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Abstract

Talagrand has demonstrated in his key paper, how the metric entropy of a class of
functions relates to uniform bounds for the law of large numbers. This paper shows
how to calculate the metric entropy of classes of functions which appear in stochastic
optimization problems. As a consequence of these results, we derive via variational
inequalities confidence bands for the solutions, which are valid for any sample size.
In particular, the linear recourse problem is considered.



1 Introduction

Consider a stochastic program of the expectation type:

mip [e(2) + [ fla,w) ()], (1)

where ¢(z) denote the fixed costs and f(z,w) the uncertain costs. The feasible set

X is a subset of IR

For solving (1), one uses typically the empirical approximation by sampling an i.i.d.
sample s = {s;}", from P and considering

mip [ch+ [ f(z,0) Pn(s)(dw)], 2)
where P,(s) is the empirical measure
P.(s) = ! ics
n\S) = 4 s¢

The natural question of measuring the approximation quality of the emprical approx-
imation

Fafe) = [ @) Pa(o)(de) = 13 (a.5) )

(and its argmin) to the "true” function

Pe) = [ f(z,w) P(dw)

(and its argmin) has been addressed by many authors. Almost sure epi-convergence
and uniform convergence of F,, to F' was proved under various assumptions (see [1],
[6]). In [5], Pflug proved the convergence in distribution of

Vi(Fu(z™ +t/v/n) — F(z" +t/v/n))

to a Gaussian process in regular situations. Here z* is the unique minimizer of
F. Results of this type lead to confidence results of the following type: Let X, a
minimizer of the empirical program (2). Then

lim PAVAIX, = a7l| > M} < Ky exp(— Ko M), 4)

where Ny and I\ are constants depending on the limiting normal distribution. The
practical use of (4) is very limited, since it is valid only for large (and often extremely
large) n.

The aim of this paper is to discuss nonasymptotic confidence bounds which are valid
for all n and therefore applicable for any sample size. The main keys for deriving
such bounds are Talagrand’s inequality and variational inequalities.
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Talgrand’s inequality gives a bound for
P{sup V| Fu(z) — F(z)] > M) (5)
zeX

and also for

P{ sup V/n|Fu(z) — F(z) = Fu(y) + F(y)| > M|z — yl|}. (6)

r,yeX

By a variational inequality, a bound for
P{V/n|| Xy —2*| > M} (7)

can be derived which is true for all n.

The paper is organized as follows: In the section 2, we will show how (7) can be
inferred from (5) or (6). Section 3 discusses the key inequality due to Talagrand. In
section 4, we apply the result to the linear recourse problem where

f(z,w) = min{q(w)Ty | W(w)y = b(z,w),y > 0}.

Finally, a comparison to large deviation results is made in section 5.

2 Variational inequalities and confidence bounds

Let F be the Ls.c. objective function and F some approximant of F. Variational
inequalities deal with the question how the approximation error between F' and F

relates to the approximation error between argmin (F') and argmin (F').

Suppose that F' fulfills the following growth condition

F(z) > ir;f F(y)+ ¢ [dist(z, argmin F)]". (8)
Lemma 1.
If
sup |F(z) — F(z)| < e (9)
then for each minimizer &* of F
2e1Y/7
dist(&", argmin F') < [—] . (10)
c
If however for all z,y
[F(z) = F(z) = Fy) + F(y)| < ellz —y], (11)



then for each minimizer z* of F

1/(v=1)
‘ (12

dist(Z", argmin F) < [—
¢

(see Shapiro (1994)).

Proof. Let v* € argmin F such that ||Z* — z*|| = dist(2*, argmin F’). Then, if (9)
is fulfilled,

0> P~ P(e") > F(E°) - (") - |F(”) - Fa)| - [P - PG|
> cllz” = 27" — 2
whence y
e - < [Z] (13)

If however (11) is true, then

0> F(i*)— F(z") > F(&")— F(z*) — |F(z*) — F(z*) — F(&") + F(3")

> clle” =27 = cfle” — 27|

whence

N . € 1/(v-1)
-l < [ (1)
O

Variational inequalities build the bridge between confidence bounds for the objective
function and confidence bounds for the minimizers: Suppose we may establish that
the empirical approximation F}, of the true objective function F' satisfies

Plsup |Fo(e) = F(@) < o2) > 1-a (15)

for all n. If F(z) fulfills the growth condition (8) with v = 2 and if it has a unique
minimizer 2%, then for each X} € argmin F,, we have by (10)

V2M
Ve
for all n. For establishing the sharper bound, recall the definition of L'-differentiability.

The mapping = — f(z,w) is called L'-differentiable, if there is a vector of functions
V.f(z,w) such that

P([X5; =2 <

)>1-a. (16)

y—r

im 1 w) — r.w) — _xT th\ o) =
1 ||y_$”/|f(.%) flz,w) —(y —2)' V. f(z,w)| P(dw) =0.  (17)

If Vof(x,w) is the L'-derivative of f(z,w), then F(z) is differentiable and

V. F(z) = / Vaof(z,w) P(dw).
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Set Vo F(x) = £ 3%, Vo f(z,s;); compare (3). If X is couvex, then

1
sup | Fu(z) = Faly) — F(z) + F(y)| < sup [V Fa(z) — Vo F(z)| (18)
vAzzyeX ||Y — z|| zeX

Therefore a bound of the form

P(sup |V, F,(z) =V F(z)| <

zeX

)>1-a (19)

SIE

implies the sharper bound

M
P(|X:—z*|<—=)>1-q. 20
(1% =l < 7 >1-o (20)

3 Metric entropy

The notion of metric entropy plays an important role in topology, functional analysis
and probability:

Definition 1. A set A C IR? is said to be of covering type (v, V), if for every ¢ > 0
one can find at most N, = [(V/e€)”] balls Sy, Sz, ..., Sn., each with diameter ¢, which
cover A, i.e. ACUN S,

Example. The unit cube in IR is of covering type (d,2v/d).

Definition 2. Let (£2,.4, P) be a probability space. A familily F of Ly( P)-functions
is called of covering type (v, V), if for every € > 0 there are at most N, = [(V/e)?|
pairs of functions (g1, ha),- .., (gn., hn,) with the properties

(1) gi(w) < hi(w) for 1 <@ < N
(i) (ki) = 9 Plde) < €
(iii) For each f € F thereis a index i € {1,..., N} such that
gi(w) < f(w) < hi(w).
Property (iii) may be expressed in the following way:
F C UX g, bl

where [g;, h;] denotes the interval of functions lying between g; and h;.

The covering type is essential for uniform confidence bands as was demonstrated by
Talagrand (1994):



Theorem 1. Let |f(w)| < C for all f € F. Suppose that F is countable and of

covering type (v, V). Then
M
[ 1) Pldo) = [ ) Pafs)(do)| 2 %}

s
< (A”(V/QCO) ) exp(—M?/2Cy). (21)

9Corv/o

where K'(+) is a universal function.

The assumption that F is countable is not crucial, it only ensures the measurability
of the supremum.

In our applications, the class F is is a parametric family of functions depending
smoothly on a parameter z € X C IR*

Fx ={f(z,w):z€ X C R"}.
Introduce the following rather weak assumption:

Assumption Al.

(i) 2~ f(2,w) is lower semicontinuous for every w;

(ii) @ — [ f(x,w) P(dw) is continuous.

This assumption guarantees that for each closed ball B in R* w + sup,cp f(z,w)
is measurable. This can be seen as follows: Let Q¢ be the set of rationals in R¢. By

Lemma 6 of the appendix, we may represent f as the monotone limit of a sequence
(f*N of continuous functions; f(z,w) =1 limg f®)(z,w). Obviously, for each k, the
function

w e sup fB(z,w) = sup fP(z,w)
z€B reBNQ4

is measurable. By Lemma 7 of the Appendix,
sup f¥(z,w) 1 sup f(z,w),
z€B z€B
which shows that the latter functions is also measurable.
Lemma 2. Suppose that X is the closure of X N Q¢. Under assumption Al, the
function s + sup,ex | [ f(z,w) Po(s)(dw) — [ f(z,w) P(dw)| is measurable. Thus

the supremum in (21) may be taken over the uncountable set X.

Proof. By continuity,

sup_ | [ f0(e,0) Pals)(dw) = [ f(z,) P(dw)

€A NQI

= sup| [ /9 (e,w) Pals)(dw) — [ f(z,w) P(dw)]

z€eX
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and it is clear that this function is measurable. Since

sup | [ ¥ (z,w) Pa(s)(dw) — / fla,w) P(dw)]

zeX

= max(sup[[ f®(z,w) )(dw) /f (z,w) P(dw)]T,

ze€X

inf—/f z,w) Po(s)(dw) /fﬂ?w (dw)]™)

zeX

an application of Lemma 4 of the Appendix implies that

sup | | f(z,w) Py(s)(dw) /f (z,w) P(dw)]

zeX
= timsup| [ f9(2,0) Po(s)(d) = [ 10 (a,0) P(dw)
is the limit of measurable functions and hence measurable. O

The aim of this paper is to derive results about covering types of interesting classes
of functions

Fx ={f(z,w):z € X}.

In particular, we will relate the covering type of Fyx to the covering type of X. In
view of the sharper bound (19) we will also consider the class of all L'-derivatives of
functions from Fy

Fy ={V.f(z,w):z € X}.

Definition 3. For a ball B in IR?, define the diameter of {f(z,-);z € B} as
2
diam*{f(a. iz € B} = [ (supf () - iggﬂy,w)) P(do).
y

Lemma 3. Suppose that for each ball B in IR the following inequality holds
diam®*{ f(z,-);z € B} < C[diam(B)].

If X is of covering type (v, V), then Fy is of covering type (v/3,VPC).

Proof. Let ¢ = Cn®. We may cover X by balls By, B, ... By, each of diameter 1,
where N, = L(%)Uj The intervals [inf,¢p, f(z,), supzep, f(z, )] cover Fx and have

each diameter not more than e. Since N, = L(%)vj = [(—‘iﬁ%l;—ﬁ)vj = [(VTB)U/BJ the
Lemma follows.

Introduce the symbol

B5(f(+,) = sup f(z,w)  inf f(z,w)

z€S



for the variation of f(-,w) within S. If 2 — f(2,w) is Lipschitz continuous with

Lipschitz constant Ls(f(-,w)):= sup, yes.z2, f r'ﬁ’I:£|ly’w , then trivially
Is5(f(w)) < diam(S)Ls(f(-,w)). (22)

Lemma 4.
(i)
diam?{f(z,-) : z € S} < diam?(S) / LA(f(yw)) P(dw).
(ii) For a finite number of random functions f,(z,w),..., frk(z,w)
diam? {max fu(z,") : ¢ € 5} < diam2(5)/m1?xL§(fk(-,w)) P(dw).
Proof. (i) follows from (22). For the proof of (ii) notice that
as(rnkqx fi(2)) < max Os(fr)- (23)

In order to show (23) suppose that ds(max fr(z)) = fi(z*) — f;(y*). Then

ds(max fi(z)) = file") = fi(y") < fie") — fi(y")
< Os(fi) < maxds(fk)-

Therefore, the assertion (ii) follows. O

4 An application for linear recourse problems

In this section we consider the linear recourse problem, where the functions f(z,w)
is of the form

f(2,w) = min{q(w)Ty | W(w)y = blz,w),y > 0}.

We make the following assumption:

Assumption A2.

(i) There exists a measurable function @ : 8 — IR™ such that

a(w) € {W(w)Tu < q(w)} S {u: |u] < O},



(ii) The function b: X x @@ — IR™ is differentiable w.r.t = and satisfies ||b(z,w)]| <
Co a.s. and [sup,ey ||Vb(z,w)|? P(dw) = C3 < oo.
Theorem 2.

Let Assumption A2 be fulfilled. If X is of covering type (v, V), then

Fy = {flz.w) : 7 € X} = {min{g(w)TyW(w)y = b(z,w),y > 0} : 2 € X}
is of covering type (v, C1C;V).
Proof.

By duality, we may write f as the solution of the dual program, i.e. the maximum
of a finite number K of functions.

flz,w) = mabe(:z:,w)Tvk(w).

=1,...,

(see [6]). Here vy are the vertices of the dual feasible polyhedron and K is their
maximal number. Since [|b(z,w)|| < Co and ||vg(w)]] < Cy, we get

|/ (z,w)| < CoCh.
Moreover, by Lemma 4 (ii),

diam?®{ f(z,w)) : 2 € S} < diam2(5')/Cl2 sup || Vb(z,w)||* P(dw) < diam?(S)C2C2.
zeX

(24)
The assertion follows now from Lemma 3. O

The most important special case is that of a linear B(z,w):
b(z,w) = h(w) — T(w)z.
Since |Vb(z,w)|| = ||T(w)||, independent of z, the constant Cy is here simply

€3 = [IT@)|? P(dw).

5 Entropy of classes of discontinuous functions

Theorem 2 deals with the covering types of classes of Lipschitz continuous functions.
However, in view of (19) we are even more interested in classes of derivatives. Since
the derivatives of maxima, as the occur in the linear recourse problem are not longer
continuous, we will consider now classes of functions having jumps.

To begin with, let Fx = {I{n@w)>op, ¢ € X}

Lemma 5. If
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(i) @ = H(a,w) is Lipschitz continuous for all w with Lipschitz constant L.

(ii) The random variables H(z,w) have densities g,, which are uniformly bounded
by Cy: g.(u) < C,.
and X is of covering type (v, V), then Fx is of covering type (2v,/LC,V).
Proof. Let B be the ball with center z and radius e. We have

Vint,ep Hzw)>0) < WH(@w)>0) < Lsup, oy H(zw)>0}-
Notice that
diamg{]l{supleB H(zw)>0} 1T € B} - /[H{sup_,,_.eB H(z,w)>0} — ]l{i“f:rEB H(r,w)>0}]2 P(dw)
= P{sup H(y,w) > 0 > inf H(y,w)} < P{|H(z,w)| < L€}
yeB yeB

Le
< / go(u) du < 2C) Le.

—Le

An application of Lemma 3 finishes the proof. a

Let us now turn to the covering types of the L!-derivatives of the functions f(z,w) =
maxy, fr(z,w). Notice that the L!'-derivative of max; fi(z,w) is
{le fok(:c,w)]l{fk(r,w):max, fe(zw)}- Let us therefore consider the class

FY = {001 Vo fel@, w) 1 (ow)mmaxe fe(zw)}} -

Theorem 3. Suppose that

(i) * — V f(x,w) is Lipschitz continuous with constant L and bounded by Cy,

(i1) The random variables d;(z,w) = fj(z,w)—max;y; fi(z,w) have densities which
are bounded by a constant C|,

(i) Let #{j : d;(y,w) > 0 for some y such that ||z — y|| < /2 < K if € is suffi-
ciently small.
If X has covering type (v, V'), then FV has covering type (2v, Cor/C1 K LV).

Proof. Let B be the ball with center « and diameter €. Let A;(z) = {w : d;(z,w) >
0}, AT = {w : sup,pdi(y,w) > 0} and A] = {w : infyepd;(y,w) > 0}. Let
D =U;(AF\A7).

Let h(w) = 32 sup,ep V fi(y,w)l4;(z)npe + Colp
and g(w) = ¥2; infyep V fi(y,w) 4, (zynpe — Colp. We have that for all z € B

g(w) < Z Vfi(z,w)ly, () < h(w).

Since [[h(w) — g(w)]* P(dw) < L% 4+ 2C%C, K Le, we get the desired result. m
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6 A comparison to large deviation results

We recall here Sanov’s uniform large deviations results: For simplicity, we consider
the univariate situation only. Let P be the class of all probability measures on IR.
For Q € P let Gg(u) = Q(—o0,u] its distribution function and gg(u) its Lebesgue-
density (if existent). Let T'(Q)) be some functional on P and

K(Q, P) = inf{/log %d@ : Q € Q, such that Q << P}
where
Q. ={QeP:T(Q) > ¢}
Suppose that @ — T(Q) is uniformly continuous for the distance sup, |Ggo(u) —

G'p(u)|. Sanov’s theorem asserts that

lim —log P{Tp(P,) > ¢} = K(Q., P) (25)

n—oo

for all continuity points € of K'(Q, P). (Sanov (1957), see Shorack/Wellner (1986),
p-792). For an application in our context, suppose that P has Lebesgue-density and
that F is a class of P-integrable functions such that sup,.r [ |f'(z)ldz < oo. Let,
for Qe P

TP(Q):sup|/fdQ—/f dP| :sup|/f’(u)GQ(u)du—/f'(u)Gp(u)du|.
feF feF
Then, by Sanov‘s theorem,

lim —log P{sup|/f 2 (du) /f P(du)| > ¢}

n—oo

- inf{/logd—PdQ:Q << Pand §22|/fdP—/fdQ| > ¢} (26)

It seems to be difficult to calculate the exact value of the right hand side. However,
a bound is easy to find. Suppose that all f € F are bounded by C. By the Kullback-
Cziszar-Kemperman inequality

1P =QI* < K@, P),

where ||P — Q|| is the variational distance, (see, for instance Devroye, p. 10), we

have
sup| [ fdP - [ Q| < 0P~ Q) < C/K(Q.P)

and therefore

lim sup —log P{supl f(u) P.(du) /f P(du)| > ¢}

n—300

— inf{/logﬁdQ:Q<<Pand ?1612|/fdP—/fdQ| > ¢}

2

inf{K(Q,P): C\/K(Q,P) > ¢} = %

12
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Both, Talagrand’s inequality (21) and Sanov’s limit theorem (25) deal with the prob-
ability of deviations from the mean. If we rewrite Sanov’s theorem in the form

2

Plsup| [ 1) Puldw) = [ 1) Pld)] 2 ¢} = explon (1 +o()]

the relation to Talagrand’s inequality becomes apparent: The large deviations result
deals with a fixed deviation of € and concerns the tail behavior, whereas Talagrands
inequality considers shrinking deviations of size M//n and focusses on the central
behavior. Formally, one may set ¢ = M/./n to get the same rate in both results.
However, notice that the large deviation theorem gives only a rate and not a bound:
For every arbitrary large constant K > 0

lim —log P{Tp(P,) > €} = lim —log K - P{Tp(P,) > €}.
But of course, the most striking advantage of Talagrand’s inequality is that it is
uniform in n.

7 Appendix

Lemma 6. A function f is lower semicontinuous if and only if it is the monotone
limit of a sequence of continuous functions f(*

f(x) =1 lim f¥ ().

Proof. If f is the monotone limit of continuous functions f*) its epigraph is the
intersection of the epigraphs of f(*), which are closed. Therfore the epigraph of f is
also closed and this is equivalent to the property that f is l.s.c. Conversely, let Al(-k)

be a (non-disjunct) dissection of [R? into cubes of diameter 1/k. Let

i :L'EAEk)
By the l.s.c. property,
tlim f8(z) = f(2). (27)
It is easy to modify the functions f(¥) such that they become continuous and still
(27) holds. O

Lemma 7. Let f(z) be a function, which is the pointwise limit of a monotone
sequence of continuous functions f(z) =1 lim; f*)(z). Then, for a compact set X,

lim sup f¥(z) = sup f(z) (28)
reX reX
lim inf f¥(z) = Jnf f(<) (29)
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Proof. Since f*)(z) 1 f(z), it follows that limy sup,c x f*¥)(z) < sup,cx f(z) and

limg infzex f®(2) < infrex f(z). On the other hand, if f

) 2 sup.ex f(z) —

(z7) =
e, then lim; f*¥)(2*) = f(z*) and therefore limy sup,cyx f¥(z) > lim; f®)(z*) =

fla

) > sup,ey f(z) — €. Since ¢ is arbitrary, (28) follows. Let now f®(®)) =

infeex f)(2) and f* = sup, f(z®). Let z* be a cluster point of the sequence

(x(*)

). W.lo.g. we may even assume that this is a limit point. Since f(9(z(®) < f~

for all # < k, we get by continuity of f) that f¥(2*) < f* and therefore f(z*) < f~.
This implies that infex f(z) < f(z*) < f* = limy infeex f¥)(2) and also (29) is
shown. -
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