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I n this paper, we propose a new interactive procedure for solving multiple objective program­
ming problems. Based upon feed-forward artificial neural networks (FFANNs), the method 

is called the Interactive FFANN Procedure. In the procedure, the decision maker articulates 
preference information over representative samples from the nondominated set either by as­
signing preference "values" to the sample solutions or by making pairwise comparisons in a 
fashion similar to that in the Analytic Hierarchy Process. With this information, a FFANN is 
trained to represent the decision maker's preference structure. Then, using the FFANN, an op­
timization problem is solved to search for improved solutions. An example is given to illustrate 
the Interactive FFANN Procedure. Also, the procedure is compared computationally with the 
Tchebycheff Method (Steuer and Choo 1983). The computational results indicate that the Inter­
active FFANN Procedure produces good solutions and is robust with regard to the neural net­
work architecture. 
(Multiple Objective Programming; Feed-forward Artificial Neural Networks; Multiple Criteria Decision 
Making; Analytic Hierarchy Process; fllteractive Procedures) 

1. Introduction 
We propose a new procedure for solving multiple ob­
jective programming problems. Called the Interactive 
FFANN Procedure, it focuses on the elicitation, repre­
sentation, and utilization of preference information ob­
tained from a decision maker (OM) in a feed-forward 
artificial neural network (FFANN) framework. One ad­
vantage of the Interactive FFANN Procedure over ex-

•The preliminary results of this paper were presented at the 33rd ORSA/ 

TIMS Joint National Meeting, Orlando, Florida, April 2&-29, 1992. 
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isting procedures is that it takes the initiative in search­
ing for improved solutions, generalizing preference in­
formation provided by the OM, rather than merely 
judging the discrete solutions generated by some sam­
pling method. Another advantage is that the FFANN 
within the procedure makes it possible to represent var­
ious types of nonlinear preference structures. 

During the last two decades, much progress has been 
made in the modeling of multiple objective program­
ming problems. However, although many solution pro­
cedures have been proposed, these methods have gen­
erally not been fully satisfactory. The most effective 
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methods have been interactive procedures, which typ­
ically include alternating phases of analysis-the solu­
tion generation phase and the solution evaluation 
phase. Examples of interactive multiple objective pro­
gramming procedures include STEM (Benayoun et al. 
1971 ), the Geoffrion-Dyer-Feinberg Procedure (Geof­
frion et al. 1972), the Visual Interactive Approach (Kor­
honen 1987b, Korhonen and Wallenius 1988), the Tche­
bycheff Method (Steuer and Choo 1983, Steuer 1986), 
the Zionts-Wallenius Method (Zionts and Wallenius 
1983), the Reference Point Method (Wierzbicki 1982), 
and others as summarized in Gardiner and Steuer 
(1994). 

Whenever a multiple objective programming prob­
lem is solved interactively in practice, three issues must 
be addressed: (i) how to elicit preference information 
from the OM over the set of feasible solutions, (ii) how 
to represent the DM's preference structure in a system­
atic manner, and (iii) how to use the DM's preference 
structure to guide the search for improved solutions. 
Many methods have been developed for eliciting pref­
erence information from the OM, but finding an effec­
tive device to capture preference information and use it 
effectively in the search for improved solutions has been 
problematic. 

This research addresses these three issues as follows. 
The OM has the choice of articulating his or her pref­
erence information either by assigning "values" to trial 
solutions or by making comparisons between pairs of 
trial solutions. The preference information elicited is 
then used to train a FFANN so as to "store" the pref­
erence information. The trained FFANN then serves as 
an approximate representation of the DM's preference 
structure and is combined with nonlinear programming 
techniques to search for improved solutions. 

The contribution of this research is twofold. From the 
perspective of those working in management science, 
this research may be viewed as a new paradigm for 
solving multiple objective optimization problems using 
artificial intelligence methods. From the perspective of 
those working in artificial intelligence, this research can 
be seen as a new application of artificial neural net­
works to problems in constrained optimization. 

The remainder of this paper is organized as follows. 
We briefly review the topology and dynamics of a 
FFANN in §2. In §3, we introduce notation and discuss 
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issues related to preference information elicitation and 
representation. The Interactive FFANN Procedure is de­
tailed in §4, followed by an illustrative example in §5. 
Computational results are reported in §6, and conclud­
ing remarks are given in §7. The algorithm for training 
the FFANNs employed in this paper is presented in Ap­
pendix A. 

2. Feed-forward Artificial 
Neural Networks 

An artificial neural network consists of a set of process­
ing units, called nodes, connected by weighted arcs, 
where the weights represent the strength of connec­
tions. A FFANN is an artificial neural network where 
the nodes are organized into layers, and the weighted 
arcs only link nodes in lower layers to nodes in higher 
layers (Rumelhart et al. 1986; Wasserman 1989). Nodes 
in the input layer, called input nodes, accept input from 
the outside world and nodes in the output layer, called 
output nodes, generate output to the outside world. 
Nodes in the input layer are used to distribute inputs 
only and do not serve any processing or computational 
function. Nodes in layers between the input layer and 
the output layer are called hidden nodes, and these lay­
ers are called hidden layers. 

Let the input layer also be known as layer 0 and let 
the number of layers aside from the input layer be m. 

Denote node kin layer i by u[; the number of nodes in 
layer i by n,; and the connectivity weight from v; to 
v1 by wi,. If two nodes are not connected, the connec­
tivity weight between them is 0. Associated with u[ is 
a node bias or threshold 0[. Further, denote the set of 
connectivity weights and node biases by W = {w1,, 
0[}. An example of a FF ANN, with direct connections 
from the input layer to the output layer, is given in 
Figure 1. 

Mapping vectors from the input space 9\'"' to the out­
put space 91""', a FFANN can be expressed as FFANN: 
9\ '"' -+ 9\ ""' . The mapping of an input vector to an output 
vector is a dynamic process, in which node inputs and 
outputs are updated sequentially from the input layer 
to the output layer. For i > 0, the input to uL denoted 
by zL is the weighted sum of the outputs of all nodes 
directly connected to it from all other lower layers plus 
Bk, i.e., 
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Figure 1 

v' I 

A Fully Connected FFANN 

1- l 11 , 

zk =I, I, w:', u( +Ok, 
1=0 r= l 

where 11 ( is the output of v(. 

Layer 2 

v~ Layer 1 

Layer 0 

(2.1) 

Each node, except for the ones in the input layer, has 
an activation function which computes the node's out­
put based upon its input. The most frequently used ac­
tivation function, which is also used in this paper, is the 
logistic function, defined as 

11 k = [1 + exp(-zk/T)] - 1
, (2.2) 

where the "temperature" T, a user-selected scalar, de­
termines the steepness of the activation function. 

A FFANN is usually trained to represent an unknown 
mapping by employing a training set (a collection of 
paired input and desired output vectors observed from 
the unknown mapping). The purpose in training a 
FFANN is to determine the values of the elements in W 

so that the FFANN can closely represent the unknown 
mapping. 

The training of a FFANN is accomplished by (1) map­
ping input vectors from the training set by the current 
version of the FFANN to their computed output vectors, 
(2) comparing the computed output vectors with their 
respective desired output vectors in the training set, and 
then (3) adjusting the values of the components of W so 
as to reduce any differences between the computed and 
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desired output vectors. After a number of training it­
erations, the connectivity weights and node biases of the 
FFANN will converge to a set of values that minimizes 
the differences between the computed and desired out­
put vectors, and the FFANN will organize itself inter­
nally, constructing a model to represent the unknown 
mapping from the input space to the output space. Thus 
any new input vector presented to an appropriately 
trained FFANN will yield an output vector similar to 
the one that would have been given by the actual map­
ping. The training algorithm that we used in this paper 
is based upon the error back-propagation algorithm (see 
Rumelhart et al. 1986) as described in Sun (1992) and is 
presented in Appendix A. 

Artificial neural networks have been applied to many 
real world problems, especially in classification and pat­
tern recognition (Masson and Wang 1990, Zahedi 1991). 
Also, artificial neural networks have been applied to 
problems in combinatorial optimization (Hopfield and 
Tank 1985, Aarts and Korst 1989) and linear program­
ming (Tank and Hopfield 1986, Wang and Chankong 
1992) . Recently, Wang and Malakooti (1992) and Ma­
lakooti and Zhou (1994) have used FFANNs to solve 
discrete multiple criteria decision making problems. 
Burke and Ignizio (1992) provide an overview of con­
nections between artificial neural networks and opera­
tions research. 

3. Notation and Preference 
Information Elicitation 

As for notation and terminology, a multiple objective 
programming problem is written as 

or equivalently as 

max{f, (x) = z,J 

s.t. x ES, 

max{f(x) = z} 

s.t. x ES, 

where k is the number of objectives, the z1 are criterion 
values, and S C 9\" is the feasible region in decision 
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space. Let Z C 9\' be the feasible region in criterion 
space where z E Z if and only if there exists an x E S 
such that z = (f1 (x), ... , f,(x)). Criterion vector z E Z 
is nondominated if and only if there does not exist an­
other z E Z such that Z; "" z; for all i and z, > z; for at 
least one i. The set of all nondorninated criterion vectors 
is designated N and is called the nondominated set. A 
point x E S is efficient if and only if its criterion vector z 
= (/i (x), . . . , f, (x)) is nondorninated. The set of all effi­
cient points is designated E and is called the efficient set. 
If a multiple objective program is all linear, it will be 
referred to as a MOLP (multiple objective linear pro­
gram). 

Let V: 9\' -+ 9\ be a OM's value function. A z 0 P' E Z 
that maximizes V over Z is an optimal criterion vector and 
any x0 P1 ES such that (/1(x0 P1

), • .. , f,(x 0 P')) = z0 P' is an 
optimal solution of the multiple objective program. Our 
interest in the efficient set E and the nondorninated set 
N sterns from the fact that if Vis coordinatewise increasing 
(that is, more is always better than less of each crite­
rion), x0 P' E E and z 0P' E N. However, in interactive 
multiple objective programming, because of the diffi­
culty in precisely locating the best nondorninated cri­
terion vector, we typically conclude the search for an 
optimal solution with a final solution zfin E Z (a solution 
that is either optimal, or close enough to being optimal 
to satisfactorily terminate the decision process). 

A OM's value function may be difficult, if not impos­
sible, to assess. In fact, the mere existence of a value 
function is not guaranteed (Yu 1985) . Moreover, a OM's 
preference structure may not be stable over time. See 
Farquhar (1984), Fishburn (1974, 1984), Keeney and 
Raiffa (1976), and Yu (1985) for some excellent research 
on value functions. Because of the potential difficulties 
in assessing a OM's value function, we have been in­
trigued by artificial neural networks because of their 
ability to represent complex mappings (linear or non­
linear, convex or nonconvex, continuous or discontin­
uous, differentiable or nondifferentiable) . For instance, 
Hecht-Nielsen (1987) has shown that a FFANN with 
three layers can represent any continuous mapping 
from 9\"0 to 9\ ""', and others have shown that FFANNs 
with two hidden layers can represent any set in 9\" (Cy­
benko 1989; Zwietering et al. 1991). With this kind of 
potential, the strategy of this paper becomes clear-to 
develop a FFANN approach that can capture a OM's 
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preference structure well enough to enable the Interac­
tive FFANN Procedure to quickly locate final solutions 
of top quality. Hence, in this paper, we are interested in 
employing a FFANN: 9\'"' --+ 9\ "•" with 110 = k and 11,,, 

= 1 such tha t FFANN: 9\'-+ 9\. In other words, in this 
case, the FFANN input is a k-dimensional (rescaled) cri­
terion vector, and the FFANN output is a single (re­
scaled) preference va lue. 

In the Interactive FFANN Procedure, two different 
approaches are employed for evaluating the criterion 
vectors generated at each iteration so that they can be 
used for initially training and then retraining the 
FFANN for use on each iteration. One approach is for 
the OM to assign an interval-scale preference "value" 
to each criterion vector, higher " values" representing 
higher degrees of satisfaction. So as to anchor the scale, 
the nadir criterion vector z"'d(z ~·'d = rnin{f,( xllx E Ell 
could be given a preference value of 0, and the ideal 
criterion vector zm·"(z;"" = max{f,(x) Ix E Sil could be 
given a preference va lue of 100. One way to obtain z"'d 
would be to examine the criterion vectors of all efficient 
ex treme points. If z"'d cannot be obtained in this way, 
for instance if the problem is too large to enumerate all 
effi cien t ex treme points, z"'d can be estimated from the 
minimum values in the columns of a payoff table (ls­
ermann and Steuer 1988; Korhonen et al. 1996). In this 
way, the preference value of every nondominated cri­
terion vector should fall within the range of 0 to 100. 
Actually, the scale is not important. What rea lly matters 
is the order of the preference va lues and the differences 
between them. 

The other approach is to make pairwise comparisons 
between trial solutions. In this approach, the OM is 
asked questions similar to those posed in the Analytic 
Hierarchy Process (AHP) (Saaty 1988) and in its soft­
ware implementation Expert Choice (Expert Choice 
1992) . The advantage of eliciting preference information 
by pairwise comparisons is that it is easier for many 
OMs to provide relative than absolute preference infor­
mation. The pairwise comparisons result in a reciprocal 
comparison matrix. Saaty (1988) has shown that the 
principal eigenvector components of this matrix can be 
viewed as the priorities of the alternative solutions. In 
the Interactive FFANN Procedure, the components of 
this priority vector are used as the desired outputs when 
training the FFANN. 
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The AHP appears to be an easy and convenient meth­
odology for eliciting preference information from the 
OM. In fact, it has been used to solve different types of 
real world discrete multiple criteria decision making 
problems. Recently, some authors have used the AHP 
to elicit preference information from the OM in multiple 
objective programming and have incorporated the AHP 
into interactive solution procedures. In their interactive 
method, Arbel and Oren (1987) use the AHP to assess 
the relative preference of the current solution and ad­
jacent solutions. Gass (1986) used the AHP to determine 
goal priorities and objective function weights in a linear 
goal programming formulation. Korhonen (1987a) dis­
cusses the use of the AHP to find reference directions, 
which are then used as search directions in his visual 
interactive approach. Korhonen and Wallenius (1990) 
use the AHP to determine objective coefficients and pa­
rameter values for an MOLP problem which is subse­
quently solved using their visual interactive package 
VIG. Kok and Lootsma (1985) propose using the AHP 
within the fram ework of the Reference Point Method 
(Wierzbicki 1982) to find the weighting vector for use 
in an achievement scalarizing program that projects ref­
erence points onto N. Barzilai and Golany (1990) derive 
weights for additive value functions from a reciprocal 
comparison matrix. 

A cavea t of the AHP is that it has been criticized for 
several theoretical shortcomings (Dyer 1990), in spite of 
many successful applications. One problem is the phe­
nomenon of rank reversal when new alternatives are 
added to, or old alternatives are removed from, the cur­
rent set of alternative solutions. Another problem is that 
the questions DMs are asked about the pairwise relative 
importance of the criteria may be viewed as ambiguous. 
To date, proponents and critics have not yet fully re­
solved these issues (Winkler 1990; Schoner et al. 1992). 
However, in the Interactive FFANN Procedure rank re­
versal problems can be handled through the interactive 
nature of the procedure in that at any iteration previous 
solutions can be re-ranked to correct for any errors that 
may have been made earlier in the solution process. 

4. Interactive FF ANN Procedure 
In this section we specify the Interactive FFANN Pro­
cedure followed by comments about its different steps. 

MANAGEMENT SciENCE/Yol. 42, No. 6, June 1996 

Step 0: Determine zm" and z"•d (if nadir values are not 
available, use the minimum values in the columns of a 
payoff table). Specify the number of criterion vectors P 
to be presented to the OM at each iteration and the num­
ber of iterations t the procedure is to run. Select a par­
ticular FFANN architecture to use. Generate P dis­
persed criterion vectors from the nondominated set. 
Repeat for h = 1, ... , t: 
Step 1: After presenting the P criterion vectors along 
with z"•d and zm" to the OM, identify the best criterion 
vector seen so far. If h = t, or if the OM feels that the 
best criterion vector obviates the need for additional it­
erations, designate this criterion vector as the final cri­
terion vector z"" and stop. Otherwise, let the OM artic­
ulate his / her preference information either by directly 
assigning values to the criterion vectors or by making 
pairwise comparisons. 
Step 2: Rescale the components of each of the P criterion 
vectors using the transformation 

, Z, - zj•1d 
z, = z!1'"·\( - z~au . 

Step 3: If pairwise comparisons are made, compute and 
normalize the principal eigenvector of the reciprocal 
comparison matrix so that its largest component is one. 
If preference values are assigned, let V(z) be the value 
assigned to z . Then, for each of the P criterion vectors, 
compute a rescaled preference value using 

V(z) - V(z"'d) 
v(z) = V(zm") - V(z"•d) . (4.1) 

Step 4: Use the rescaled criterion vectors (from Step 2) 
with either their rescaled assigned preference values or 
the components of the principal eigenvector of the re­
ciprocal comparison matrix (from Step 3) to train (if h 

= 1) or retrain (if h > 1) the FFANN. 
Step 5: With the most recently trained or retrained 
FFANN as the objective function, solve the optimization 
problem 

max FFANN(z) 

s.t. z = f(x) 

xES 

to obtain a new solution (z'h', x'h') . 
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Step 6: If z'h, is different from any criterion vector pre­
viously presented to the DM, generate P - 1 new dis­
persed criterion vectors. If z'h, duplicates a previously 
seen criterion vector, generate P new dispersed criterion 
vectors for presentation to the DM on the next iteration. 
End Repeat. 

In Step 0 there are no specific guidelines as to what 
FFANN architecture to use, in terms of the numbers of 
hidden layers and hidden nodes. Fortunately, as evi­
denced by the computational tests in §6, the particular 
FF ANN representation of the DM's preference structure 
is not very sensitive to the particular FFANN structure 
employed. In Step 0 (and also in Step 6), we use the 
augmented weighted Tchebycheff program (Steuer and 
Choo 1983, and Steuer 1986) to generate the dispersed 
criterion vectors required at each iteration. 

Although a FFANN can be easily modified to auto­
matically scale the input vectors and outputs, by intro­
ducing more layers, we always recommend in Steps 2 
and 3 that all input vectors and outputs be rescaled 
prior to their presentation to the FFANN. In this way, 
the number of elements in Wis kept at its minimum so 
as to reduce the time needed to train the FFANN. 

Saaty (1988) has shown that if the priorities of all trial 
solutions are known exactly and each pairwise compar­
ison is made based on these priorities, the components 
of the principal eigenvector of the reciprocal compari­
son matrix are identical to these priorities. Saaty (1988) 
suggests several alternative methods for estimating the 
principal eigenvector of the comparison matrix. In Step 
3, we use the power method (Burden and Faires 1989) 
for this purpose. The dimensions of the reciprocal com­
parison matrix are (P + 2) x (P + 2) because of the P 
trial solutions plus zm" and z"'d. 

The training algorithms developed based on error 
back-propagation (Rumelhart et al. 1986) in Sun (1992) 
are used to train the FFANNs in Step 4. The details of 
one of these algorithms are provided in Appendix A. 
As we will see below, for multiple objective program­
ming problems with a reasonable number of objectives 
the structure of the FFANN needs not to be very com­
plicated and the training time is typically only a few 
seconds. After the first iteration, the procedure offers 
the option to continue the training in subsequent itera­
tions with either a warm start, using the connectivity 
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weights of the previous iteration as initial weights, or a 
cold start, using random initial weights. In the compu­
tational experiments, each iteration is started with ran­
dom initial weights. 

The objective function of the optimization problem in 
Step 5, in this case the trained FFANN, may be compli­
cated, requiring nonlinear programming solution tech­
niques. In the implementation, the GRG2 package (Las­
don and Waren 1989) is used for this purpose. The gra­
dient of the trained FFANN with respect to the k 
criterion values at a specific solution is determined nu­
merically. The following three point formula (Burden and 
Faires 1989) is used to estimate the partial derivative of 
the trained FF ANN: 

FFANN(z;, ... , z: + l,, ... , z{) 
DFFANN(z) - FFANN(z;, ... , z1 - l,, ... , z{) 

where l , is a small positive scalar. In the computational 
tests, we obtained similar results for various €,-values 
in the range from 0.001 to 0.01. 

5. An Example 
To illustrate how the Interactive FFANN Procedure 
works step-by-step, consider the following MOLP 
problem: 

max 2x2 + 5x, + 5x. - 2x5 + 5x. = z, 

max -xi - 2x2 + 4X5 x6 = Z2 

max 5x, + 3x2 - 2x3 - X5 x6 = Z3 

s.t. 7X4 + 2x5 + 6x6 s 28 

3x1 + 4x6 s 23 

4x1 + 4x3 + X4 s 23 

x, + 6x3 + 7X4 + 4x6 s 23 

2x1 + 5x, + 5X3 + 5X4 + 8x5 s 29 

X; "' 0, 1 s j s 6. 

Let us assume a hypothetical DM has the following 
value function (, r· V.(z) = 50 - ;~ [X.,(z;"" - z;)) 4 

, 
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Table 1 Criterion Vectors of the First Iteration for the Example 
Problem 

Solution z, z, z, V,(z) 

24.35460 -11.54862 27.64540 39.13516 
-5.69318 14.18864 -3.93636 35.80484 
22.86093 2.25756 -7.88655 37.39273 
-4.61749 7.45757 14.19598 37.69865 

5 29.56935 -9.20832 6.82426 38.94388 
6 2.32488 -6.27676 34.03545 38.96402 

-3.17575 1.33950 27.90013 38.28441 

"t"'' 33.10000 14.00000 39.25000 50.00000 
z"'' -7.25000 - 16.41200 -9.20700 33.07733 

with A.= (0.319, 0.416, 0.265). Using GRG2 (Lasdon and 
Waren 1989), the optimal solution is found to be z 0

P' 

= (16.517, -0.886, 18.970) with a hypothetical value 
function value V4(z0 P') = 42.42288. 

The vector-maximum code ADBASE (Steuer 1992) 
was used to compute all efficient extreme points, from 
which the ideal criterion vector was found to be zm" 

= (33.100, 14.500, 39.250) with V4 (zm") = 50.00000 and 
the nadir criterion vector was found to be z"•d 
= (-7.250, -16.412, -9.207) with V,(z"'d) = 33.07733. 
Furthermore, the worst criterion vector in the nondom­
inated set was found to be zw0

"' = (-7.250, 14.500, 
-3.625) with V4 (zw0

"') = 35.50926. The worst nondom-

Figure 2 FFANN Architecture and Connectivity Weights for the Example 
Problem 
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Table 2 Rescaled Criterion Vectors of the First Iteration for the 
Example Problem 

Solution z; z; zJ v,(z) 

0.78326 0.15733 0.76052 0.35797 
0.03858 0.98993 0.10877 0.16117 
0.74624 0.60396 0.02725 0.25501 

4 0.06524 0.77218 0.48296 0.27308 
5 0.91250 0.23304 0.33083 0.34667 

0.23730 0.32787 0.89239 0.34786 
0.10097 0.57426 0.76577 0.30770 

.,_... 1.00000 1.00000 1.00000 1.00000 
z"' 0.00000 0.00000 0.00000 0.00000 

inated criterion vector, of course, is used as a bench­
mark to measure the quality of solutions only and is not 
used in the Interactive FFANN Procedure. Now let the 
number of solutions that are to be presented to the DM 
at each iteration be P = 7 and the number of iterations 
the procedure is to run be t = 5. 

The augmented weighted Tchebycheff program 
(Steuer and Choo 1983, Steuer 1986) was then used to 
generate the seven dispersed nondominated solutions 
in the first iteration, as shown in Table 1. Together with 
zm" and z"•d, the seven nondominated solutions are 
presented to the DM, who then evaluates them, either 
by directly assigning preference values or by making 
pairwise comparisons. In the example, the V.(z) values 
in Table 1 represent the preference information elicited 
from the hypothetical DM through the value function 
V,(z). 

We train the FFANN shown in Figure 2, with one 
hidden layer comprised of two hidden nodes, using the 

Table 3 

Iteration 
(h) 

4 
5 

Iteration by Iteration Solutions for the Example Problem 

,,, 
z, '"' z, 

,,, 
z, V,(z''") 

19.16292 - 4.44382 24.18538 41.80951 
18.81381 -4.06534 23.91694 41.92090 
18.96599 -2.52878 20.36740 42.27592 
18.70442 -3.13536 22.33424 42.17731 
18.70442 -3.13536 22.33424 42.17731 

16.51700 -0.88555 18.97000 42.42288 
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Table 4 Number of Efficient Extreme Points over the Ten Test 
Problems for Each Problem Size 

Number of Efficient Extreme Points 

Problem Size Minimum Maximum Average 

3 x 5 x 6 
5 x 5 x 10 
5 x 8 x 15 
5 x 10 x 20 

29 
226 

19 
83 

554 
1131 

11.9 
27.7 

158.0 
417.7 

rescaled criterion vectors in Table 2 as the inputs and 
the rescaled preference values as the desired outputs. 
Thus, each line of Table 2 corresponds to one training 
pattern. The connectivity weights and node biases of the 
trained FFANN are shown in Figure 2. The connectivity 
weights between the nodes are given by the values on 
the arcs, while the node biases are indicated inside each 
node in the hidden and output layers. The temperature 
used in training this FFANN was T = 10. 

To demonstrate the mapping of the FFANN in Figure 
2, let z' = (0.78, 0.16, 0.76) be a given input vector of 
rescaled criterion values. It follows from (2.1) that 

z] = 13.74(0.78) - 47.17(0.16) + 22.30(0.76) 

+ 21.26 = 41.38, and 

zi = 38.58(0.78) - 53.90(0.16) + 53.97(0.76) 

- 61.23 = 1.26. 

Hence, from (2.2) it follows that 

u] = [1+exp(-41.38/10W'=0.98 and 

ui = [1+exp(-1.26/10W'=0.53, 

respectively. Similarly, 

ZT = 40.55(0.78) + 9.17(0.16) + 46.03(0.76) 

- 30.55(0.98) - 28.32(0.53) - 29.09 = -5.96, and 

ui = [1 + exp(-(-5.96/10)W1 = 0.36. 

Solving the optimization problem in Step 5 of the pro­
cedure, with the trained FFANN as the objective func­
tion, yields zm = (19.16292, -4.44382, 24.18538) with 
V.(z 111

) = 41.80951. At this point, one iteration has been 
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completed. Solution zm is different from any of the so­
lutions previously presented to the OM. 

Along with z"1. in the second iteration six new non­
dominated criterion vectors are presented to the OM for 
evaluation. The rescaled nondominated criterion vec­
tors and the OM's rescaled preference values are then 
used to retrain the FFANN. The retrained FFANN is 
then used to search for improved solutions. This process 
is repeated four more times. Table 3 lists the solutions 
obtained at each iteration. 

As seen, the best solution was found in Iteration 3. 
Thus, the final solution is z"" = (18.96599, -2.52878, 
20.36740). This represents a 98.43% 

(
42.27592 - 33.07733 ) 
42.42288 - 33.07733 x 100% 

achievement of the OM's value function value from that 
of the nadir point z"•d to that of the optimal point z"P', 

and a 97.93% 

(
42.27592 - 35.50926 ) 
42.42288 - 35.50926 x 100% 

achievement from that of the worst nondominatcd 
point zworst . 

6. Computational Experiments 
In this section, we conduct computational experiments 
in order to test the Interactive FFANN Procedure 
against the Tchebycheff Method, which has tested well 
in a previous study (Buchanan and Oaellenbach 1987). 

Similar to the previous section, for each problem we 
assumed a hypothetical OM with a particular value 
function. This is useful for test purposes because it en­
ables us to determine an optimal solution for each prob­
lem ahead of time and helps us in providing preference 
information by acting as the OM. This is especially use­
ful when two procedures are compared computation­
ally because it provides the same preference informa­
tion required by both of the procedures. In the tests, the 
value function, of course, is only used in the preference 
elicitation phase and not in the search for improved so­
lutions. With this experimental design, the performance 
of the Interactive FFANN Procedure is measured along 
four dimensions: (1) solution quality, (2) problem size, 
(3) type of value function, and (4) FFANN architecture. 
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Table 5 Final Solution Quality with L,-Metric Value Function 

Interactive FFANN Procedure 
(No Hidden Nodes in the FFANN) Tchebycheff Method 

Problem Size Worst Best 

3 x 5 x 6 98.18 100.00 

5 x 5 x 10 100.00 100.00 

5 x 8 x 15 97.09 100.00 

5 x 10 x 20 95.97 100.00 

6 x 50 x 100 99.62 99.97 

6.1 Test Problems 
The MOLP test problems used in the experiments were 
generated using the problem generation capability in 
ADBASE (Steuer 1992), the same capability used in 
other interactive multiple objective programming com­
puta tional studies such as those reported in Reeves and 
Franz (1 985), Steuer (1986), and Buchanan and Daellen­
bach (1987). The type of dense tes t problems generated 
is representative of a number of application areas, for 
instance that of resource allocation. The problem sizes, 
d efined by k x m x n (111 is the number of linear con­
straints ), used in the experiments are 3 x 5 x 6, 5 x 5 
X 10, 5 x 8 x 15, 5 x 10 x 20 and 6 x 50 x 100. ADBASE 
was used to find the criterion vectors of all efficient ex­
treme points (see Table 4) for all problems except for 
those in the 6 x 50 x 100 category. The difficulty with 
the 6 X 50 X 100 category is that the tens of thousands 
of efficient extreme points that such problems are likely 
to have is beyond the capability of any currently exist­
ing code. For all problems except those in the 6 x 50 
x 100 category, zm", z"'d and Zw0

"
1 were obtained from 

the generation of all efficient extreme points. For the 6 
X 50 x 100 problems, the z"'d criterion vectors were 
estimated from their payoff tables. 

6.2. Value Functions 
In the experiments we used four different value func­
tions of Lµ·metric form with p = 1, p = 2, p = 4 and p 
= oo, 

(6.1) 
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Average Worst Best Average 

99 .82 94 .95 99.95 98.48 
100.00 90.50 99.98 97.81 
99.71 84 .89 100.00 97.19 

99.26 91.12 99.59 97.69 
99.81 93.40 100.00 96.98 

where the A, are given by 

and K is a constant to ensure that all value function 
values are posi tive. When p = oo we note that (6.1) re­
duces to 

V.,(z) = K - max I A, (z:""' - z,)}, 
l s r:s.k 

in which case the va lue function is nondifferentiable. 
Thus, it will be interesting to study the performance of 
the Interactive FFANN Procedure when dealing with 
this potentially difficult mapping. 

In the computational experiments, we set the number 
of iterations to I = 5, (except for with the 6 x 50 x 100 
problems in which case we used t = 6) , and evaluated 
P = 7 nondominated criterion vectors at each iteration. 
Note that in the experiments the principal eigenvector 
components of the reciprocal comparison matrix are 
identical to the rescaled preference values since the hy­
pothetical OM makes each preference judgment accord­
ing to the pre-specified value function . Therefore, the 
test results will be the same regardless of which method 
is used for eliciting preference information (pairwise 
comparisons or direct assessment) . 

6.3. Solution Quality 
In the computational tests, except for the 6 x 50 x 100 
problems, the solution quality of a z E Z is measured 
by comparing its preference value against that of z0 r1 

relative to that of zw0
"' by means of 
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Table 6 Final Solution Quality with L2-Metric Value Function 

Interactive FFANN Procedure 

Number of Hidden Nodes in the FFANN 

0 

Problem Size Worst Best Average Worst Best 

3 x 5 x 6 61.42 100.00 94 .14 90.23 100.00 
5 x 5 x 10 83 .35 100.00 92.94 85.98 100.00 
5 x 8 x 15 96.46 99.56 98.27 97.10 99 .96 
5 x 10 x 20 92.32 99.99 97.59 95.41 100.00 
6 x 50 x 100 98.29 99.84 99.27 98.28 99.84 

(6.2) 

The convenience of this measure is that the quality of 
z w0

"
1 is O and the quality of z 0 P' is 100. For the 6 x 50 

x 100 problems, the quality of a z E Z is measured by 
comparing its preference value against that of z 0

P' rel­
ative to that of the estimated nadir point z"'d by means 
of 

V(z) - V(z"'d) 
------- x 100 
V(z0 P') - V(z"'d) ' 

because zw0
"' is not available. 

6.4 Experimental Results 
In the experiments, fifty (ten in each problem size cat­
egory) MOLP test problems were employed. In testing 
the Interactive FFANN Procedure, different FFANN 
structures with different numbers of hidden nodes were 
employed. We report the computational results for four 
different FFANN structures with no, one, two, or six 
hidden nodes in one hidden layer respectively. In Ta­
bles 5-8, we summarize the quality of the final solutions 
obtained from the Interactive FFANN Procedure as 
compared against those obtained from the Tchebycheff 
Method when using the L1-, L,-, L4- and Lx-metric value 
functions. More computational results with different 
quality measures are reported in Sun (1992) . 

In Table 5, the Interactive FFANN Procedure was run 
for the L1-metric value function, with a neural network 
structure without any hidden nodes, resulting in higher 
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Tchebychett Method 

Average Worst Best Average Worst Best Average 

98.19 97.68 100.00 99.48 92 .35 99.95 97.52 
98.67 89.39 100.00 99.00 93.46 100.00 98.64 
98.76 97.60 99.90 99.01 93.57 99 .98 97 .89 
98 .63 95.41 100.00 98.77 92.05 98 .87 97.00 
99.27 97.29 99.84 99.30 89.03 98.87 96.39 

quality solutions than with the Tchebycheff Method, in 
terms of average as well as best and worst qualities . In 
this case, the output node is the only node which per­
forms a computational function. If this node were to 
have a linear activation function, the FFANN would re­
duce to a linear regression model and be able to repre­
sent the DM's linear value function exactly. However, 
in this case the nonlinear nature of this activation func­
tion introduces " imprecision" into the FFANN. Never­
theless, this imprecision hardly has an impact on the 
performance, as the Interactive FFANN Procedure cor­
rectly identifies the optimal solution, within five itera­
tions, for 35 out of the 50 test problems, and approxi­
mates the optimal solution closely (within one to four 
percent) for the remaining problems. 

In Table 6, three different neural network structures 
were used for the L1-metric value function. From this 
table, we see that superior results were obtained using 
the Interactive FF ANN Procedure, as long as at least one 
hidden node is used. In Tables 7 and 8, generally better 
results were obtained with the Interactive FFANN Pro­
cedure than with the Tchebycheff Method, but at least 
two hidden nodes were required because of the more 
difficult L4 - and Lx-metric value functions. Particularly 
for the Lx-metric value function, the difference in per­
formance becomes more favorable for the Interactive 
FFANN Procedure as the problem size increases. 

Keeping in mind the fact that the test results were 
generated by the progenitors of the new procedure, we 
nevertheless feel that the results are very encouraging 
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Table 7 Final Solution Quality with L.-Metric Value Function 

Interactive FFANN Procedure 

Number of Hidden Nodes in the FFANN 

Problem Size Worst Best Average Worst 

3 x 5 x 6 93.88 99.98 98.13 93.71 
5 x 5 x 10 86.63 100.00 97.70 84 .05 
5 x 8 x 15 94.45 99.96 97.61 93.06 
5 x 10 x 20 95.59 99.77 98.35 92 .89 
6 x 50 x 100 93.53 99 06 97.13 97.07 

and that the possibilities for embedding artificial neural 
network technology in the interactive procedures of 
multiple objective programming are promising. 

The time required to train a FFANN depends on sev­
eral factors, such as the number of patterns in the train­
ing set, the number of inputs (i.e. k, the number of ob­
jectives), the number of hidden nodes in the FFANN, 
the stopping criteria, and the complexity of the mapping 
the FFANN is to represent. In order to fully assess the 
usefulness of the Interactive FF ANN procedure, we re­
port the average computational effort required to train 
FFANNs for ten 6 x 50 x 100 MOLP problems in Table 
9. FFANNs for smaller problems were trained within a 
few seconds. All of the computations performed in this 

Table 8 Final Solution Quality with C-Metric Value Function 

Interactive FFANN Procedure 

Tchebychett Method 

Best Average Worst Best Average 

99 .98 98.13 95 .00 100.00 98.78 
100.00 97.21 74 .16 99.67 94.15 
99 .96 97.15 74.44 99.70 95.15 
99.91 98.11 81.39 98.87 95.36 
99.78 99.02 93 .19 98.86 96.24 

paper were conducted on the University of Georgia's 
IBM ES 9000 Model 720 computer. 

From Table 9 we see that, as expected, the average 
computational effort increases as the number of nodes 
in the hidden layer and the number of patterns in the 
training set increase. Nevertheless, even for FFANN 
configurations with six hidden nodes and for training 
sets with 44 patterns the training times are reasonable. 

7. Concluding Remarks 
In this paper, we present an Interactive FFANN Proce­
dure for solving multiple objective programming prob­
lems using feed-forward artificial neural networks. In 

Number of Hidden Nodes in the FFANN 

6 Tchebychett Method 

Problem Size Worst Best Average Worst Best Average Worst Best Average 

3 x 5 x 6 88.35 100.00 96.28 84.21 100.00 92.83 92 .08 99.00 95.94 
5 x 5 x 10 85.65 97.55 92.13 83.16 96.70 92 .55 52 .27 95.34 86.75 
5 x 8 x 15 72.42 98.26 91 .63 79 .81 99.71 92.28 68.34 98.49 87.98 
5 x 10 x 20 88.59 98.20 94.84 85.16 98.42 91 .94 75.75 98.64 87.14 
6 x 50 x 100 7209 93.09 76.63 69.23 96.68 84 .88 49.39 91.19 71.47 
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Table 9 Average Time to Train Six-input Node FFANNs for 6 x 50 x 100 MOLP 

Number of Training Patterns 

Number of 
Hidden Nodes 16 23 30 37 44 

L,-Metric Value Function 

2.09 0.56 0.75 1.00 1.21 1.55 

4.91 3.39 12.06 22.50 67.32 105.67 

L2-Metric Value Function 

0 2.14 0.72 0.90 1.15 1.39 1.77 
2.34 2.24 8.86 13.25 26.85 31.29 
3.72 9.76 23.95 48.10 60.65 77.76 

8.27 15.64 48 .74 71.71 139.10 164.23 
18.20 52.26 80.95 167.13 233.43 208.33 

L.-Metric Value Function 

2.16 0.94 1.02 1.33 1.76 1.95 
5.33 15.54 45.20 78.60 94 .58 110.81 

8.25 49.83 81 .02 123.87 164.09 187.17 

6 9.10 66.28 138.97 188.52 228.70 271.43 

L-Metric Value Function 

2.16 0.81 
14.77 47.27 

4 20.39 76.30 
6 29.27 105.59 

the procedure, the OM has the option of articulating his 
or her preference information either by directly assign­
ing a preference value to each new solution or by mak­
ing pairwise comparisons in a way similar to the AHP. 
Since preference structures may be very complex, a 
FFANN is used in the procedure because of its ability 
to capture and represent complicated mappings. Be­
cause the DM's aspirations may evolve over the course 
of the solution process, the FFANN has the chance to 
adapt to any such changes as the FFANN is retrained 
at each iteration. 

From the computational results, it is evident that 
good solutions have been obtained, at least for the test 
problems and value functions used. Also, the procedure 
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0.93 1.19 1.47 1.69 

66.10 74 .61 99.32 94.28 
89.59 118.05 169.86 199.23 

131.77 183.46 221 .38 239.69 

is relatively robust in that similar solutions are ob­
tained when different FF ANN structures are employed. 
Computer-time-wise, because of the retraining of the 
FFANN at each iteration, the Interactive FFANN Pro­
cedure can be expected to take more time than other 
interactive procedures. However, in an era of rapidly 
decreasing computer costs, solution quality may be the 
most important issue for many users. Typically, 
FFANNs used in the Interactive FFANN Procedure can 
be trained within a few seconds.' 

' The first author was supported in part by a Faculty Summer Research 
Grant from the College of Business, The University of Texas at San 
Antonio. The second author gratefully acknowledges the support re­
ceived from llASA in Laxenburg, Austria, and a Terry Summer Re-
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Appendix A: A FFANN Training Algorithm 
This appendix presents an algorithm for training FFANNs with mul­

tiple layers, which we use in our Interactive FFANN Procedure. The 
algorithm is developed based on the error back-propagation algorithm 
(Rumelhart, et al. 1986), and uses unconstrained nonlinear optimiza­

tion techniques. Specifically, the algorithm uses a combination of the 
Golden Section Method and a "doubling and halving" line search 

strategy, and the Polak and Ribiere conjugate gradient direction. In 
the following, we discuss the mathematical details of the training al­

gorithm, and outline the training algorithm . 

Al. Mathematical Details 
In the training process, the node biases, B~, are treated the same as 

other connectivity weights. Actually, by adding a single node u'.:,, ~i to 
the input layer, connecting it to all nodes in all other layers, and as­

signing v'.:,, ._ 1 an input value of 1, the ~onnectivity weight w~'. ..... 1 is the 
bias 04 of node vl, i.e., 

Suppose that z,1 E 9\ "" is the qth input vector and t., E 9\ "·" is the 
associated desired output vector in the training set. The compound 
vector (z,1, t,1) E 9\ "" -- "~· is called a training pattern . Let the number of 

patterns in the training set be denoted by Q. 
When z,1 is presented to the network, the FFANN maps it to an 

ou tput vector u,1 based on (2.1- 2.2). The error measure E,1 for the qth 

training pattern is defined as 

"~· 

E,1 =! LU,,, - u.,, ) ~. (A.I) ,., 

Thus, E., is the sum over all output nodes of the squared differences 
between the computed and desi red outputs. In our application, n,., = 1. 

For a given topology of lhe FFANN and a given set of training pat­
terns, E., is a function of the connectivity weights in W and can be 

\Vritten as E,1( W). Summing over al l training patterns, the overall error 
measure over all Q training patterns is given by 

Q Q " "' 
E(W) = L E,(W) = l L L <t,, - 11,,, )' . (A.2) 

When a FFANN is trained, we try to adjust the values of the com­

ponents of Wso as to minimize f(W). The partial derivative of E,1 with 
respect to the connectivity weight wZ, is given by 

(A3) 

where h:,~ is the error signal of node vk and 11 ~1 , is the computed output 

of node v~ for the qth training pattern, respectively. If i = m, b'.;1 is 
determined by 

(A.4) 
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and, if 0 < i < m, 6:1l is computed recursively in terms of the error 
signals of all the nodes to which it directly connects as shown in 

"· 
b'.,, = {'(z:,,J :L :L o;,w;L o < ; < m, (A.5) 

where j'(z'.11 ) is the first derivative of the node activation function of 

u~ evaluated at z;,t and z.:11 is determined by (2.1) for the qth training 
pattern. The first derivative of the logistic node activation function in 
(2.2) is given by 

(A.6) 

Denote the gradient of E(W) with respect to Why G, i.e. G = VE(W) 
= lg1, I, for i = I, ... , m; j = 0, ... , m - I ; k = I, .. , n., and r = I, 

. .. , n,, then g1. is given by 

., _ iJE(W) _ Q DE (W) Q 

g .. - aw:•, - L ;"', = - L b;,11 ;, . (A.7) 
• •/ • l 'ir q• I 

The connectivity weights are updated according to the following rule 

(A.8) 

\\there It is the iteration counter, sometimes called learning time, TJ is 
the learning rate, D,, is the search direction at iteration h, and W11 is the 

set of connectivity weights at the beginning of iteration h. Letting the 
set of values of G at iteration h be denoted by G1,, the search direction 

D1, is determined by 

(A.9) 

In our training algorithm, a 1, is determined by a combination of the 
Polak and Ribiere gradient conjugate direction (Polak 1971, Luenber­

ger 1984) and a momentum factor. In the Polak and Ribiere gradient 
conjugate direction, a 1, is determined by 

(A.10) 

For a given trLlining set and W,,, the error measure E at iteration h 
is a function of the sea rch direction D1, and the learning rate TJ· For a 
given search direction O,,, E becomes a function of the learning rate TJ· 

Let us denote this error measure by £( W1i + TJD1,). There are many line 
search methods to determine a value TJ• for ry at which E(W + T}01,) is 

approximately minimized along D,,. In this training algorithm, we use 
a "doubling and halving" strategy to locate the initial interval of un­
certainty, and the Golden Section method (Bazaraa and Shetty 1979, 

Luenberger 1984) to find ry• . 

A2. The Training Algorithm 
Step 0. Initialize the connectivity weights W1 to small values. Let f 1 

> 0 and '' > 0 be small . Let a., > 0 be a pre-determined constant. Set 
the iteration counter to h = 1. 
Step I. Compute G,, according to (A.1-A.7), let the search direction 

be D,, = -G,,. 

Step 2. Perform a line search to minimize E(W11 + TJD1, ) along the di­
rection D1,. Let ry• be the value of TJ corresponding to the minimum of 

E(W,, + ryD1, ) . Update the connectivity weights by setting W1,. 1 = W,, 
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+ ~·D,,. If E(W,,) - E(W,,. 1) < <1, then Stop. Leth = h + I. If (h mod 
I Wll = 0, where I WI is the cardinality of W, go to Step I. 
Step 3. Compute G,, according to (A.1-A.7). If llG1,ll < ,,, then Stop. 
Otherwise, compute the value of a according to (A.10) . If a> a 0 , then 
let a= a 11 • Let the new search direction be D1, = -G1r + aD,, _1• Go to 

Step 2. 
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