RM-75-22

AN ADAPTIVE IDENTIFICATION AND PREDICTION
ALGORITHM FOR THE REAL-TIME
FORECASTING OF HYDROLOGIC TIME SERIES

A. Sz0lldsi~-Nagy

May 1975

Research Memoranda are informal publications
relating to ongoing or projected areas of re-
search at IIASA. The views expressed are
those of the author, and do not necessarily
reflect those of IIASA.







An Adaptive Identification and Prediction
Algorithm for the Real-Time

Forecasting of Hydrologic Time Series*

A. Sz0llOsi-Nagy**

Abstract

In order to achieve the effective control of water
resources systems, one must know the future behaviour of
the inputs to that particular system. Because of the un-
certainties inherent in water resources processes the
prediction algorithm, to be constructed, should include
stochastic elements, too. Moreover, the algorithm should
be recursive to avoid cumbersome computations and to be
able for real-time forecasting.

In the paper we present a method which is applicable
for both linear and nonlinear hydrologic systems having
not completely time-invariant properties. The algorithms
are based on the state space description of the processes
involved and utilize the Kalman stochastic filtering tech-
nique. Due to the unknown nature of noise processes, the
basic algorithms were changed to be adaptive. Using the
algorithms the joint handling of water quantity and qual-
ity data becomes feasible.

Introduction

In order to achieve effective control of water resource
systems, one must know the future behaviour of the inputs to
the particular systems. This is the ancient challenging task
of the human being, because man's encounter with the prediction
problem is as old as civilization itself.

The first successful scientific attack dates back to the
early 1940's when Wiener and Kolmogorov solved the problem in-
dependently for the case of linear dependent stationary pro-
cesses, which requires solution of the Wiener-Hopf equation.

In 1966, Eagleson et al. [4] were the first to apply this tech-
nique for runoff prediction. Their paper initiated the ava-
lanche of articles dealing with the various tricky modifications
of Wiener's procedure for practical hydrologic forecasting
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problems (see e.g. [6], [22] and [24]). The classical Wiener-
Hopf technique, however, has some serious drawbacks: it can
be applied only for strictly linear and time invariant systems
with stationary input/output processes. Some efforts had been
made to extend the theory (see e.g. [7]); due to the computa-
tional burden, however, they practically failed. Additional
difficulties were raised by the use of spectral factorization,
and from a practical point of view, by the necessity of using
a relatively large computer to store all the data.

Obviously, for real-time operation of water resource sys-
tems, small computers are preferable. Hence, our prediction
algorithms must be suited for these small computers. But how?
The answer is simple: using recursive prediction algorithms
in which there is no need to store all the past measurements
for the purpose of predicting the future behaviour of the time
series in question. Moreover, these algorithms would offer
the following advantages:

(1) The treatment of the information of each measure-
ment in a sequential manner allows for on-line
implementation (e.g. by means of data acquisition
by automatic measurement devices connected in real-
time mode with a central processor); and

(2) Time variable parameters and different types of
disturbances can easily be treated. '

Hence, a suitable prediction scheme should preferably
satisfy the following requirements:

(1) it should be mathematically tractable;

(2) it should be easily implemented for relatively small
computers;

(3) it should be generally applicable;
(4) it should yield an 'optimum' prediction;

(5) it should be adaptable to varying environmental
conditions;

(6) it should yield an acceptable convergence.

The hydrologic prediction schemes used nowadays unfortu-
nately generally fail to meet one or more of these requirements.

In the early 1960's R.E. Kalman [1l0] developed an optimal
sequential estimation technique, usually referred to as the
Kalman filter, which has proved extremely useful in dealing
with the description of stochastically excited dynamic systems.*

*
In this respect, the reader is referred to the extremely
rich literature, e.g. [1], [16], [18] and [20].



The Kalman filtering technique is based on the state space,
time domain formulation of the processes involved, and with
slight modifications offers a procedure as a candidate for

satisfying the above requirements of a suitable hydrologic

prediction scheme.

In this paper we briefly outline the basis of the Kalman
filtering technique and propose a simple state-space-based model
for the recursive adaptive estimation of the impulse response
of a hydrologic system. Discrete time models are considered.
The proposed algorithms can be applied to slightly non-linear
and time varying systems using a proper moving data window.
Having obtained the optimal time varying impulse response(s),
the well-known techniques can be used for predicting the output
process (es).

State Space Representation of Hydrologic Processes

Consider a water resource system (Figure 1), the behaviour

which, evolving on the discrete-time set T = {t,: k = 0, 1,2,...},

can be described by k

x(ty ) = of [x(t ), ule), wit)] (1)

z(t) = TIx(t), vit)] (2)

where i(tk) is the n-vector of the states of the system at the
discrete time tk,C T; E(tk) is the s-vector of control variables
or known system inputs; w(t,) is the r-vector of uncertain
disturbances 'driving' the system; E(tk) is the m-vector of
measurements on the system; z(tk) is the m-vector of uncertain

disturbances corrupting the observations; and,afand T are
certain functionals characterizing the properties of that par-
ticular system. Eq. (1) is called the state equation, and Eq.
(2) the measurement equation (as the measurement noise v ()

is sometimes referred to as measurement uncertainty, while
some components of w(+*), or the entire w(+) itself, might be
referred to as model uncertainty). Considering the simple
example of a reservoir system consisting of n reservoirs, i(tk)

might be sought as a vector composed of the values of the amount
of stored water of each reservoir at time t,; u(t;) as a vector

of water releases (control variables); w(t,) as the vector of

natural (uncontrolled stochastic) inflows to the reservoirs,

and z(t,) as the vector of measured outflows from the reservoirs.
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In this case, the state vector x(+*) refers to actual physical
states, namely to the amount of stored water in the system;

but, as will be shown later, it is not at all necessary to
associate the state vector with 'physical' states. In other
words, one can choose amongst different types of state variables
to describe the same process.

Dealing with the above type of models, one must determine
the structure of the system, in other words, the functionals,el
and T. This is the problem of system identification [18].
Having identified the system, the next step is to find the
'best' prediction of the state vector (which may sometimes
contain the output process depending upon the choice of the
state variables) % > O time periods ahead, based upon knowledge
of the measurement on the system at tk

Xt t) = Qlxle), 21 (3)

where ¢ is the lead time of the prediction, ? denotes the pre-
diction algorithms, and the circumflex refers to the predicted
(estimated) value. Obviously, the goodness of prediction must
be evaluated through a given loss {(cost) function, L{(<). Now,
the prediction problem can be formulated as follows: given
the set of measurements gk ='{E(ti): i=1,2,...,k}, £find and

estimate g(tk+2 Zk) of i(tk+2)’ 2 > 0, subject to the condition

that this estimation (prediction) minimize the chosen loss
function.

We mention in advance that the identification and predic-
tion algorithms will be imbedded here into the same general
adaptive algorithms.

In this paper we copnsider linear lumped parameter water
resource systems where gl and T are linear functionals. In
other words, the processes are assumed to be represented by the
linear vector difference equation

x(tpq) = S x(t) + Tpwit) +A ult)) (4)

where, beyond the variables already defined, ¢, = g(tk+l,tk)

is the n x n nonsingular state transition matrix which, in the
case of an unforced system, maps the state vector from time t
to the state vector at time t, ;i [} = I'(t) is the n x r system

noise coefficient matrix, and A, = A(t,) is the n x s control

matrix. Note that in general these matrices are time varying.



As for the stochastic model uncertainty w(tk), without loss of

generality it is assumed to be a Gaussian white noise sequence
with zero mean

Elw(t, )} =0
and covariance matrix

T
Elw(t) w (£} =0y &y 5

where €{+} denotes the expected value operator, T the matrix
transposition, dkj the Kronecker delta, and Qk z g(tk+l,tk)

the r x r noise covariance matrix, i.e. w(t,) ~ N(Q, Q) -

Also, it is assumed that the measurement equation (cf. Eg. (2))
is linear and has the form

z (t

z(t,) = H x(g) +v(t) . (5)

A

Here H, = g(tk) is the m x n measurement matrix, and the

k
measurement uncertainty v(t,) is also assumed to be a Gaussian

white sequence with zero mean
Elv(t)} =0
and covariance matrix

T =
ELv (b ) V7 (£5)} = By &,

where the m x m noise covariance matrix R, & R(t;) is assumed

k
to be positive-definite. That is, v(t,) ~ N(O, R,). Moreover,

it is assumed that the noise processes are uncorrelated with
one another, i.e.

Elw (k) yT(tj)}=9 , ¥k,j .



Further, we will utilize the separation theorem (see e.g.
Bryson and Ho, [2]) which states that, for linear systems with
quadratic cost functions and subject to additive white Gaussian
noise inputs, the optimum stochastic controller is realized by
cascading an optimal estimator (predictor) with a deterministic
optimum controller (Figure 2). According to this principle,
the optimal stochastic control of a water resource system can
be decoupled into two parts. Now, we concentrate on the first
problem, the state estimation/prediction problem. Therefore,
the terms in Eq. (1) and (4) consisting of the control function
u(+) will be omitted from now on.

One can argue about the basic assumptions of the noise
processes being Gaussian white sequences with known covariance
matrices. 1In particular, it is hard to say that the latter
values are known in dealing with hydrologic time series. To
overcome this difficulty, an adaptive noise covariance matrix
algorithm will be introduced. As for handling 'colored' noises,
if the state vector might be properly augmented with the de-
pendent part of the processes, the resulting residual is a
white sequence (for details see Porebski [15]).

It is a well-known fact that the autoregressive (AR)
models and moving-~average (MA) models, or their combinations,
the ARMA and ARIMA models, have found a fruitful application
area in describing the behaviour of hydrologic time series.
There are tremendous amounts of literature to prove this;
however, almost each paper offers a different approach for
handling the models. It can be shown that all those time
series models could be included, as special cases, under the
umbrella of the general state space model. As an example,
consider the mth dimensional discrete-time autoregressive model
pth order, ARm(p):

I3RLe

S

L 9j(tk) y (tk—j+l) = Q(tk) w (£ )

zlt ) = y(t)

2k

where, beyond the known notations, the matrices ij(-) and é(-)

contain the AR parameters, and the vector
y(*) = [yl(-), y2(-),...,ym(-)]T represents m (possibly corre-

lated) water resource processes such as runoff, soil moisture
content, water use, BOD, DO, toxic materials in the water, etc., \
depending upon the objective of the study. For the sake of |
notational simplicity initial conditions are ignored and the
p = 2 case is considered here. For the state space represen-
tation of the ARm(Z) process we define the state vector as
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x, () y (£, ;)
x(t, ) = o I R
X, (tk) y (£, )

and, using the AR parameter matrices, define the following
matrices:

is completely equivalent to the ARm(Z) model. That this is

really a special case is seen when the above state space model
is compared with Eg. (4) and (5). A similar formulation can

be obtained for MA,ARMA, processes. It should be noted again,
however, that the above state space formulation of an AR process
is not unique, in the sense that if another form is chosen for
the state vector the matrices ¢, I', H will change but the input-
output behaviour of the system will not. In other words, the
choice of a particular set (¢, [, H) corresponds to the choice
of a coordinate system [20]. However, the proper choice of the
state vector has great significance from the point of view of
practical computations on the one hand, and of system control-
ability and observability on the other [21].

The Adaptive Sequential Prediction Algorithms

Assume that a prior estimate %(tk tk—l) of the system state
x(tk) is given at time tk which is based on previous measure-

ments up to t, ;- Then we seek an updated estimate }Zc(tk tk)
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which takes into account the new measurement g(tk) at time ty -
(For the notations and timing see Figure 3.) Consider the
updated estimation as being the linear combination of the pre-

vious state and the new (noisy) measurement
Rt |tp) = K R |y _q) +K z(8) (6)

where g = g(tk) and K, Z K(t;) are time varying weighting

k
matrices as yet unspecified. As a matter of fact, we wish to
minimize, in a certain sense, the prediction error

g(tk ty) o= (e t) - x(g) . (7)

Substituting Eq. (5) into Eq. (6) and utilizing the properties
of the noise process, it can readily be seen that Eq. (6) will
be an unbiased estimation only if K = I - Kk!5<' Hence, the

state estimation i(tk’tk), using the new measurement g(tk), is

g(tk|tk) = g(tkltk_l) + K lz(t) - B x(t |t ;)]
(8)

where gk is still unspecified, and the initial condition at

t = t0 for the state estimation is given by

§_<(to|to) = Elx(t )} = k() .

As a measure of the goodness of the estimation, we use
the n x n covariance matrix P(¢) of the prediction error
defined as

- &3 ;T
g(tk|tk) = €{>_<(tk|tk) X (ty g}, (9)

which is obviously symmetric, and its trace is the mean square
length of the vector x(*). Its initial condition is given by

_ _ & _ 3 T
Blty|ty) = Eltxle) - Rt ) (x(t)) - R(e))™)

= var {x(t )} = B(t)) .
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It can also easily be seen that the covariance matrix of
x(t, |t,) can be projected from that of g(tkltk_l) as

T
x Bx)
T (10)

PR R KT -

Pt |t) = (T - K Hk)P(tl ) - K. H

Now, we define the loss function as the following quadratic
form:

21 (3 = 3T .
L, & L (&t |t)) = % (tkltk) §>_<(tk|tk) ’

where S is any positive semi-definite matrix; for the sake of
51mpllc1ty let S = I, the identity matrix. Having defined the
loss function we seek that estimate X(t |t ) of x(t )=-in other

words, that form of the yet unspecified K, --which minimizes

the expected loss (or Bayesian risk)

B = ELGEE D] .

Since B, is the trace of the error covariance matrix (cf. Eq.
(9)) the problem is to minimize the Euclidean norm ||g(tk|tk)||
of P(t, |t,), i.e. the length of the estimation error vector.

Using the properties of matrix derivatives, it can be seen that
the weighting matrix Ek can be obtained from

9
o Rty |5l

9Ky

as

_ T T -1

which is referred to as the Kalman gain matrix. Now, the next
step is the extrapolation of the state variable. Consider the
one- step-ahead case, when £ = 1. In the process model, Eq. (4),
w( ) is a white noise sequence, so no more information on it is
contained in z(+); thus the best prediction of w(:) that can be
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made from z(+) is its mean value, i.e. O. Consequently, the
one-step-aﬁead prediction of the state vector, given observa-
tions up to tk’ is

g(tk+l|tk) =0, Rt |t) . (12)

The propagation of prediction errors, i.e.
P(ty tk) > E(tk+I‘tk)’ can be determined by computing the pre-

dicted error covariance matrix as
= ool ~T
Plt,,q &) = 5’{>_c(tk+l|tk) X (|t -

Using Eq. (12) and (4) and utilizing the fact that the predic-
tion error and model error are independent of each other, we
obtain

. | T T
PCepn|t) = S BUG G & + T QI - (13)

Using the formulas in the order of Eq. (12), (13), then
with k: =k + 1 in (11}, (8) and (10) the celebrated Kalman
filter is obtained. The algorithms should be used sequentially,
k=1,2,..., starting with the given initial conditions at time
to.* The complete algorithms, together with the initial condi-

tions, are summarized in Table 1. Kalman has shown that the
algorithms are convergent and stable [11].

Up to this point, we assumed that the noise covariance
matrices Q. ., R, at time t, are known in the estimation algo-

rithms. But in dealing with water resource time series, this is

far from being true; it is necessary to predict Q and Ry based

upon measurements at the previous stage. Hence, to take into
account the changing structure of uncertainties, an adaptive
algorithm should be constructed for estimating the noise
covariances, starting with arbitrary initial guesses. Since
the noise covariance matrix B(tk) is assumed to be independent

of time, the one-step-ahead prediction of it is

*

It might be mentioned that the same algorithms are obtain-
ed by maximizing the a posteriori probability P(X Zk) where
xk = {§(ti) : 1 =1,2,...,k} and Z, is as before. For a detail-

~

ed discussion, consult Sage [16].
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A

Rty |, 1) = Rt ]t ;) . (14)

For the sequential estimation of g(-) Sage and Husa [17]
developed a suboptimal adaptive estimation algorithm:

1

~ _ -~ T
Rty ) = § [ RUE |t i) ¥ ult) vi(g)

k

T
- I_ikg(tk’tk_l) H1 (15)

where

<

—

rr
il

k) = 20 - x|t ) (16)

is known as 'innovation sequence' (Kailath [9]) for the sub-

optimal estimator. The innovation process v(+) is a white
noise sequence, i.e. heuristically there is no information left
in v(¢) if X(+) is an optimal estimation (Mehra [12]). A

similar expression can be obtained for the adaptive estimator
of the model noise covariance. Sage and Husa have also shown
in their paper cited that the suboptimal estimation rapidly

converges to the optimal one when tk is increasing. It should

be mentioned that there are numerous adaptive algorithms ([18,
12]) on the market, but for our purpose the above seems to be
the most effective, at least from a computational point of
view.

Adaptive Prediction of Linear Hydrologic Systems

It is well known (see e.g. Dooge [3]) that a fairly large
class of hydrologic systems (e.g. rainfall excess/surface run-
off, runoff/runoff transformations of flood routing, etc.) can
be described by a convolution type of model

y(t} = h(t) * u(t)

where u(t) is the input of the system (either controllable or
not), h(t) is the impulse response of the system and y(t) is
the output process; the asterisk denotes the convolution. 1In
practice, however, we have only noise corrupted measurements

z(t) y(t) + v(t)
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where v(t) is an unknown noise process (Figure 4). Hence for
linear time invariant lumped systems

z(t) = Jh('r) u(t -1) dt + v(t) , (17)

where in case of physically realizable systems the upper bound
of the integration is t. Note that although the system was
assumed linear, in case of slight non-linearities, the noise
process v(*) might be sought as a term including those 'small'
non-linear disturbances.

Considering discrete-time systems with finite memory q,
Eq. (17) can be written as

q
z(t,) = jzo hedule o) + vig) (18)

and by defining the vectors-

I_'_Ik= [u(tk)l u(tk_l)l---lu(t )] ’

k-q

_ T
§(tk) = [h(to), h(tl)""’h(tq)]
Eq. (18) becomes

z(t = Ek}-f(tk) + v(tk) . (19)

n

This equation can be looked upon as a measurement equation for
the above-defined state vector x(+); cf. Eq. (5). The missing
state equation can also be introduced without much difficulty.
It was assumed that the system is time invariant, i.e. its im-
pulse response h(*) does not change with time. Using the state
vector defined above, this statement can be formulated as

) = x(t,) (20)

which plays the role of the state equation.

Although it was assumed that the system is truly time
variant, it should be stressed that the above formulation can
be used for describing slightly time variant systems which,
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due to seasonal changes, are most common in hydrology. This
concept is illustrated ‘in Figure 5 where the system behaviour
is considered to be time invariant within a well defined 'data
window.' This data window, of course, is of a moving type.

As to the length of the moving data window, it is essentially
equal to the memory of the system and might be estimated from
cross-correlation analysis of the input/output processes. The
moving data window creates the basis of the sequential predic-
tion.

If we assume that the noise sequence v(tk) is Gaussian
white with v(tk) v N(O,Rk), then it is still an open question

how to determine its variance. This can be done by the adaptive
algorithm of Saga and Husa previously discussed, or even more
easily because of the special structure of the state space model.
The specialities are gk =1I, Ek = 0, and hence the state predic-
tion is

}_c(tk+l tk) = :_c(tk tk) ’
and the predicted error covariance matrix is in the form of

Plty,p|te) = Bl [t) -

Since v(+) is a zero mean white noise sequence, the optimal
one-step-ahead Bayes (minimum variance) prediction of the out-~
put process, based upon observations up to tk' is

2(Bpyy |ty) = B (i)

The complete sequential prediction algorithms are summarized
in Table 2. Note that to use the recursive algorithms, the
initial conditions g(to), var {§(to)} and R must be specified

(or rather assumed).

In order to illustrate the utility of the proposed algo-
rithms, a simulation exercise was elaborated. A given impulse
response was assumed, and using that and an arbitrary input
sequence, the output process was calculated through the simple
discrete convolution. Then a Gaussian white noise sequence
was generated with zero mean and variance 0-1l. This sequence
was then added to the output process; the resulting noise cor-
rupted sequence and the original input sequence were further
analyzed to see whether the algorithm does or does not give
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'back' the impulse response assumed. As an example Figure 6
shows the situation concerning a particular ordinate of the
impulse response. The constant line (a) means the 'true' third
ordinate of the impulse response, h3, while curve (b) shows

its estimated values using the prior knowledge (if it is avail-
able) of the variance; curve (c) shows how its estimated values
evolve when there is no prior knowledge, i.e. an initial guess
for the variance had been considered and the adaptive noise
variance estimation technique was used. It is clear from the
figure that whatever the initial guess is, the estimation
procedure is convergent as the number of measurement data in-
creases. The history of the adaptive sequential noise variance
estimation is depicted in Figure 7. 1In fact, the same conclu-
sion might be drawn.

Summary and Conclusions

The paper outlined the state space formulation of hydro-
logic/water resource systems. Prediction algorithms have been
proposed which satisfy the requirements of the suitable predic-
tion scheme laid down in the introduction since:

(1) Using time domain formulation, the usual frequency-
domain-based computations can be avoided on the one

hand and the problem becomes mathematically tractable
on the other;

(2) Due to the recursiveness of the algorithms the scheme
can easily be implemented even for small computers
and are applicable for real-time on-line forecasting,
always taking into consideration the newest informa-
tion gathered;

(3) Due to the state space formulation, it is generally
applicable to most general hydrologic time series
(water quantity and/or quality); thus the joint
handling/prediction of multidimensional time series
(which might include some economic data) becomes
feasible even in the presence of different kinds of
uncertainties;

(4) The algorithms give optimal prediction in Bayes'
sense (Bayesian minimum variance estimators);

(5) The requirement of adaptivity to changing environ-
mental conditions are fulfilled, as through a moving
data window slight modifications in the model param-
eters are allowed;

(6) The algorithms are convergent and stable under very
general conditions.
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To illustrate the above properties, an example was
presented using simulated data. The results obtained indicate
the practical applicability of the proposed procedure.

As a final remark, it might be mentioned that the proce-
dure can be extended to include the identification/prediction
of stochastic non-linear hydrologic system. This could be
done, for example, by augmenting the state vector with the or-
dinates of the higher-order impulse responses and then taking
advantage of the non-linear filtering techniques. But a lot
of effort still remains to be made in the future towards the
solution of these problems.
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