at  time x 5 T ,  or there may be a failure at  w 5 x, hence r = min(x,w). Therefore 

the performance of the system critically depends on two events: "failure" and "no failure". The 

profit of the system without failure is proportional to r, but the failure at w 5 x leads to high 

losses with the cost c j .  Suppose w is distributed on the interval [0, TI with a continuous density 

function p(w) and the loss function (performance function) is defined as 

The sample performance function f ( x ,  w) is discontinuous with respect to both variables. The 

expected cost (performance) function which can serve a role of a risk indicator for a feasible 

solution x E [0, TI has the form of expectation 

where IA is the indicator function of the event A: 

1 if w E A, 

0, otherwise. 

The minimization of F (x )  is an example of stochastic optimization problems (see, for exam- 

ple, Ermoliev and Wets [13]). The main complexity is the lack of exact information on F ( x ) .  

In general problems, function F ( x )  has the form of a multiple integral with an implicitly given 

probability distribution. 

Let us now use (1) to outline possible approaches to the optimization of stochastic systems. 

One common approach is to approximate the expectation F ( x )  by sample mean 



where wk are independent samples of w. Thus the original problem with the expectation function 

F ( x )  is approximated by a deterministic problem with objective function F N ( x )  tha t  could 

be solved, if possible, by a broad variety of deterministic methods. There is a number of 

shortcomings of this approach. 

( i )  It cannot be used when the underlying probability distribution depends on decision 

variable x or  functions f ( x ,  w) are given implicitly; 

(ii)  As in problem (1) the sample performance function f ( . ,  wk) is discontinuous, although the 

expectation F ( x )  is a continuously differentiable function. Since functions f (., wk), k = 1 , .  . . , N ,  

are discontinuous, the function F N ( x )  is also discontinuous a t  each point of a local extremum 

x = wk. The  number of extrema tends t o  infinity if N -+ m and the use of the  global 

optimization techniques is practically impossible. 

(ii i)  T h e  deterministic approximation F N ( x )  may destroy the convexity of F ( x )  as  the 

following example shows: 

N 
2 

F ( x )  = C Eai(x;  - b;) , 
i= 1 

where w = {a;, bi} are normally distributed random variables and Ea;  > 0. T h e  sample mean 

approximation F N ( x )  may be nonconvex. 

( iv)  T h e  convergence of min F N ( x )  to  min F ( x )  as N - m is established in all practically 

important cases. Despite this, the use of gradient type procedures for minimizing F N ( x )  may 

result in local solutions which have nothing in common with local solutions of the original 

problem. It may occur in cases when the interchange of differentiation and expectation operators 

is impossible (see Section 3),  therefore the use of F N ( x )  leads to  solution sets described in terms 

of subdifferentials d f ( x ,  wk) which may have no connections with the set { X I  0 E d F ( x ) ) .  

Nevertheless, there is a remarkable feature of the performance function (1) which can be 

successfully utilized in the design of the solution strategy: despite the  discontinuity of f ( x ,  w) 

t he  function F ( x )  is continuous and smooth. The  function F ( x )  may also be convex, although 

f (x ,  w) is not convex for some w. Therefore it is advahtageous t o  use stochastic search procedures 

dealing directly with the  optimization of the  original function F ( x ) :  

where tk is in general a biased statistical estimate (stochastic quasigradient) of the v F ( x k )  a t  

current point xk  and pk is a step-size multiplier. Unbiased estimates tk are also called stochastic 

gradients or subgradients, generalized gradients depending on whether F ( x  ) is a continuously 

differentiable or  nonsmooth function. 

Let us note tha t  the gradient of the sample performance function V f ( . ,  w) exists everywhere 

except x = w. Unfortunately t he  interchange formula for the  gradient and the  mathematical 



expectation is not valid: 

Indeed the direct differentiation of both sides in (1) yields 

where f ( x ,  x-,) = lim f ( x ,  y) .  Therefore the discontinuity of f ( x ,  w) results in a new addi- 
y+x-0  

tional term in V f (x ,w)  and we have the following unbiased estimate of the gradient VF(x) :  

The estimate (stochastic gradient) can be used in stochastic methods (3) .  It is impossible to 

use straightforward one run stochastic finite-difference approximation of V f ( x ,  w): 

where eJ is the ort of j - t h  coordinate axe. This is due to the additional term ( ~ ( X , X - ~ )  - 

f ( x ,  X))/L(X) in (4). Of course, it is possible to use the standard stochastic approximation 

procedure when F ( x )  is a twice differentiable function: 

where wko, wkl, .  . . , wkn are independent samples of w. Unfortunately, the variance of such 

stochastic quasigradient tk tends to infinity as k - oo. In contrast the variance of the single- 

run estimate (5) tends to 0 as k - oo. But this type of procedures is applicable only after 

introduction of smoothing effects to the problem by adding an auxiliary random variable (see Er- 

moliev and Gaivoronski [ltl]). From the general idea of mollifier subgradients (Ermoliev, Norkin 

and Wets [ l l ] )  it roughly follows (see next section) that the single run estimate tk = v f (xk ,  wk) 
< 

and the finite difference approximation (5) can be used in (3) with slight modifications: these 

vectors must be calculated not at  the current point xk but a t  a point ck randomly chosen in 

a neighborhood of xk.  In other words ?fk = xk + c k ,  where ek is a stochastic vector such that  

( I c k J J  - 0 as k -+ oo. We clarify this statement in the next sections. 

2.2 Stochastic networks with failures 

Consider a network of connected elements which can be in "working" or "not working" states. 

The network has the entry and the exit and is considered operating if there exists a path from 

the entry to  the exit. Denote by r;(x, w) the random time for element i to work without failure, 



where x E Rn denotes a vector of control parameters and w is a vector of uncontrolled random 

factors. Then lifetime r ( x ,  w) of the system is expressed through times r , (x ,  w) by means of max 

and min operations: 

r ( x ,  W )  = max min re(x ,  w), 
P,EP eEP, 

where IJ is the set of paths from the entry to  the exit of the network; index e denotes an element 

within a path.  

It is obvious that for rather general networks the function r ( x ,  w) cannot be calculated ana- 

lytically (it is difficult t o  enumerate paths) in order to implement deterministic approach ( 2). 

But there exists a simple algorithm which allows to  calculate r ( x , w )  and i ts  (generalized) gra- 

dients for each observation (simulation) w. This information is sufficient for the implementation 

of stochastic approximation type estimates (6) in the case of continuously differentiable func- 

tion E f (., w) when the interchange formula for the gradient and  the mat  hematical expectation 

is valid. Unfortunately, performance function r ( x , w )  is nonsmooth and nonconvex even for 

smooth functions r i (x ,  w). The  following simple examples show that  the expected performance 

function E f ( a ,  w) may also be nondifferentiable even if the distribution of w has a density. 

Example 2.1 Let r l (x ,w)  = wl f l ( x )  + W 2 ,  T ~ ( x , w )  = ~ l f z ( ~ )  + W2, where = ( ~ 1 , ~ 2 )  is 

uniformly distributed on [O, :1.12 and  f l (x ) ,  f2(x) are some smooth functions, then 

and 

are nondifferentiable functions. 

In the above example random variables r l (x ,  w) and r2 (x ,  w) were dependent, but the  same takes 

place even when random variables are independent a n d  have the probability density. 

Example 2 .2  Let (see Krivulin [28]) 



where x E [O,l],  w = (wl,w2) and random variables wl, wz are independent and uniformly 

distributed on  the interval [O, :I]. Then random function 

f (x ,w)  = max(r l (x ,wl) ,  r2(x,w2)) 

max(x/2 ,x2) ,  wl 5 112, w2 5 112; 

= [ ti2, 
W l  5 1/2,w2 > 112; 

W] > 112; 

and its mathematical expectation 

1 
F ( x )  = E, f (x ,  w) = - max(xl2 ,  x2)  + 1 

4 

is a nondiflerentiable function of x .  Observe that in this example functions r i (x ,w)  are contin- 

uously diflerentiable in x but are discontinuous in w. 

The composite function f (x ,  w) defined by means of max and min operations have a rather 

complicated nondifferentiable character. The  calculation of a subgradient of f (., w) is impossible 

in the case when the chain rule is not valid. For example, for Lipschitz continuous functions 

f l ( . ,  w) ,  f2( . ,  W )  if f (., W) = max{ fl (., w), f 2 ( . ,  w)} then for Clarke's subdifferential d f (., w) (see 

Clarke [6]) we have only the  inclusion d f (., w) 2 conu{dfi(., w)l f , ( . ,  w) = f (., w)}. Therefore 

the interchange formula d E  f ( a ,  w) = E d  f (., w) is not valid. Despite this we can use the  single- 

run estimate ( 5 )  and many other similar estimates (based on the  general concept of mollifier 

subgradients) with xk  substituted by zk (see fomulas (12), (13), (27)).  

2.3 A simple transfer line 

A transfer line (see Mirzoahmedov [33]) consists of n consequentially connected devices. A 

customer who enters the line is sequentially served by each device if the  last has been switched 

on beforehand. Denote by xi the moment of switching on device i ,  y; - the moment when 

the customer leaves device i ,  yo(w) - the moment the customer comes to  the line, ri(w) - 

(random) service time by i-th device. Let a; and b; denote costs associated with waiting a unit 

of time by the customer for switching on i-th device and by operating i- th device for a customer 

correspondingly. Then random costs of waiting by the  customer and device i are calculated as: 

f O ( w )  = 0 ,  

f i ( x 1  Y , W )  = f i - ' ( x ,Y ,w)  + m a z { a i ( ~ i  - xi),bi(xi - yi)}, 

yz=max{y i - l , x ;}+r i (w) ,  z = l , 2  ,..., 

Therefore functions f i ( x ,  y,w) are again constructed by means of max and min operations and 

are nonconvex and nonsmooth. The  discontinuous problems are encountered in the case of 

periodically operating devices or devices which may fail and have to  be restored (Ermoliev, 

Uryas'ev, and Wessels [14]). 



2.4 Pollution control under extreme events 

A feature common to most of models applied for the design of pollution control polices is the use 

of transfer coefficients a;j linking the amount of pollution xi emitted by source i to the resulting 

pollution concentrations yj at receptor location j as 

n 

The coefficients a;j are often computed with Gaussian type diffusion equations. These equations 

are run over all the possible meteorological conditions, and the outputs are then weighted by 

the frequencies of occurrence of the meteorological input over a given time interval, yielding 

average transfer coefficients. The deterministic models determine cost-effective emission strate- 

gies subject to  achieving exogenously specified environmental goals, such as ambient average 

standards a t  receptors. The natural improvement of deterministic models is the inclusion of 

chance constraints that account for the random nature of meteorological conditions in order to  

reduce extreme events: 

n 

~ r o b ( C  ai,(w)x; < qj) 2 pj,  j = 1,. . . , m, 
i= 1 

i.e. the probability that the deposition level at  each receptor (country) j should not exceed the 

critical load (threshold) qj with a given probability (acceptable risk level) p j .  Let us denote 

n 

Then these constraints can be rewritten by using the mathematical expectation of a discontin- 

uous function 

If there is a finite number of possible values (scenarios) of w, reflecting prevailing weather 

conditions, then the function 

is piecewise constant. The gradients of such functions are almost everywhere 0 and hence the 

conventional optimization techniques cannot be used. 

2.5 Screening irreversible changes 

There may be different interpretations of the following problem in terms of environmental mon- 

itoring or the inspection of engineering systems with deteriorating components. 



In a simplified model of cervical cancer screening (Oortmarssen and Ermoliev [37]) a life 

history sample w is represented by the following. Suppose there are time moments: Tp - the 

time of entry into the progressive screen-detectable stage, and TD - the time of clinical diagnosis 

of a cancer, TD = Tp + ZPD, where Tp and ZpD are independent non-negative random variables 

with probability distribution functions Fp and FpD. The disease can be prevented by screening 

examination at  time x such that  Tp <_ x 5 To. In this case, the life expectancy is defined by 

a random variable TL with distribution FL(t). Otherwise the survival time following clinical 

diagnosis and treatment is described by a nonnegative random variable ZDc with distribution 

FDc(t). A sample of the life history is w = (Tp, TD, TC, TL). The life time gained is defined as 

Therefore the expected performance 

where q(TD) denotes the expected number of lifeyears gained for given TD. The sample per- 

formance is again nondifferentiable and implicitly given function. The additional complexity is 

that the positive values of these function occur with low probability. 

2.6 Queuing networks 

A network consisting of L devices which "serve" messages or flows. At any moment the device 

serves only one message, which is then transferred to another node in accordance with a certain 

routing procedure. If the device is busy, then the message is waiting in the queue and is served 

according to the rule: first come - first served. 

For each node i = 1 , 2 , .  . . , L we introduce the following notations: n; - length of the queue 

at  the initial moment; r i j (x,w) - (random) service time of message j depending on some control 

parameter x and uncontrolled (random) parameter 9; crij(x, w) - the time when message j comes 

to  node i; Pij(x, w) - the time when device i starts to  serve message j; yij(x, w) - the time when 

device i finishes servicing message j ;  the message routing procedure is given by integer functions 

piJ(x,w) defining a destination node for j - th  message served at  i-th node. 

The logic of a node operation is described by the following recurrent relations: 



Inflows of messages are modeled by introducing special nodes which have infinite queue and 

do not receive messages from other nodes. 

Notice t ha t  each moment a when a message arrives t o  a given node or a moment ,fl when a 

message is s tar ted to  be served coincides with some moment of finishing servicing a message a t  

some node. That 's  why it  is sufficient t o  consider only moments y of finishing servicing messages 

a t  nodes. 

It is interesting enough tha t  important indicators of this network are again nondifferentiable 

functions despite the continuously differentiable T ;~ (x ,  w). 

Theorem 2.1 Assume pi j (x ,  w) = pi3. Then functions yij(x,w) can be expressed through func- 

tions r i j (x,  w) by means of max, min operations and by positive linear combinations. 

For proof see the Appendix. 

In order t o  illustrate the statement of this theorem, assume pij = pi .  Denote I; = {nodes r (  p, = 

i) .  Then 

T h e  result of Theorem 2.1 can be extended t o  more general networks with the following nodes: 

nodes with parallel servicing by identical devices; nodes like transfer line with limited buffer 

capacity and blocking; assembling nodes; message splitting nodes; nodes with synchronized 

servicing. 

For the described network main performance indicators (criteria) are expressed through times 

~ i k ( x 1 ~ ) :  

1. total waiting time a t  node i 

2. mean message presence a t  node i 

3. mean t ime of waiting for k messages a t  node i 

4. maximal presence time of k messages a t  node i 



5. maximal waiting time of k messages a t  node i 

6. node utilization coefficient 

7. node idleness coefficient 

8. mean number of messages at  node i 

9.  mean queue length a t  node i 

Thus this theorem shows that the use of standard stochastic approximation methods for 

the optimization of discrete event systems is generally restricted, since the expected value of 

indicators 1-9 may easily be a nonsmooth function (see examples 2.1, 2.2). The possibility to 

use them is extensively discussed by Ho and Cao [22], Suri [52], Gaivoronski [15], Rubinstein 

and Shapiro [50]. 

For a general network configuration it is very difficult to express explicitly performance func- 

tions f,(x, w), m = 0 through functions r i j(x,w) and apply the deterministic approximation 

(2). This approach is restricted by the lack of analytical structure of F ~ ( x ) .  If it were not the 

case then for optimization of F N ( x )  conventional geterministic procedures could be used (see 

Plambeck et  al. [41.], [42], Robinson [43], Giirkan, Ozge and Robinson [21:1]). 

Next sections are devoted to the development of stochastic methods enabling to  deal with 

admitted complexities. 

3 Nonsmooth Sample Functions 

In this section we further analyse the shortcomings of existing optimization techniques for prob- 

lems with nonsmooth performance functions and introduce the concept of stochastic mollifier 

gradients to deal with outlined deficiencies. 



3.1 Differentiability of expectation function 

Subsection 2.1 shows that nonsmooth sample performance functions do not necessarily lead to 

nonsmooth expectation functions. Unfortunately, even the case when the interchange of differen- 

tiation and integration operations is possible may still be infeasible for the standard optimization 

procedures. Consider the situation when a variable transformation smoothes discontinuity of 

the sample performance function and in principle allows to speak about standard approaches. 

Consider the following general stochastic optimization problem: 

minimize F ( x )  = E, f (x,  w )  (8) 

subject to x E X C Rn,  (9) 

where w E fl,  (fl,  C,  P) is some probability space, E, denotes symbol of mathematical expecta- 

tion, f : X x f l  - R1 is a random (i.e. measurable in w under fixed x )  integrable function which 

can be nonconvex, nonsmooth and even discontinuous. Nevertheless, the expectation function 

F ( x )  may still be continuously differentiable. The smoothing effects of sample performance are 

achieved by variable transformations, as the following example illustrates. 

Example 3.1 Suppose that function f ( x , w )  has the following structure 

where locally integrable function f ( r l , .  . . , rm)  can be nonsmooth or discontinuous and grows at 

the infinity not faster than some polynomial of r = ( r l ,  . . . , r,); functions 4;(x) > 0 and $;(x) 

are continuously differentiable; random variable w = (wl, .  . . , w,) has continuously differentiable 

density ~ ( w ~ ,  . . . ,wm) on a rectangular R = {w E RmI a; 5 w; 5 b;, i = 1,. . . , m), p(wl,.  . . , w,) 

tends (together with its derivatives) to zero ( in  the infinity) faster than any polynomial of w. 

Introducing new variables r; = ~ ; ( X ) W ;  $ $;(x), i = 1 , .  . . , m  we can represent 

where 

P(X, = P ( ( ~ I  - $ 1 ( ~ ) ) / 4 1 ( ~ ) 1  - ( ~ m  - $m(x))/$m(x)), 

T ( x )  = {r E R m (  (Y;(x) < ri < P;(X), i = I , .  . . , m ) ,  



If -oo < a i ( x ) ,  Pi(x) < +co and function f ( r )  is continuous then F ( x )  is continuously 

diflerentiable and 

where S (x )  is a surface of the set T(x) ,  n ( x , r )  is a unit normal vector to the surface S ( x )  at 

r E S (x ) ,  ds  is a symbol of integration over surface S (x ) .  

If a i ( x )  = -00, Pi(x) = +oo, i = 1 , .  . . , m, then mathematical expectation function F ( x )  

is continuously diflerentiable and (see Schwartz [51], Archetti and Betro [2], Rubinstein and 

Shapiro [50]) 

There are many similar results (see Uryas'ev [53], Marti [30], PAug [39], [40]) for replacing the 

differentiation from nonsmooth or discontinuous function f (x ,  w) to  continuously differentiable 

density p(w) leading t o  differentiability of F (x ) .  

The admitted formula for V F ( x )  suggests t o  use the deterministic approximation (2) to  the 

function 

that  may have a serious obstacle since the replacement of decision variable z from function f 

to  the density p in general destroys convexity of the sample function. Hence the sample mean 

approximation (2) and deterministic methods may produce local solutions tha t  have nothing in 

common with the solution of the original optimization problem. 

The interchange formula is sometimes also derived from the following simple fact (see, for 

instance, Krivulin [28], Glasserman [16], Rubinstein and Shapiro [50]). 

If f ( z , w )  is 

( a )  differentiable at given x for almost all w and 

(b) satisfies local Lipschitz condition in x with Integrable in w Lipschitz constant, 

then 

V F ( z )  = E,V f (x ,  w). (10) 

The proof follows from Lebesgue's dominant convergence theorem. The following important 

result Krivulin [28], [29] provides a calculus of nonsmooth functions f (x,  w) satisfying (a) ,  (b), 

including min, max operations which is essential for stochastic networks and queuing systems 

(Sections 2.2, 2.6). 



Proposition 3.1 (Krivulin [28]). Let random functions f (x ,w) ,  g (x ,w)  be a.s. diflerentiable 

and  satisfy local Lipschitz condition in x with integrable (in w) Lipschitz constants. Assume 

that for  fixed x random variables f (x ,  w), g(x,  w) are independent (for instance, depend on 

diflerent components of w) and  a t  least one of them has a continuous distribution function. 

Then functions max( f (x ,  w), g(x,  w)) and min( f (x ,  w), g(x,  w)) satisfy conditions ( a ) ,  ( b ) .  

Obviously, the sum, difference, product, fraction and superposition of functions satisfying 

conditions ( a ) ,  (b) also satisfy (a ) ,  ( b )  under not strong additional assumptions on Lipschitz 

constants. 

As stated in Theorem 2.1, for queuing networks performance functions satisfy conditions 

(a ) ,  ( b )  and it  is possible t o  calculate a stochastic gradient Vf (x ,w)  satisfying ( 10). This  

approach corresponds t o  the infinitesimal perturbation analysis for discrete event systems (see 

Ilo and Cao [22], Suri [52]), invoking the following questions. 

Firstly, if (10) is valid but  f (x ,w)  is not continuously differentiable, then the convergence 

of stochastic gradient method (3) with tk = v f ( x k , w )  can only be studied within a general 

context of nonsmooth optimization techniques considered further. 

Secondly, Examples 2.1, 2.2, 3.1, and subsections 2.2, 2.3, 2.6 show practical limitation of 

conditions ensuring the smoothness (continuous differentiability) of F ( x ) .  

3.2 Lipschitzian expectations 

Consider now the  problem (8) - (9), where f : R n  x fl - R1 is a locally Lipschitz in x function 

with integrable in square Lipschitz constant Lx(w), X is some compact set in R n ,  (0, C, P )  is a 

probability space and E, is a symbol of a mathematical expectation operator.  Then expectation 

function F ( x )  is also Lipschitzian with the constant 

Denote d F ( x ) ,  d f (x ,w)  Clarke's subdifferentids [6] of Lipschitz in x functions F ( x )  and 

f (x ,w) .  The  main difficulty concerns the estimation of a subgradient from d F ( x ) .  There is in 

fact no calculus of such a vector, for example, by using a chain rule. The  interchange formula 

for differentiation and integration operator 

is generally not valid and therefore it  is impossible to estimate an  element from d F ( . )  assuming 

we can calculate elements of df  (., w). Usually only a set G j ( . ,  w) is known containing d f (., w). 

Let 4 : Rn - R1 be some probability density function on R n  such tha t  #(x) = 0 outside 

some bounded set in Rn .  Consider parametric family of mollifiers (see Ermoliev, Norkin and 



Wets [ll] and the next section for exact definition) 

and a family of smoothed (averaged) functions 

Let us note tha t  F,(x) incorporates a global information on slopes of function F ( x )  in a 

vicinity defined by "weights" $,(.). Functions F,(x) are considered in optimization theory (see 

Yudin [54], Hasminski [21], Antonov and Katkovnik [I] ,  Zaharov [56], Katkovnik and Kulchit- 

ski [26], Archetti and Betrb [2], Katkovnik [25], Gupal [17], [18], Gupal and Norkin [19], Ru- 

binstein [49], Batuhtin and Maiboroda [4], Mayne and Polak [31], Kreimer and Rubinstein [27], 

Batuhtin [3], Ermoliev, Norkin and Wets [ l l ] ) .  The  convolution with appropriate mollifier im- 

proves differentiability, but on the other hand increases computational complexity of resulting 

problems since it  transfers a deterministic function F ( x )  into an expectation function defined as 

multiple integral. Therefore, this operation is meaningful only in combination with appropriate 

stochastic optimization techniques. 

If function 4(x)  is continuously differentiable (or a constant inside some convex set and equals 

t o  zero outside i t )  then smoothed functions F,(x), cr > 0, are continuously differentiable and 

uniformly in X converge t o  F ( x )  as cr 0. Suppose random functions f (x ,  w) are measurable 

in both variables (x ,  w) then 

where 

Functions fa (x ,w)  are Lipschitzian in s (with the same Lipschitz constant Lx(w))  and even 

continuously differentiable in x .  Therefore, functions F,(x), cr > 0, are also continuously differ- 

entiable and the following differentiation formula is<true 

From here one can obtain different representations for VF,(x) depending on the form of the 

mollifier. If i t  is uniform in a cube probability density as in Gupal [17], [18] 

then 



<a(x, 7 , ~ )  = 
1 , Cy=l ( f  (XI  + Qq1, - . - 7  X i - 1  + aqi-1, X i  + $0, Xi+1 + aqi+l , .  . ., X n  + aqn,  w)- 

1 
f(x1 + . . .,Xi-l + V i - l , X i  - ,Q,Xi+l + Qqi+l,.  . . , X n  + ~ q n , w ) ) e i ,  

e; are unite coordinate vectors. It means that VFa(x) is a mathematical expectation of the 

finite difference approximation <,(x, q , u ) ,  where w has distribution P and q = (ql ,  . .  . , qn) is a 

random vector with components uniformly distributed on the interval (-!j, +$). In other words 

<,(x, q , ~ )  is an unbiased estimate of the gradient VF, at point x. Each such vector we can call 

a stochastic mollifier gradient of F ( x ) .  The vector <, requires calculation of function f (x,  w) at  

2n points. Of course, there may be various other finite difference estimators for VF,(x) (see 

Gupal [18], Katkovnik [25], Rubinstein [47], [48], Ermoliev and Gaivoronski [lO] and the next 

section). 

If we know the analytical structure of Lipschitz function f (., w) and its Clarke's subgradient 

g(x,  w), then (11) can be rewritten as 

The stochastic quasi-gradient method of unconstrained ( X  = R n )  optimization of Lips- 

chitzian function F ( r )  has the form (3) with = g(xk + a k q k , u k ) ,  or f k  = <,, (xk ,qk ,wk)  

and non-negative step multipliers pk and smoothing parameters a k  satisfy conditions: 

i i m  pk = lim a k  = lim pk/ai = lim Jar - a k + l / p k  = 0. 
+oo k+oo k i c c  k i w ,  

(15) 

The procedure uses optimization steps concurrently with approximation steps as proposed 

in Ermoliev and Nurminski [12] and Katkovnik and Kulchitsky [26]. 

T h e o r e m  3.1 (Gupal [l8]). Assume that random trajectories {xk) generated by (13) are bounded. 

Suppose also that the set of function values F ( x )  on the stationary set X* = {x E RnI 0 E d F ( x ) )  
\ 

is Jnite or countable. Then under the above mentioned conditions cluster points of almost all 

trajectories {xk) belong to X *  and the sequence { F ( x k ) )  has a limit as k - m. 

Conditions (14) are typical for standard stochastic approximation type algorithms. Ad- 

ditional requirements (15) are not very restrictive (for instance, pk = Clkp, crk = C/kq 

with 112 < p < 1 and 0 < q < p, C > 0 satisfy them). Thus procedure ( 3 )  with (14), 

(15) generalizes standard stochastic approximation methods for nonsmooth functions. The case 

tk = <, , (xk ,hk ,uk)  provides a general purpose approach. In the case tk = g(xk + dkhk,wk)  

there remains a question to answer: how to calculate Clarke's subgradients g(x,  w) of Lipschitz 

functions f ( x ,  w). Consider an important case. 



3.3 Generalized differentiability 

The calculus of subgradients (see Clarke [6]) only states that 

where G j (x ,  w) is some extended subgradient set determined by the structure of f .  The equality 

holds true for a special case of subdifferentially regular functions which does not cover important 

applications. In many cases, as it was shown in Section 2 we deal not with a general class of 

Lipschitz functions but with a subclass generated from some basic (continuously differentiable) 

functions by means of maximum, minimum or smooth transformation operations. Then ap- 

propriate Clarke's subgradients can in principle be calculated by the lexicographic method (see 

Nesterov [34]). Another possibility is to prove that Gj(x,w) in (16) is a singleton for almost all 

x what is true for so-called generalized differentiable functions. 

Definit ion 3.1 (Norkin [35]) Function f : Rn - R is called generalized differentiable (GD) 

at x E Rn if in some vicinity of x there exists upper semicontinuous multivalued mapping G j  

with closed convex compact values Gf (x )  such that 

f (y) = f (x)+ < 9 ,  Y - x > +o(x, y,g),  (17) 

where < a , .  > denotes an inner product of two vectors, g E Gj(y)  and the remainder term 

satisJies the following condition: 

k for any sequences yk  - x, g - g, gk  E Gj(yk) .  Function f is called generalized differentiable 

if it is generalized differentiable at  each point x E Rn. 

E x a m p l e  3.2 For instance, function 1x1 is generalized differentiable with 

Y > 0, 

G I . I ( Y )  = [-I, +1] y = 0, ( I  y < o  

Its expansion at x = 0 has the form 

Generalized differentiable (GD) functions possess the following properties (see Norkin [35], 

Mikhalevich, Gupal and Norkin [32]): They are locally Lipschitzian; continuously differentiable, 

convex and concave functions are generalized differentiable; class of GD-functions is closed with 

respect to max and min and operators superpositions; there is a calculus of subgradients: 



and subdifferential Gj,,(j ,,,,,, jm)  of a composite function fo( f l ,  . . . , fm )  is calculated by the chain 

rule; class of GD-functions is closed with respect to taking expectation with G F ( x )  = E G j ( x , w )  

for F ( x )  = E f  ( x ,  w ) ,  where f ( . ,  w )  is a GD-function; dcIaTk,  f ( x )  c G j ( x )  and G j ( x )  is a 

singleton almost everywhere in Rn; the following analog of Newton-Leibnitz formula holds true: 

where g ( ( 1  - t ) x  + t y )  E G F ( ( ~  - t ) x  + t y ) .  

Finally, for minimization of an GD-expectation function F ( x )  = E f ( x ,  w )  over convex set K 

the following stochastic generalized gradient method is applicable: 

where n ( y )  is orthogonal projection of y on Ii. 

From Section 2 follows that generalized differentiable functions may be important for queuing 

and other discrete event systems. Therefore we can view calculus ( 1 9 )  together with procedure 

( 2 0 )  - ( 2 3 )  as an extension of smooth perturbation analysis (Ho and Cao [22] ,  Suri [52] )  to 

nonsmooth cases. 

4 Stochastic Discontinuous Optimization 

In this section we extend the results of Ermoliev, Norkin and Wets [ l l ]  to discontinuous stochas- 

tic optimization problems. These results are essentially based on the notion of discontinuity 

preventing the system from instantenuous jumps and returns to normal states (strongly lower 

semicontinuous functions). In the case of stochastic systems this notion requires further elabo- 

ration. 

4.1 Classes of discontinuous functions 

Assume that  objective function F ( x )  of problem ( 8 )  - ( 9 )  is lower semicontinuous (lsc) that  

guarantees the existence of the solution. 

Definition 4.1 A function F : Rn - R1 is  called strongly lower semicontinuous at x ,  if it i s  

lower semicontinuous at x and there exists a sequence x k  - x with F continuous at z k  (for 

all k )  such that F ( x k )  - F ( x ) .  The function F is  called strongly lower semicontinuous o n  

X Rn if this holds for all x E X .  



To give a sufficient condition for mathematical expectation F ( x )  = E  f ( x ,  w )  t o  be strongly 

lower semicontinuous we introduce subclasses of directionally continuous and piecewise contin- 

uous functions. 

Definition 4.2 Lower semicontinuous function F  : R n  - R 1  is called directionally continu- 

ous at x  if there exists an  open (direction) set D ( x )  such that it contains sequences xk  E D ( x ) ,  

x k  - x  and for each such sequence F ( x k )  - F ( x ) .  Function F ( x )  is called directionally 

continuous if this holds for any x  E Rn .  

Definition 4.3 Function F ( x )  is called piecewise continuous if for any open set A c R n  there 

is another open set B C A on  which F ( x )  is continuous. 

Proposition 4.1 If function F ( x )  is piecewise continuous and directionally continuous then it 

is strongly lower semicontinuous. 

Proof. By definition of piecewise continuity for any open vicinity V ( x )  of x  we can find 

an  open set B C D ( x )  n V ( x )  on which function F  is continuous. Hence there exists sequence 

x k  E D ( x ) ,  xk  - x  with F  continuous a t  x k .  By definition of directional continuity F ( x k )  - 
F ( x ) . O  

Proposition 4.2 If function F ( x )  has the form 

where x  = ( X I , .  . . , x,), xi E Rnt ,  function Fo(.)  is continuous and functions F i ( x i ) ,  i = 1 , .  . . , n 

are strongly lsc (directionally continuous), then the composite function F ( x )  is also strongly lsc 

(directionally continuous). 

Function F ( x )  = F o ( F l ( x ) ,  . . . , F,(x)),  x  E R n ,  where Fo(.)  is continuous and F i ( x ) ,  i = 

1 , .  . . , m, are piecewise continuous, is also piecewise continuous. 

The properties of  strong lsc, directional continuity and piecewise continuity are preserved 

under continuous transformations. 

Proof is evident. 

Proposition 4.3 Assume function f ( . , w )  is locally bounded around x  by an  integrable ( i n  w )  

function, piecewise continuous around x  and a.s. directionally continuous at z with direction 

set D ( x ,  w )  = D ( x )  (not depending o n  w).  Suppose w  takes only a finite or countable number of 

values. Then  mathematical expectation function F ( x )  = E f ( x ,  w )  is strongly lsc at x .  

For proof see the Appendix. 



4.2 Mollifier subgradients 

Averaged functions are defined specifically to a family of mollifiers. It is important tha t ,  roughly 

speaking, any family of mollifier can be used for the purpose of optimization. Let us introduce 

necessary notions and facts which are generalized in the next section to  the case of constrained 

problems. 

Definition 4.4 Given a locally integrable (discontinuous) function F : Rn - R' and a family 

of mollifiers {qe : Rn - R+,  0 E R+)  that b y  definition satisfy 

Ln $g(z)dz = 1, suppde := {Z E RnI $e(z) > 0) C peB with a unit ball B, pe 1 0 as 0 1 0, 

the associated family {Po, 0 E R + )  of averaged functions is defined b y  

Mollifiers may also have unbounded support. If function F ( x )  grows in the infinity not faster 

than some polynomial of x then one can take mollifiers with infinite support like 

which tends to  zero in the infinity faster than any polynomial of y .  In this case an estimate 

of gradient VFe(x)  has a particular simple form (see Archetti and Betrb [2], Rubinstein [47], 

Schwartz [51.] for justification of the under integral differentiation). 

Assume now F ( x )  = E f ( x ,  w). If f (x ,  w) is such that  Ewl f ( x ,  w)l exists and grows in the 

infinity not faster than some polynom of x and random vector q has standard normal distribution, 

then for 

we have 

E,, denotes mathematical expectation over joint random variable (q ,  w). The finite differ- 

ence approximations te(x ,  q,w) are unbiased estimates of VFe(x).  As before, we can call them 

stochastic mollifier gradient of F ( x ) .  



Definition 4.5 (See, for example, Rockafellar and Wets  [44], [46]). A sequence of functions 

{Fk : Rn - x) epi-converges to  F : Rn - R relative to X C Rn if for any x E X 

(i) liminfk,, F k ( x k )  1 F ( x )  for all xk - x, xk E X; 

( i i )  limk,, F k ( x k )  = F ( x )  for some sequence xk  - x, xk E X .  

The sequence {Fk) epi-converges to  F if this holds relative to  X = Rn.  

For example, if g : Rn x Rm -+ R is (jointly) lsc at  (3,) and is continuous in y at  , then 

for any sequence yk --, 3, the corresponding sequence of functions F ~ ( . )  = g(. ,  y k )  epi-converges 

to F(.)  = g ( . ,  Y). 

We use further the following important property of epi-convergent functions. 

Theorem 4.1 If sequence of functions {Fk : Rn - z) epi-converges to F : Rn - z then 

for any compact Ii' C Rn 

lim(1im inf(inf Fk)) = lim(1im sup(inf Fk)) = inf F, 
€10 k K ,  €10 k K ,  IC 

where 

I{,  = Ii' -t tB, B = {X E Rnll1xll I 1).  

Fk(x,k) 5 inf Fk -k 6k, x,k E K,, bk 1 0  a s k  + W ,  
I<, 

then 

k lim sup(1im sup x, ) argminIc F, 
€10 k 

where (lim supk x t )  denotes the set X ,  of cluster points of the sequence {x t )  and (lim supElo X,) 

denotes the set of cluster points of  the family {X,, t E R + )  as t 0. 

For proof see the Appendix. 

Jointly with Propositions 4.1, 4.3 the following statement gives sufficient conditions for av- 

eraged functions to epi-converge to original discontinuous expectation function. 

Proposition 4.4 (Ermoliev et.al [ I l l ) .  For any strongly lower semicontinuous, locally inte- 

grable function F : Rn - R, any associated sequence of averaged functions {Fs,, Bk 0) 

epi-converges to  F .  

Thus in principle we can solve constrained discontinuous optimization problems via epi- 

convergent approximations. Unfortunately it involves repeated limits, as we can see from (28). 

Propositions 4.1, 4.3, 4.4, next theorem 4.2 justify the use of stochastic mollifiers of section 

3.2 and such as (25)-(26) in procedure (3). 



Definition 4.6 Let function F : Rn - R be locally integrable and { p k  := F e k )  be a sequence 

of averaged functions generated from F by means of the sequence of mollifiers { $ I k  := $Iek : 

Rn - R )  where Ok 1 0 as k - m. Assume that the mollifiers are such that the averaged 

functions F~ are smooth (of class C'). The set of $I-mollifier subgradients of F at z is by 

definition 

k d i F ( z )  := lim s u p { ( v ~ ( z k ) l l  z - z ) ,  
k 

i.e. d + F ( z )  consists of the cluster points of all possible sequences { v F ~ ( ~ ~ ) )  such that z k  - z .  

Theorem 4.2 (Ermoliev et.al [ l l ] ) .  Suppose that F : Rn + R is strongly lower semicontinu- 

ous and locally integrable. Then for any sequence { $ I s k )  of smooth mollifiers, we have 

whenever z is a local minimizer of F .  

4.3 Constrained discontinuous optimization 

Theorem 4.2 can be used for constrained optimization problems i f  exact penalties are applica- 

ble. Unfortunately, in stochastic system optimization exact values of  constraints are often not 

available. Besides, we also encounter the following difficulties. Consider the problem 

In any reasonable definition of  gradients the gradient o f  the function fi at point z = 0 equals 

to  +m. Hence to  formulate necessary optimality conditions for such kind o f  constrained op- 

timization problems and possibly involving discontinuities we need a special language which 

incorporates infinite quantities. An appropriate notion is a cosmic vector space Rn introduced 

by Rockafellar and Wets [45], [46]. Denote R+ = { z  E RI z 2 0 )  and = R+ U {+co). 

Definition 4.7 Define a (cosmic) space Rn as a set of pairs T = ( z ,  a ) ,  where a: E R n ,  llzll = 1 

and a E G. All pairs of the form ( 2 ,  0 )  are considered identical and are denoted as 0. 

A topology in the space Rn is defined by means of  cosmically convergent sequences. 

Definition 4.8 Sequence ( z k ,  ak) E Rn is called (cosmically) convergent to an element ( z ,  a )  E 
- 
Rn (denoted c-limk,,(zk, a k ) )  if either limk ak = a = 0 or there exist both limits limk zk E R n ,  

limk ak E Rn and z = limk zk ,  a = limk ak # 0 ,  i.e. 

(limk zk ,  limk ak) if (limk a k )  < +m, 

c-limk(zk, ak) = (limk x k ,  +MI)  if ak + +m, 

(limk z k ,  +m) if ak = +m. 



For convex set K E Rn let N K ( x )  be a normal cone and 

be an extended normal cone to K a t  point x E K. 

Let us now extend the notion of mollifier subgradients (Definition 4.6). 

Definition 4.9 Let function F : Rn - R be locally integrable and { F k  := F e k )  be a sequence 

of averaged functions generated from F by convolution with mollifiers { g k  := gek : Rn + R )  

where Ok 0 as k -+ oo. Assume that the mollifiers are such that the averaged functions F~ are 

smooth (of class C 1 ) .  The set of the extended $-mollifier subgradients of F at x is by definition 

- k k d + F ( x )  := c - ~ i m s u ~ ~ { ( ~ ~ ( x ~ ) ,  ( ( V F  ( x  xk - x } ,  

where 

arbitrary unit vector, if I ( v F ~ ( x ~ ) J J  = 0 ,  
~ k ( X k )  = 

V F ~ ( X ~ )  

IIVFk(xk)lI '  
otherwise; 

k k i.e. a+ F ( X )  consists of the cluster points of all possible sequences { ( N & ( x ~ ) ,  J J V F  ( x  )II)) such 

that xk --i x .  The full (extended) Q-mollifier subgradient set is 

where $ ranges over all possible sequences of mollifiers that generate smooth averaged functions. 

The extended mollifier subdifferential d + ~ ( x )  is always a non-empty closed set. 

Now we can formulate necessary optimality conditions for constrained discontinuous opti- 

mization problem: 

where F ( x )  may have the form of the expectation. 

Theorem 4.3 Let K be a convex closed set i n  R n .  Assume that a locally integrable function 

F has a local min imum relative to  K at some point x E K and there is a sequence xk  E I<, 

x k  + x with F continuous at xk  and F ( x ~ )  + F ( x ) .  Then,  for any sequence { $ k )  of smooth 

mollifiers, one has 

where - B + F ( x )  = { ( - g ,  a )  E Rnl ( g ,  a )  E B * F ( X ) )  



For proof see the Appendix. 

Example 4.1 Consider a n  optimization problem 

min{*l x > 0). 

Then  we have 

- - 
& f i l x = 0  = (+l ,fCQ),  Nx>0(0) - = UaER,(-l,a) 

and thus 

- 
-a+filx=o n Nx>o(o) = (-1, +CQ) # 8. 

Next proposition shows that  optimality conditions (32) are also satisfied for limits X' of 

some local minimizers x, of relaxed problems 

Proposition 4.5  Let x, be a local minimizer of (33) such that there exists sequence x,k -- xE)  

x t  E I<, with F continuous at x t  and F(x,k) - F(xc)  as k - CQ. Assume x , ~  -- x f o ~  

some 6 ,  1 0 as m -+ CQ. Then  (32) is  satisfied at x. 

Proof follows from Theorem 4.3 and closeness of (extended) mollifier subdifferential mapping 

x - B G q x )  and (extended) normal cone mapping (x, t) - NIi, (x). 

Proposition 4.6 If i n  (31) the objective function F is  strongly lsc and the constraint set li' 

is  convex compact then the set X *  of points, satisfying necessary optimality condition (32)) is 

nonempty and contains at least one global minimizer of (31). 

Proof follows from Theorem 4.1 and Proposition 4.4. 

Theorem 4.3 and Propositions 4.5, 4.6 immediately give a t  least the following idea for ap- 

proximate solving the problem. Let us fix a small smoothing parameter 0 and a small constraint 

relaxation parameter 6 and instead of original discontinuous optimization problem consider a 

relaxed smoothed optimization problem: 

min[Fs(x)l x E K,], 

where Fs and li', are defined by (24), (29). 

Then stochastic gradient method for solving (34) has the form: 

xO is an arbitrary starting point; 



where E { ~ ~ ( X ~ ) J X ~ )  = v F s ( x k ) ,  n denotes the orthogonal projection operator on the convex 

set I<,, step multipliers pk satisfy (14). 

The convergence of stochastic gradient method with projection on a convex compact set for 

srnooth nonconvex objective function Fg was studied in [8]. Thus Theorem 4.3, Propositions 

4.3, 4.5, 4.6, together with procedure (35) justify the use of stochastic gradient (quasi-gradient) 

methods for general constrained nonsmooth stochastic problems. Vectors cs(xk) can be called 

stochastic mollifiers gradients similar to subsections 3.2, 4.2. 



5 Conclusions 

The analysis of practical nonsmooth stochastic problems in Section 2 shows the importance 

of random search methods to  directly confront their inherent complexity. In particular, we 

mentioned the following reasons. 

If expectations are approximated as usual by the sample mean, a deterministic procedure 

cannot provide an asymptotic convergence rate faster than 1, where k is the number of samples. 6 
This follows from the central limit theorem. Stochastic methods have the same asymptotic rate 

of convergence. 

The deterministic approximation may destroy important features of the original problem 

such as smoothness and even convexity. The number of local solutions and discontinuities may 

rapidly increase with the attempt to improve the accuracy of the approximation. 

Although the convergence of optimal values of the approximate "geterministic" problem is 

proved under rather general assumptions, the use of subgradient deterministic methods may 

produce local solutions that have nothing in common with solutions of the original problem. 

Stochastic procedures have the same asymptotic rate. But since they directly confront the 

stochasticity and complexity of the original problem they avoid the above mentioned features. 

We outlined nonsmooth perturbation analysis (Section 3.3) as a possible approach to special 

cases of practical problems in Section 2. A promising direction seems to be the use of mollifiers 

(Sections 3.2,4.2). This concept incorporates two fundamental approaches to the differentiation 

of "non-classical" functions: the theory of distributions (theory of generalized functions) and 

nonsmooth analysis. Resulting random search procedures use a global view on "landscape" of 

performance functions enabling to bypass local solutions and discontinuities. Numerical exper- 

iments with realistic discontinuous problems, (Oortmarssen and Ermoliev, [37]), indicate fast 

convergence to a practically important neighborhood of optimal solutions. The use of mollifiers 

seems to be important in discrete stochastic optimization (Norkin, Ermoliev and Ruszczy6sky 

[36]) to calculate upper and lower bounds in stochastic branch and bound method. 

Proposed new optimality conditions (Section 4.3) point out on general approaches to the 

optimization of rather complex stochastic discontinuous systems. 

Of course, there are still more questions than answers. For example, further elaboration 

of optimality conditions, the development of appropriate calculus and classes of computational 

procedures. An important task is the study of specific classes of problems and the choice of most 

suitable classes of mollifiers. We hope to answer some of these questions in the near future. 



6 Appendix 

6.1 Proof of Theorem 2.1 

If p,j = pi then the proof can be performed by induction in k with sequential use of representa- 

tion (7). The following proof for a general case is a modification of the proof from Krivulin [29]. 

Denote 

Let M be a class of function obtained from functions rij E T by means of min, max and sum 

operations. The theorem states that  for all k and i = 1,. . . , L y;k E M. 

Let us introduce some notations: 

r = {yij, i = 1,. . . , L; j = 1 , 2 , .  . .); 
r0 = {yijl ni > 0, i = 1,. . . , L; j = 1 ,2 , .  . ., ni). 

r; = {yTS( pTS = i; T = 1 , .  . ., L; s = 1 ~ 2 , .  . .); 

j T i  = sup{jJ = i}; 

rik = {yTs E ril s 5 min(k, j,;)}; 

rIk = {yl t - -yr ts t  E r i k )~ ;  < Y ; + ~ ,  t =  1 ,2 ,  . . . ,  t l -  1); 

Bik = rik U yi(k-1); 

Aik = r \ {yijl j > k). 

For elements of I'O the statement of the theorem is obviously true. 

Choose y;k E r \ rO, k > ni. Since yik = m a ~ ( y ~ ( ~ - ~ ) ,  aik) + r i k ,  then to  prove the theorem 

one has to show that a i k  E M and yi(k-~) E M. 

If ~ ; ( k - ~ )  > a i k  then yik is defined through y,(k-I). Otherwise y;k is defined through a;k. 

The moment a i k  coincides with (k - n;)-th element in the ordered set r:k. In this case 

a i k  = min max(yi1 , . . . , y:*,), k' = k - ni, 
l < t l <  ... <tk1<t1 

i.e. a i k  E M .  Indeed, max(y;,,. . . ,y ik , )  > max(y{, . . ., y;,) and minimum is achieved on the 

row of the first k' elements of r:k. 

Denote [Bik] algebra of objects obtained from Bik = rik U yi(k-l) by means of min, max and 

sum operations. It follows from above that y;k belongs to [Bik f l  Aik]. We shall show that any 

element of [Bik fl Aik] belongs to  M .  

Choose any y;,kl E B;k fl Aik. Then either y,,k, E r0 or y;,k, = m a ~ ( y ; , ( ~ , - ~ ) ,  a i 1 k l  ) + r;,k,. 

Arlalogously it follows that  yi,k, belongs to [Bil k l  f l  Aik f l  A;, kl] .  For any yi2k2 E Bil k l  fl Aik fl 

nil k l  Yi2k2 belongs to  [Bi2 k2 \ Aik \ At, kl  fl Ai2 k,] and so on. 

In a similar way we can construct a chain of events yik, yilkl,. . . ,~ , ,k ,  with yinkn from 

[B;,k, fl Aik fl . . . n Ainkn]. This chain cannot be infinite because in the sequence Aik,  . . . , Aink, 



each node it can occur only a finite number of times (once appeared in Ailk, node it is repeated 

a t  most kt t imes).  Therefore for some n we obtain yinkn E To. 

The  above analysis shows tha t  y;k is expressed through elements of T by means of min, max 

and sum operations, i.e. y;k E M. 

6.2 Proof of Proposition 4.3 

Lower semicontinuity of F follows from Fatu lemma. The  convergence of F ( x k )  t o  F ( x )  for 

xk  + x ,  x k  E D ( x )  follows from Lebesgue's dominant convergence theorem. Hence F is 

directionally continuous a t  x in the direction D ( x ) .  It  remains t o  show tha t  in any open set 

A c Rn which is close t o  x there are points of continuity of F .  For the case when w takes finite 

number of values wl,  . . . , w, with probabilities p , ,  . . . , p m  the function F(.) = Czl pi f (., wi) is 

clearly piece-wise continuous. For the case when w takes a countable number of values there 

is a sequence of closed balls Bi Bi-1 C A convergent t o  some point y E A with f (., w;) 

continuous on B;. We shall show tha t  F(.) = Czl pi f (., w;) is continuous a t  y. By assumption 

Jf(x,w;) l  < C; for x E A and C z l p i C i  < +m. We have 

Then for any x k  -i y 

03 

lim sup F ( x k )  5 F ( y )  + C 2piCi 
k i=m+l 

liminf F ( x k )  2 F ( y )  - 2piCi. 
k 

i=m+1 

Since CZm+, 2piCi -i 0 as m + m then limk F ( x k )  = F(y) .O 

6.3 Proof of Theorem 4.1 

Note tha t  (infIic F k )  monotonously increases (non decreases) as t J 0, hence the  same holds for 

liminfk,, infIic Fk and lim supk-03 i d K ,  F k .  Thus limits over t J 0 in (28) exist. 

Let us take arbitrary sequence t, J. 0, indices k& and points x& such tha t  under fixed m 

lim inf( inf F ~ )  = lim ( inf Fk;) = lim Fk&(x;). 
k I\-crn s-03 I i , ,  S-00 

Thus 

lim(1im sup(inf F k ) )  ) lim(liminf(inf F k ) )  = lim lim Fk;(x;) = lim Fkkm 
€10 k I i ,  €10 k I i c  m - ~ 3  s-CZ, m-03 

( 3 2  > 



for some indices s,. By property (i) of epi-convergence lim,,, FkLm (xkm) 2 infIi F. Hence 

lim(1im sup(inf Fk)) > lim(1im inf(inf Fk)) ) inf F 
€10 k Kc €10 k h', I( 

Let us proof the opposite inequality. Since F is lower semicontinuous, then F ( x )  = infIi F for 

some x E K. By condition (ii) of epi-convergence there exists sequence xk - x such that  

F k ( x k )  - F(x) .  For k sufficiently large xk  E li,, hence infIcc Fk < F k ( x k )  and 

lim(liminf(inf Fk)) 5 lim(1im sup(inf Fk)) 5 F ( x )  = inf F. 
€10 k K ,  €10 k K, K 

The proof of (28) completed. 

Now prove (30). Let x t  E and Fk(x!) < infK, Fk + bk, bk L 0. Denote X, = 

limsupk xf C K,. Let tm 0, xCm E Xtm and xEm - x E li as m - oo. By construc- 
k" tion of X, for each fixed m there exist sequences xmm - xCm satisfying 

By property ( i)  

F ( x f m )  5 lim inf FkL(x$) < lim inf( inf F k L )  5 lim sup( inf F ~ ) .  
s S Kern k Kcm 

Due to  lower semicontinuity of F and (28) we obtain 

F ( x )  5 lim inf F(x,,) 5 lim inf(1im sup( inf Fk)) = inf F ,  
m-03 €,lo k Kern I< 

hence x E argminI{F, that  proves (30).0 

6.4 Proof of Proposition 4.5 

Let x be a local minimizer of F on I<.  For a sufficiently small compact neighborhood V of x ,  

define 4 := F ( z )  + Ilz - X I \ ' .  The function 4 achieves its global minimum on (li' n V )  a t  x. 

Consider also the averaged functions 

where 

In [ll] it is shown that  (i) functions dk are continuously differentiable, (ii) they epi-converge to 

4 relative to  I< n V and (iii) their global minimums zk on Ii' n V converge to  x as k -- oo. For 

sufficiently large k the following necessary optimality condition is satisfied: 



If v F k m ( z k m )  = 0 for some {zkm - x }  then also 0 E $ $ F ( x )  and 0 E N I , - ( x ) .  If 

v F k m ( z k m )  - g  # 0 for some { z k m  - x )  then 

and (fi, 119) E ~ $ F ( X ) ,  - g l l )  E TK(x) .  If limsupk l IVFk(zk) ( I  = t m  then for some 

{zkm - 5 )  

and (g, +m) E d @ ( x ) ,  ( - 9 ,  +m) E T I c ( z ) . o  



References 

[ I ]  Antonov G.E. and Katkovnik V.Ya. (1970), Filtration and smoothing in extremum search 

problems for multivariable functions, Avtomatika i vychislitelnaya tehnika, N.4, Riga. (In 

Russian). 

[2] Archetti F .  and Betrb B. (1975), Convex programming via stochastic regularization, 

Quaderni del Dipartimento di Ricerca Operativa e Scienze Statistiche, N 17, Universiti  

di Pisa. 

[3] Batuhtin,B.D. (1994), On one approach to  solving discontinuous extremal problems, Izvestia 

AN Rossii. Tehnicheskaia kibernetika (Communications of Russian Academy of Sciences. 

Technical Cybernetics), No. 3, pp.37-46. (In Russian). 

[4] Batuhtin,B.D. and Maiboroda L.A. (1984), Optimization of discontinuous functions, 

Moscow, Nauka. (In Russian). 

[5] Brooks, H. (1985), The  topology of surprises in technology, institutions and development, 

In Sustainable development of the biosphere, eds. W.C.Clark and R.E.Munn, Cambridge, 

Cambridge Univ. Press. 

[6] Clarke F.H.  (1983), Optimization and Nonsmooth Analysis, Wiley, NY 

[7] Clark, W.C. (1985), On the Practical Implication of the Carbon Dioxide Question, Working 

Paper ,  International Institute fir Applied System Analysis, Laxenburg, Austria. 

[8] Dorofeev P.A. (1986), A scheme of iterative minimization methods, U.S.S.R. Comput.  Math.  

Math.  Phys., Vol. 26, No. 2, pp.131-136. (In Russian). 

[9] Ermoliev Yu.M. (1976), Methods of Stochastic Programming, Nauka, Moscow. (In Russian). 

[lO] Ermoliev Yu. and Gaivoronski A. (1992), Stochastic programming techniques for optimiza- 

tion of discrete event systems, Annals of Operations Research, Vol. 39, pp. 120- 135. 

[ l l ]  Ermoliev Yu.M, Norkin V.I. and Wets R.J-B. (1995), The  minimization of semi-continuous 

functions: Mollifier subgradients, SIAM J. Contr.  and Opt . ,  No.1, pp.149-167. 

[12] Ermoliev Yu.M. and Nurminski E.A. (1973), Limit extremal problems, Kibernetika, No. 4, 

pp. 130-132. (In Russian). 



[13] Ermoliev Yu.M. and Wets R.J-B. (Eds.) (1988), Numerical Techniques for Stochastic Op- 

timization, Springer, Berlin. 

[14] Ermoliev Yu.M., Uryas'ev S. and Wessels J .  (1992), On Optimization of Dynamical Ma- 

terial Flow Systems Using Simulation, Working Paper WP-92-76, October 1992, IIASA, 

Laxenburg, Austria. 

[15] Gaivoronski A.A. (1992), Optimization of stochastic discrete event dynamic systems: a 

survey of some recent results, In: Simulation and Optimization, Eds. G.Pflug and U.Dieter, 

Lecture Notes in Economics and Mathematical Systems 374, Springer-Verlag, pp.24-44. 

[16] Glasserman, P. (1991), Gradient Estimation via Perturbation Analysis, Kluwer, Norwell, 

Mass. 

[17] Gupal A.M. (1977), On a method for the minimization of almost differentiable functions, 

Kibernetika, No. 1, pp.114-116. (In Russian, English translation in: Cybernetics, Vol. 13, 

N. 1). 

[18] Gupal A.M. (1979), Stochastic methods for solving nonsmooth extremal problems, Naukova 

dumka, Kiev. (In Russian). 

[19] Gupal A.M. and Norkin V.I. (1977), An algorithm for minimization of discontinuous func- 

tions, Kibernetika, No. 2, 73-75. (In Russian, English translation in: Cybernetics, Vol. 13, 

N. 2). 

[20] Giirkan G.,  Ozge A.Yo. and Robinson S.M. (1994), Sample-Path Optimization in Simula- 

tion, Working paper WP-94-70, Int.  Inst.  for Appl. System Anal., Laxenburg, Austria. 

[21] Hasminski R.Z. (1965), Application of random noise in optimization and recognition prob- 

lems, Problemy peredachi informatzii, Vol. 1, N. 3. (In Russian). 

[22] Ro Y.C. and Cao X.R. (1991), Discrete Event Dynamic Systems and  Perturbation Analysis, 

Kluwer, Norwell, Mass. 

[23] Ho Y.C. (1994), Heuristics, Rules of Thumb, and the 80120 Proposition, IEEE Transactions 

on Automatic Control, Vol. 39, N 5, p. 1025-1027. 

[24] IIolling, C.S. (1985), Resistance of ecosystems: local surprise and global change, In Sustain- 

able development of the biosphere, e d ~ .  W.C.Clark and R.E.Munn, Cambridge, Cambridge 

Univ. Press. 



[25] Katkovnik V.Ya. (1976), Linear Estimates and Stochastic Optimization Problems, Nauka, 

Moscow. (In Russian). 

[26] Katkovnik V.Ya. and Kulchitsky Yu. (1972), Convergence of a class of random search 

algorithms, Automat. Remote Control, No. 8,  pp. 1321-1326. (In Russian). 

[27] Kreimer J. and Rubinstein R.Y. (1992), Nondifferentiable optimization via smooth approx- 

imation: general analytical approach, Annals of Oper. Res., Vol. 39, pp.97-119. 

[28] Krivulin N.K. (1990), Optimization of dynamic discrete event systems through simulations, 

Candidate Dissertation, Leningrad, Leningrad university. (In Russian). 

[29] Krivulin N.K. (1990), On optimization of complex systems by means of simulations, Vestnik 

Leningradskogo Universiteta, Leningrad, pp. 100- 102. (In Russian). 

[30] Marti K. (1995), Differentiation of Probability Functions: The  Transformation Method. 

Computers Math. Applications, Vol. 30, No 3-6, pp. 361-382. 

[31] Mayne D.Q. and Polak E. (1984), Nondifferentiable optimization via adaptive smoothing, 

J .  of Opt .  Theory and Appl., Vol. 43, pp.601-613. 

[32] Mikhalevich V.S., Gupal A.M. and Norkin V.I. (1987), Methods of nonconvez optimization, 

Nauka, Moscow. (In Russian). 

[33] Mirzoahmedov F .  (1990)) The  queuing system optimization problem and a numerical 

method for its solution, Kibernetika, No. 3, pp.73-75. (In Russian, English translation in 

Cybernetics, Vol. 26, N. 3). 

[34] Nesterov Yu.E. (1989), EfSective Methods in Nonlinear Programming, Radio & Svyaz, 

Moscow. (In Russian). 

[35] Norkin V.I. (1978), On nonlocal algorithms for optimization of nonsmooth functions, Kiber- 

netika, No. 5, pp. 75-79. (In Russian, English translation in Cybernetics, Vol. 14, N. 5). 

1361 Norkin V.I., Ermoliev Yu.M. and Ruszczyriski (1995). On Optimal Allocation of Indivisibles 

Under Uncertainty. Working Paper WP-94-021, April 1994, revised October 1995, IIASA, 

Laxenburg, Austria. 

[37] Oortmarssen G. and Ermoliev Yu.M. (1994), Stochastic Optimization of Screening Strate- 

gies for Preventing Irreversible Changes, Working paper WP-94-124, Int.  Inst. for Appl. 

System Anal., Laxenburg, Austria. 

[38] Parry, M.L. (1978), Climate change, agriculture and settlement, Folkestone, U.K. Dawson. 



[39] Pflug G.Gh. (1988), Derivatives of probability measures - concepts and applications to  the 

optimization of stochastic systems, in Discrete event systems: Models and Applications 

(P.Varaiya and A.B.Kurzhanski, eds.), Lecture Notes in Control and Information Sciences, 

Springer Verlag, pp.162-178. 

[40] Pflug G.Gh. (1990), On-line optimization of of simulated Markovian processes, Mathematics 

of Operations Research, Vol. 15, No. 3, pp.381-3 

[41] Plambeck E.L., B.-R. Fu, S.M. Robinson, and R. Suri (1993), Throughput optimization 

in tandem production lines via nonsmooth programming, In Proceedings of 1993 Summer 

Computer Simulation Conference, ed. J.Schoen, pp. 70-75. Society for Computer Simula- 

tion, San Diego, California. 

[42] Plambeck E.L., B.-R. Fu, S.M. Robinson, and R. Suri (1994), Sample-path optimization of 

convex stochastic performance functions, Preprint, Department of Industrial Engineering, 

University of Wisconsin-Madison, Madison, Wisconsin. 

[43] Robinson S.M. (1994), Analysis of sample-path optimization, Preprint, Department of In- 

dustrial Engineering, University of Wisconsin-Madison, Madison, Wisconsin. 

[44] Rockafellar R.T. and Wets R.J-B. (1984), Variational systems, an introduction, in: Multi- 

functions and Integrands, G.Salinetti, ed., Lecture Notes in Mathematics 1091, Springer- 

Verlag, Berlin, pp.1-54. 

[45] Rockafellar R.T. and Wets R.J-B. (1991), Cosmic convergence, in: Optimization and Non- 

linear Analysis, eds. A.Ioffe, M.Marcus and S.Reich, Pitman Research Notes in Mathematics 

Series 244, Longman Scientific & Technical, Essex, U.K., pp. 249-272. 

[46] Rockafellar R.T. and Wets R.J-B. (1995), Variational Analysis, a monograph to  be pub- 

lished in Springer-Verlag. 

[47] Rubinstein R.Y. (1981), Simulation and the Monte-Carlo Method, John Wiley & Sons, NY. 

[48] Rubinstein R.Y. (1986), Monte-Carlo Optimization, Simulation and Sensitivity of Queuing 

ivet~uorks, Wiley, NY. 

[49] Rubinstein R.Y. (1983), Smoothed functionals in stochastic optimization, Math. Oper. Res, 

Vol. 8, pp.26-33. 

[50] Rubinstein R.Y. and A. Shapiro (1993), The optimization of discrete event dynamic systems 

by the score function method, Wiley, NY. 



[51] Schwartz L. (1966), The'orie des Distributions, Heerman, Paris. 

[52] Suri R. (1989), Perturbation Analysis: The State of the Art and Research Issues Explained 

via the G I / G / l  Queue, Proc. of the IEEE, Vol. 77, No. 1, pp. 114-137. 

[53] Uryas'ev S. (1995), Derivatives of Probability Functions and Some Applications. Annals of 

Operation Research, 56, 287-311. 

[54] Yudin D.B. (1965), Qualitative methods for analysis of complex systems I, Izvestia AN 

SSSR, Tehnich. Kibernetika, No. 1. (In Russian). 

[55] Wigley, T.M.L. (1985), Impact of extreme events, Nature, No. 386, pp.106-107. 

[56] Zaharov V.V. (1970), Integral smoothing method in multi-extremal and stochastic prob- 

lems, Izvestia AN SSSR, Tehnich. Kibernetika, No. 4. (In Russian). 


