
Working Paper
The Barrier of Objects: From

Dynamical Systems to Bounded

Organizations

Walter Fontana and Leo W. Buss

WP-96-27

March 1996

�IIASA
International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: 43 2236 807 Fax: 43 2236 71313 E-Mail: info@iiasa.ac.at

The Barrier of Objects: From

Dynamical Systems to Bounded

Organizations

Walter Fontana and Leo W. Buss

WP-96-27

March 1996

Working Papers are interim reports on work of the International Institute for Applied

Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute, its National Member

Organizations, or other organizations supporting the work.

�IIASA
International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: 43 2236 807 Fax: 43 2236 71313 E-Mail: info@iiasa.ac.at

The barrier of objects:

From dynamical systems to bounded

organizations

Walter Fontana

Theoretical Chemistry

University of Vienna

W�ahringerstra�e 17

A-1090 Vienna, Austria

and

International Institute for Applied

Systems Analysis (IIASA)

Schlo�platz 1

A-2361 Laxenburg, Austria

walter@leonardo.tbi.univie.ac.at

Leo W. Buss

Department of Biology

and

Department of Geology and

Geophysics

Yale University

New Haven, CT 06520-8104, USA

buss@muggiea.biology.yale.edu

Contents

Overview 3

1 The barrier of objects 4

2 Towards a speci�cation language for chemistry 8

2.1 Minimal Chemistry Zero : 11

2.1.1 Ontological commitment, resultant metaphor and formal

representation : 11

2.1.2 Model : 12

2.1.3 Main results : 14

2.1.4 Main limits : 21

2.2 Minimal Chemistry One : 22

2.2.1 Shape and action : 22

2.2.2 What is a type? : 23

2.2.3 Improved metaphor : 24

2.2.4 Model and preview of results : : : : : : : : : : : : : : : : 25

2.3 Minimal Chemistry Two : 27

2.3.1 From �-calculus to proof-theory : : : : : : : : : : : : : : 28

2.3.2 Ontological commitment, resultant metaphor, and for-

mal representation : 30

2.3.3 Addressing prior limits in the linear logic framework : : 34

2.4 A Roadmap from chemistry to proof-theory : : : : : : : : : : : 39

3 From dynamical systems to bounded organizations: The thread

from chemistry : : : 41

3.1 : : : to the \object problem" : 42

3.2 : : : to the foundations of mathematics : : : : : : : : : : : : : : : 43

3.3 : : : to concurrency and self-organization : : : : : : : : : : : : : : 48

3.4 : : : to biology and beyond : 51

References 53

1

Appendix 60

A �-calculus for tourists 60

A.1 Conceptual : 60

A.2 Instant Syntax and Semantics : : : : : : : : : : : : : : : : : : : 61

A.3 Beyond � : 65

B Types for tourists 67

B.1 The chemistry of types : 67

B.2 Polymorphism : 68

B.3 Type inference : 69

C Logic background 70

C.1 The Curry-Howard isomorphism : : : : : : : : : : : : : : : : : : 70

C.2 Sequent calculus : 73

C.3 Linear logic for tourists : 77

C.3.1 The rules of the game : : : : : : : : : : : : : : : : : : : 81

C.3.2 Proof-nets : 83

2

Overview

Self-maintaining natural systems include the global climate system, all living

organisms, many cognitive processes, and a diversity of human social institu-

tions. The capacity to construct arti�cial systems that are self-maintaining

would be highly desirable. Yet, curiously, there exists no readily identi�able

scienti�c tradition that seeks to understand what classes of such systems are

possible or to discover conditions necessary to achieve them. Given the ubiq-

uity of such systems naturally and the desirability of self-maintenance as a

feature of design, any credible approach to establishing such a tradition merits

serious attention.

We have recently developed and implemented a framework for approaching

the problem [26, 27]. It is based on the premise that the constituent entities

of a self-maintaining system characteristically engage in interactions whose

direct outcome is the construction of other entities in the same class. Self-

maintenance, then, is the consequence of a constructive feed-back loop: it oc-

curs when the construction processes induced by the entities of a system permit

the continuous regeneration of these same entities [88]. The speci�c func-
tional relationships between entities which collectively insure their continuous
regeneration, we de�ne as an organization. A theory of organization, so

de�ned, is a theory of self-maintaining systems. A prototypical instance of
entities are molecules. And organisms are a particularly interesting class of
self-maintaining systems generated by their constructive interactions. The at-
mosphere is another example. And so, perhaps, is the sun at the nuclear level.

The overarching long-term goal of our program is to develop a formal under-

standing of self-maintaining organizations. Our e�orts in doing so, which we
summarize here, have led us to appreciate a fundamental problem in methodol-

ogy: the traditional theory of \dynamical systems" is not equipped for dealing
with constructive processes. Indeed, the very notion of \construction" requires

a description that involves the structure of objects. Yet, it was precisely the

elimination of objects from the formalism that make dynamical systems ap-
proaches so tremendously successful. We seek to solve this impasse by connect-
ing dynamical systems with fundamental research in computer science, whose

theoretical foundations are about \objects" and their constructive interrela-

tions. Our long-term goal, then, becomes equivalent to the task of expanding
dynamical systems theory to include object construction, to become what we

have come to call constructive dynamical systems [26].

3

1 The barrier of objects

The vast bulk of knowledge base of classical physics has been earned by ap-

plication of the tools of dynamical systems theory. It began with Newton,

and became a powerful tool-kit with Hamilton, Jacobi, and Poincar�e. Like all

major perspectives in science, its power derives from a useful decision about

what constitutes \the system" and what belongs to \the rest of the world."

The characteristic feature of dynamical systems theory is to conceptualize \the

system" as existing exclusively in terms of quanti�able properties (e.g., posi-

tion, concentration) of interacting entities (real or abstract). The distinction

in representing interaction between entities via their properties as opposed

to some appropriate theory of the entities themselves will play a major role

in what follows. The point is subtle. In a dynamical system, it is not the

interacting entities that participate as objects in the formal constitution of

\the system", but rather their quantitative properties and couplings. As a

consequence, interaction is understood as the temporal or spatial change in
the numerical value of variables. This change is captured by a set of (deter-
ministic or stochastic) di�erential (or di�erence) equations. The solutions of

these equations may then be viewed as a ow in phase space. Analytical and
numerical tools exist which permit the characterization of that ow and its
change as parameters are varied (e.g., invariant subspaces, attractors and re-
pellors, basins of attraction, bifurcations). In the centuries since Newton, our
own century most prominently, the power and e�cacy of this cognitive style

has been established beyond all question.

The success of this framing in physical systems has fueled an inexorable export

of the dynamical systems approach from physics to virtually every domain of
biological, cognitive and social science. The record of achievement in these
other domains has been mixed at best. To what may we attribute this appar-

ent \limit to scienti�c knowledge"? A variety of attributions to both speci�c
and general failure are so commonplace as to have become tiring to once again
repeat. Many failures in domains of biological (e.g., development), cognitive

(e.g. organization of experience), social (e.g., institutions), and economic sci-

ence (e.g., markets) are nearly universally attributed to some combination of
high dimensionality and nonlinearity. Either alone won't necessarily kill you,
but just a little of both is more than enough. This, then, is vaguely referred

to as \complexity".

Laying the blame for scienti�c limits in this common waste bin, however, has
an uncomfortably facile texture. After all, there are examples of wildly suc-

cessful application of dynamical systems approaches to problems that must
have seemed no less daunting at the time than, say, predicting the evolution of

the telecommunications market or the global climate looks today. Consider the

4

e�orts of R. A. Fisher, whose application of dynamical systems to the problem

of combining Mendel's genetics with Darwin's evolution yielded his \genetical

theory of natural selection" (i.e., what we now know as the �eld of population

genetics). Fisher accomplished his task via an act of abstraction. His genius

was to claim that organisms were an utter distraction and irrelevancy, simply

not a part of the problem. The concordance of Darwinism and Mendelism

required only a population and genes; the concentration of the latter in the

former is the relevant variable, and its behavior may be had by solving dif-

ferential equations wherein the frequency of a gene is jointly determined by

Mendel's transmission rules and Darwin's selection. Fisher's accomplishments

belie the conventional mantra of \too complex". Perhaps the \limits to scien-

ti�c knowledge" are simply a de�cit of genius. None of us retain into adulthood

a capacity to seriously attend for prolonged intervals to an imagined system of

abstract entities; whereas every youngster quite seriously attends to the clos-

etful of monsters that appear each nightfall. We rightly celebrate as genius

the (�rst) man who saw genes disembodied from the organism!

In seeking to understand why dynamical systems have had only modest impact
in some sciences, the usual explanations are, in some considerable degree,
internal to a dynamical systems representation itself. The failures are cast as

failures in applying the dynamical systems approach - either a failure of insight
in imagining abstract entities appropriate to the system or a failure in tools for
the qualitative analysis of high-dimensional, nonlinear di�erential equations.
However, no less real a limit is our ability to stand outside a dynamical systems
perspective for a moment and to seriously ask what is it good at and what is

it not. Perhaps, then, we might augment the cognitive style itself to render it
more tractable in those domains where its achievements have been heretofore
limited. This is our intent.

What is left out of thinking about the physical universe as one massive dynam-
ical system with our understanding of it limited solely by insights in framing

abstractions well-suited to carving o� soluble subsystems? Perhaps what is
being too easily overlooked is the fact that dynamical systems never deal with

objects themselves [83]. Objects are never represented as entities with a dis-
tinct internal structure giving rise to behavior. Rather, objects disappear

into arrays of structureless variables con�ned to holding numerical values that

quantify properties of an object class, such as the frequency of a gene, the con-
centration of a chemical, the density of an electromagnetic �eld, the position
and velocity of an aircraft, the pressure of a gas, the earnings of a �rm. The

moon, for example, is never represented as an object in the equations that

express its orbit; the \moon" is de�ned as a time-dependent vector of numbers
specifying position and momentum. Numerical values are indeed an appropri-

ate abstraction, but only as long as objects don't change. Planets interacting

5

gravitationally or Fisher's genes interacting in accord with transmission and

selection serve as examples. The situation is quite di�erent when objects pos-

sess an internal structure that is subject to change, particularly when that

change is endogenous to the universe of objects considered, i.e., when the in-

ternal structure of an object causes speci�c actions to occur that modify (or

create) other objects.

Conventional dynamical systems, then, are well-suited to treat changes in the

magnitudes of quantitative properties of �xed object species, but ill-suited to

address interactions that change the objects themselves. The latter is challeng-

ing in the dynamical systems context. The relevant \variables" would have to

hold objects, rather than the familiar numerical values. But if the objects

become the variables of the system, we would need a \calculus of objects"

like we have a di�erential calculus for numerical values. This places a high

premium on the di�cult task of abstracting objects without losing the link

between their action and structure (i.e., without losing the objects). Perhaps

herein lies our seeming de�cit of genius.

In Nature, interaction involves objects directly and never by a numerical value
describing them. Stepping outside of conventional dynamical systems requires
taking this observation seriously. Stated less rhetorically, the occurrence of
objects that possess a distinct internal structure of a combinatorial kind has
two implications. First, there are substantially more possible objects than can

be realized at any given time. It is this which gives meaning to the notion
of a \space of objects"1. Second, and most importantly, when the interaction
among objects causes the construction of further objects, relations of produc-
tion tied to their internal structure become possible. This never appears in
a conventional setting: it can only arise as a consequence of a causal linkage

between the internal structure of an object and the actions through which it
participates in the construction of others. A theory of such linkage is what a
\calculus of objects" would have to accomplish. If we throw out the construc-
tive component, we throw out the capacity of a system to endogenously induce

a motion in its \space of possible objects"2.

What is gained may be seen by analogy to conventional dynamical systems.
We imagine construction relations (the analogue of the di�erential operator)

to induce a ow in a \space of possible objects " (the analogue of phase space).

1Eigen [21, 22] has introduced this notion for the special case of nucleic acid sequences -
the \sequence-space". Maynard-Smith [60] thought of the same in the context of proteins.

2Throwing out construction still leaves room for chance events, such as mutation, to
induce a motion in object space. The deeper theoretical and conceptual issues arise when
the construction of objects derives from the interaction among existing ones, not from their
variation by chance. The former makes the motion in object space endogenous, while the
latter makes it exogenous to the system. Mutation is to construction like perturbation is to
dynamics.

6

The intuition is that this ow will have a structure where collectives of objects

implementing particular production relations form \attractors" (i.e., \�xed-

points", \limit-cycles", and the like) with corresponding \basins". If so, then

objects which change one another upon interaction - as surely is the habit of

elementary particles, molecules, neurons, �rms and governments - have the po-

tential of being characterized and studied as organized collectives of construc-

tion relations. The question becomes: Do such organized collectives exist? If

so, what are they and what are their properties? Are some self-maintaining,

self-repairing, and capable of extension? Is their extension constrained by their

internal structure, their history of extension, or both? Are they helpful in �lling

the void that steadfastly remains in the biological and social sciences, despite

the wholesale importation of dynamical systems approaches into domains so

manifestly rich in object construction and transformation?

The issue posed above mandates that the constructive aspect of interaction

be brought into the picture. This necessarily requires the representation of

objects. In seeking formalisms appropriate to facing the issue of object con-
struction and transformation, one is invariably drawn to the foundations of
computation. The computational sciences deal explicitly with syntactical en-
tities, and, thus, with the possible representations of objects and their con-

struction. This de�nes, then, our speci�c approach to the general problem.
We are obligated to de�ne objects, using formalisms borrowed (at least at the
outset) from theoretical computer science, to animate their interaction in an
appropriate dynamical setting, and to thereby generate a \motion in a space
of objects", the features of which we desire to explore.

All that follows is but a progressive re�nement of research tactics we are em-
ploying in an attempt to explore this larger question in a speci�c instance.

We concern ourselves with the biological domain, speci�cally thinking of or-
ganisms as self-maintaining chemical collectives. Hence we treat molecules-
as-objects and search a corresponding \space of objects" for self-maintaining
collectives. We �rst motivate this choice and show how the simplest abstrac-

tion of molecules as agents of construction does indeed generate collectives with

a distinctively biological avor. From this basis, we outline progressive re�ne-

ments in our abstract chemistry in the form of alternative syntactical systems
with the aim of closing the distance from our simplest abstraction of chemistry
to something more respectful of chemistry as we know it. After documenting

a concrete implementation of the broader perspective in the speci�c instance

of chemistry, we return in conclusion to the larger issues. The reader is urged

not to lose sight of the larger goal while immersed in the speci�c instance: the

long chemical excursion is but a logbook of data in support of the utility of
the broader view. The pro�ered \motion in a space of objects" and associ-

ated universe of organizations composed of such objects is hardly exclusive to

7

the objects of chemistry and their resultant biological organizations. To make

substantive progress - whether in biology or in much of what is beyond biology

- we must distinguish and capture the fundamentally di�erent consequences

that arise when change is about the objects themselves, as opposed to the

magnitude of prespeci�ed quantitative properties describing them.

2 Towards a speci�cation language for chem-

istry

Our overall goal is more readily grasped and the methodological challenges

more concretely framed when stated in the context of a speci�c class of objects-

that-change-objects and a speci�c organized collective of such objects. Our

starting point will be chemistry; the relevant entities are molecules and or-

ganizations are self-maintaining chemical collectives. Our motivation in this

choice is twofold. First, we chose chemistry because it is solid ground: we know
molecules and their interactions far better than any other object class claimed
to participate in the construction of self-maintaining organizations (contrast
the challenge of molecules versus the challenge of cognitive entities generating
markets or �rms, for example). Second, we believe that biology, particularly

molecular biology, has a pressing need for support from a new kind of theoret-

ical chemistry. Current quantum and structural chemistry are burdened with
information that is not relevant to the molecular biologist. The level of detail
and the kind of description o�ered by these approaches necessarily put the fo-
cus on single molecules or individual reactions and away from their functional
context within organized systems of molecules or reactions. What chemistry

lacks is a high level speci�cation language focused on the abstract operational
aspect of molecules and capable of describing reaction networks and their alge-
braic behavior. The molecular biologist needs a tool for abstracting molecular

actions, for plugging them together (like electronic components), and for gen-
erating and analyzing the network closures of these actions under a variety of

boundary conditions.

While absence of such a speci�cation will be all-too-apparent to biologists,

an example may prove useful to others. Let us consider the role that a yet-

unrealized theory of network construction and maintenance might play in un-
derstanding how self-maintaining molecular organizations evolve. The scenario

is conventional: a mutation occurs, which results in a new1 gene sequence cod-
ing for a new2 protein whose interaction with the chemical machinery of the

cell, set up by the remaining gene products, triggers a cascade of new3 chemical

reactions resulting in a new4 extension of a metabolic pathway which enables
the utilization of a new5 resource.

8

Each time the word \new" denotes a di�erent kind of novelty, because each

time di�erent kinds of constraints are in e�ect:

1. novelty1: A sequence is a combinatorial object with the simplest possible

structure: a linear concatenation of symbols. The syntactic category of

\sequence" entails a space of possible variations. A chain of 200 positions

over an alphabet of four symbols has 4200 (= 10120) realizations - more

than the number of bosons in the universe. At this level the generation

of novelty is virtually unconstrained. Any random replacement of any

symbol at any position yields a new1 sequence.

2. novelty2: A protein is more than a sequence of symbols. It is a sequence

that folds into a shape as a consequence of interactions between symbols

along the chain. Three-dimensional space and the nature of intramolec-

ular forces severely constrain which shapes are possible. At chemically

relevant levels of resolution these constraints result in considerably fewer

stable shapes than sequences. Not every novelty1 is a novelty2.

3. novelty3: The types of functional groups and their disposition within
a molecule de�ne its \domain of interaction" - its capacity to partici-
pate in speci�c chemical action (i.e., the breaking and making of bonds).
Novelty3 is a matter of chemistry.

4. novelty4: The constraints and opportunities of interaction within a given
network of chemical pathways determine which new4 network roles a
new3 molecular agent can participate in. How (or, even, whether) a net-
work forms depends on its molecular components, the types of reactions

induced by them, the connectivity of these reactions and their kinetics.

5. novelty5: The innovated4 metabolic network is characterized by con-

stituent molecules and their relationships. What is regarded, however,
as a new5 \resource" or as new5 \waste" is a matter of the coupling
between this network and other such networks either within the same,

or between it and other, levels of biological organization. Indeed, it is

the joint construction and maintenance of a chemical reality composed
of a large number of linked metabolic networks which de�nes the biotic
element of an environment.

It is plain that novelty5 cannot occur unless novelty1 occurs. There is, however,
a gap between novelty1 and novelty5 which theory is presently unable to bridge.
We perfectly understand the \abstract space of possibilities" for novelty1: it's

the space of words over an alphabet. Yet we have basically no clue as to

even the nature of the abstract space of possibilities for novelty5. The two

loose ends of the problem circulate in biology under the key-words \genotype"

9

(novelty1) and \phenotype" (noveltyi>1). The evolutionary process is perceived

roughly as the conjunction of two factors: the modi�cation of \phenotypes" by

chance events at the level of \genotypes", and a dynamics which results in the

selective ampli�cation of \genotypes" based on the di�erential reproductive

success conveyed by their \phenotypes". Novelty1 is as simple as a throw of

the dice. However, once it has occurred, we lack utterly the capacity to assess

its likelihood of giving rise to novelty5. Yet, this likelihood is de�ned by a

molecular society, the constituent interactions of which have a lawful - even

largely deterministic - character grounded in physics and chemistry. Might

there not be an abstraction of chemistry appropriate to such questions?

We claim that any serious attempt to mathematize such questions requires an

abstract characterization of chemical processes. This stance de�nes our more

speci�c goals:

� to develop an \abstract chemistry" in which molecules are viewed as

computational processes supplemented with a minimal reaction kinetics,
and

� to develop a theory of the self-organization, maintenance, and variation
of networks based on such processes.

Situating these speci�c goals in the broader perspective, we believe that an
adequate abstraction of chemistry is as crucial in extending the theoretical
foundations of biology as was an adequate abstraction of motion in found-
ing a formal basis for physics. The parallel, however daunting, is one we
make seriously. Roughly, \motion" in physics is conceived as the temporal

change in the value of a state variable (the position, say). This motion is
formalized by in�nitesimal calculus; a theory of the derivative d � =dt. We
would like to think of chemical reactions as a kind of \motion" as well -

but as a motion in a space of objects. The key di�erence is that, mathe-
matically, such objects are not numerical quantities, they are syntactical en-

tities, to wit: molecules. The chemist denotes that motion with \�!", as
in CH3OH+CH3COOH�!CH3COOCH3+H2O. The objects on the left are

replaced by those on the right. But these may interact further with other

molecular agents present in the reaction vessel or the cell, thereby keeping its
contents changing over time, that is, \moving in object space". What is needed

is a theory of the motion generator \�!" competent to de�ne a universe of
self-maintaining organizations of such objects. If the broader perspective is

correct and the speci�c implementation su�ciently exact, within this universe
of organizations will be found speci�c organizations known to us as living bio-

logical systems. The reader will �nd grounds in our simplest implementation in

support of the validity of the broad claim, but will �nd manifest inadequacies

10

in the precision of the speci�c chemical implementation presented in section

2.1. Optimism inspired by success in the former has motivated the series of

re�nements summarized in sections 2.2 and 2.3 in attempt to improve upon

the de�cits of the latter.

2.1 Minimal Chemistry Zero

2.1.1 Ontological commitment, resultant metaphor and formal rep-

resentation

In view of the above discussion, the principal question is \how to frame chem-

istry?" The problem is one of focus { how close-up? how distant? { and one

of scope { how wide? how narrow?. We are forced to make ontological choices.

To begin with, we choose an absolutely minimalist view of chemistry.

1 - Syntactical. Molecules are treated as discrete structures of symbols, de-

�ned inductively. A molecule is an atom or a combination of molecules.

2 - Constructive. Reactions are seen as events where such symbolic struc-
tures \interact" to construct new symbolic structures.

3 - Substitution. The basic mechanism of a reaction is the exchange of one
group of symbols (a substructure) by another, i.e., a substitution.

4 - Equivalence. Di�erent combinations of reactants can yield the same prod-
uct.

5 - Deterministic. When particular functional groups in a molecule initiate
a reaction, the product is determined.

This minimalist view coincides with the description of a mathematical function

as a rule, rather than a set. In the former case a function is a suite of operations

that generate an output when applied to an input. In contrast, the latter case
views a function as a look-up table, i.e., a set of input/output pairs. To

express rules, a syntax is needed (point 1). Functions-as-rules can be applied

to arguments which can themselves be functions, returning a new function as a
result (point 2). For example, take a polynomial and \apply" (�) it to another

one: (x2+4x+2) � (y�1) �! (y�1)2+4(y�1)+2 �! y2�2y+1+4y�4+2 �!
� � � �! y2 + 2y � 1. This also illustrates that the process of evaluating the

application of a function to an argument is done by repeated substitutions,

where the formal variable of a function is replaced by the literal text of the
argument (point 3). The schemes which govern this process de�ne a calculus.

Furthermore, di�erent function/argument combinations can return the same

11

result. Trivially, 7+3 = 20=2, but \7+3" is not the same object as \20=2". To

justify the equality a syntactical manipulation - a computation - must occur

that puts each object into its canonical form: 7+3 �! 10 � 20=2 (point 4).

Furthermore, the application of a particular function to a particular argument

always yields the same result (point 5), although it may proceed via di�erent

routes (depending on which subexpressions are evaluated �rst).

This, then, is summarized by the following metaphor:

chemistry � � � � � � a calculus

physical molecule � � � � � � symbolic representation of an operator

molecule's behavior � � � � � � operator's action

chemical reaction � � � � � � evaluation of functional application

To put the metaphor to work, it must be made precise. Any formal system
that is a candidate for an abstraction of chemistry at this level must make the

same ontological choices. The only canonical system known that formalizes
the notion of a function as a rule, and is both based on substitution and
naturally yields a theory of equality is �-calculus. �-calculus was invented in
the 1930's [12, 13, 14, 82], and has since become of foundational importance
in the computational sciences. We �nd it remarkable that there is a system at

all - and even such a central one - that �ts so well. The correspondence with
�-calculus will later enable substantial re�nements of the chemistry/calculus
metaphor, thereby providing an ex post justi�cation of this choice.

Although not strictly necessary to grasp most of the remaining chapter at an
intuitive level, the reader unfamiliar with �-calculus is invited to appendix A.

2.1.2 Model

Motivated by biological problems akin to that sketched at the beginning of
section 2, we have developed and implemented a toy model aimed at exploring

the conjunction of the two interaction modes { construction and dynamics {

introduced in section 1.

Our abstract molecules are symbolic operators expressed in �-calculus. We
consider a \ow reactor" of N such abstract molecules, each one a �-expression.

In this setting a given expression may occur in multiple instances, just as in

a test tube a number of molecules may be instances of the same chemical

formula. We think now of the expressions as if they were particles oating

within a well stirred solution where they collide at random. Upon contact,
two expressions interact by functional application, such that one expression

12

assumes the role of operator, and is applied to the other expression which

assumes the role of argument. The evaluation of this interaction yields as

its result a new expression. Thus, the canonical calculus realizes the desired

constructive component { collisions (i.e., \applications" followed by reduction

to normal form; see A.2) are production relations among abstract molecules {

and these occur in a particular dynamical setting (i.e., the ow reactor) such

that construction is coupled to changes in the concentration of the expressions.

random collision

transform into
normal form

remove

@
@@
@

@
@

@
@

@@
@@
@
@@

@

@@
@@@@
@@

@@
@@

@@
@@

@@
@@
@@
@@@@

@@

@@
@@

@@
@@
@@
@@@@

@
@@

@@
@@@@
@@

@@
@@

@@
@@
@@
@@

@@
@@

@
@

add

reactor

Figure 1: �-calculus ow reactor. Two expressions A and B

are chosen at random and a new object, (A)B, is constructed by

\application" (see appendix A.2). Putting (A)B into its normal

form by �-reduction (see appendix A.2), e�ectively decides which

object species (i.e., \stable molecular formula") the new object is

an instance of.

We omit details of our implemention not essential for the purpose of this
overview. They can be found in [26, 27]. One issue is, however, immediately

13

germane. Recall that we wish to induce a \motion in object space", with that

motion settling upon self-maintaining systems of objects. To achieve the latter,

we impose a generic selection constraint on object motion through a choice of

reaction kinetics and a restriction on reactor size. Speci�cally, we make two

assumptions:

� Reactants are not used up in a reaction:

A + B �! C +A + B (1)

where C is the normal form result that is contingent on the application of

operator A to argument B: (A)B ! C in �-calculus. In this way the total

number of expressions increases by one with each reactive collision.

� Each time a new expression has been produced, a randomly chosen one, X,

is removed from the reactor:

X �! ; (2)

The overall number of expressions N is thereby kept exactly constant. This

means that each expression has a �nite life time, even though it is not consumed
at the moment of a reaction. Moreover, since any two expressions interact to
produce a particular third expression with a frequency proportional to their
concentration, the reaction scheme together with �xed reactor size act to favor
convergence to a population of expressions whose relations of production yield
expressions extant within the reactor { the motion in object space settles upon

a set of objects that produce one another.

The reaction scheme, however, does obvious violence to the chemicalmetaphor.

Indeed, the present metaphor and its instantiation through �-calculus have a
number of limitations which we discuss further in section 2.1.4 and which
largely motivate the re�nements in methodology outlined in sections 2.2 and

2.3.

2.1.3 Main results

Self-organized algebras and kinetic con�nement

The intended motion-in-a-space-of-objects settling upon self-maintaining-sets-
of-objects was observed [26, 27]. We focus �rst on the di�erent kinds of �-

expressions in the reactor. As reactions proceed new expressions are generated,

while others disappear due to the removal ow. Depending on the initial
conditions, and after many interactions have occurred, the system frequently

converges on an ensemble of �-expressions that

14

(i) maintain each other in the system by mutual production pathways, and

that

(ii) share invariant syntactical and algebraic regularities.

The latter means that the contents of the reactor have reached a particular

(possibly in�nite) subset of the space of �-expressions that is invariant (closed)

under interaction.

...
.

...
.

Figure 2: A simple self-maintaining organization. The dots (left)

and the squares (right) represent �-expressions with a particular

grammatical structure. They are made of one pre�x [�x:(x)] and

two terminals [T1
def
== �x:x and T2

def
== �x:�y:(y)�z:(z)x]. From

bottom to top, the dots (left) are expressions consisting of an

increasing number of pre�xes (starting with 0 at the bottom) ter-

minated by T2. The same holds for the squares (right), except that

they are terminated by T1. A solid arrow indicates the transforma-

tion of an argument (tail) to a result (tip) by an operator (dotted

arrow). For clarity, only a subset of the possible interrelations

is shown. Notice the connectivity enables kinetic con�nement.

Most transformations yield objects at the bottom (leading to an

increasing concentration pro�le from top to bottom). Some oper-

ations, however, yield objects up the \ladder", thus establishing

self-maintenance. Both syntactical families depend on each other

for maintenance as indicated by the \cross-family" connections.

Syntactical regularities are made explicit by parsing expressions into two kinds
of building blocks, called terminal elements and pre�xes3 [26, 31]. Terminal

3We de�ne a terminal element to be the smallest closed subexpression reading from the

15

elements are closed �-expressions (also called combinators, see appendix A).

Pre�xes are not complete �-expressions. However, pre�xes form closed expres-

sions when they precede a terminal element. The invariant subspace contains

only expressions that are made from a characteristic set of such building blocks.

Algebraic laws are a description of the speci�c action(s) associated with each

building block. This action may depend on the context of a building block

within an expression. The characterization of the functional relationships

among the blocks yields a system of rewrite equations [50]. This system can, in

many cases, be exhaustively speci�ed using Knuth-Bendix (and related) com-

pletion techniques [51, 52]4. Rewrite systems which complete, permit a �nite

speci�cation of all interactions among the expressions of the subspace. They

implicitly determine a grammar for its (normal form) expressions.

The rewrite system cast in terms of building blocks is a description of the

converged reactor system in which all reference to the underlying �-calculus

has been removed. In other words, the generic �-calculus can be replaced by

another formalism speci�c to the self-maintaining ensemble of expressions in

the reactor, that is, a particular algebraic structure.

The expressions of the invariant subspace are the carrier set of the algebra.

Very often, but not always, that set is in�nite. Although the reactor has
only a very small capacity (1000 or 2000 expressions), the algebra persists
through a uctuating, yet stably sustained, �nite set of expressions. This
occurs whenever the connectivity of the transformation network is such that
it channels most of the production ow to a core set of expressions. This we

call kinetic con�nement . An example is shown in �gure 2.

Organization

The main conceptual result is a useful working de�nition of what we mean by

an \organization": an organization is a kinetically self-maintaining algebraic

structure. Self-maintenance has here two aspects which reect the two modes

of interaction: (i) algebraic, a network of mutual production pathways that is
a �xed-point under applicative interaction, and (ii) kinetic, the concentrations

of the expressions in the network core are maintained positive. The former is

a necessary, but not a su�cient condition for the latter (i.e., a network can
be algebraically a �xed-point - every expression being produced within the

end of a �-expression. A pre�x is a smallest closed substructure. It need not be (and
typically is not) a well-formed expression.

4Some rewrite systems induce an in�nite recursion and defy completion. In our system,
this is manifested as building blocks whose action upon one another is to generate new
building blocks with the same property. The failure of some rewrite systems to complete is
a consequence of the unsolvability of the universal word problem.

16

network - but its particular connectivity may not su�ce to sustain non-zero

concentrations of its core components under ow-reactor conditions as speci�ed

by equations (1) and (2)).

Organizations of di�ering algebraic structure are obtained by varying the set

of �-expressions used to seed the reactor. An in�nity of such organizations are

possible. Developing a taxonomy of their structure and properties remains a

long-term goal of our program.

Self-repair and constrained variation

Two prominent properties of these organizations are their resilience to the

subtraction of existing components and resistance to the addition of new ex-

pressions. Organizations often repair themselves following removal of even

large portions of their component expressions. Some organizations are even

indestructible: they regenerate themselves from any component. The reason

for this robustness is the existence of generators of the algebra. These are sets
of expressions whose repeated interactions rebuild piece by piece the entire
organization; if they are retained, the system regenerates.

The link with algebra also clari�es an organization's response to the addition
of new expressions, but for a di�erent reason. The grammatical and alge-
braic invariances can be viewed as abstract boundaries of the organization.
They determine membership. An expression which does not conform with

that organization's particular grammar cannot be a member of the organiza-
tion. Despite having an independent description, an organization is embedded
in the larger �-universe, and a non-member expression may perturb the or-
ganization algebraically (and grammatically), generating further expressions
\outside" of it. The perturbing expression can, in some cases, be stably in-
tegrated, leading, for example, to a self-maintaining extension of the original

organization. Alternatively, the perturbing expression may be diluted out of
the system leaving the organization unaltered. The algebraic relationships

which de�ne an organization also determine speci�c opportunities for its ex-

tension. Biological interpretations are many. As but one example, Morowitz
suggests that nonenzymatic precursor networks of the cellular core metabolism

have evolved via distinct extensions [72].

Organization within organization

Organizations can have a quite complex substructure. To explain what we
mean by substructure we need two iterated mappings. One is an \expansion"

17

of a set Ai of expressions:

Ai+1 =
(Ai)
def
== (Ai � Ai) [Ai (3)

where A � B means the set resulting from applying every expression in A to

every expression in B. The other is a \contraction" of a set:

Ai+1 =
(Ai)
def
== (Ai � Ai) \ Ai (4)

Figure 3: The substructure of an organization. Each node (circle

or square) represents a self-maintaining set. Circles denote self-

maintaining subspaces with a potentially in�nite number of ex-

pressions, while squares represent �nite self-maintaining subsets.

When two nodes are connected by an edge, the lower one repre-

sents a set that is contained in the upper one. The size and grey

level of a node reects that node's share of the overall diversity

and total number of expressions in the reactor, respectively. See

text for further discussion. (Figure and analysis courtesy Harald

Freund.)

18

Given an organization O, generated in our experimental reactor, we take

each expression i in O and iterate
 T times to obtain an expansion of i:

B =

T
(fig). After this we contract B until we have found a �xed point:

Ofig =
T+1(B). In sum, Ofig =
T+1(

T
(fig)). If Ofig is not empty, we have

obtained a self-maintaining suborganization contained in O that has been gen-

erated by the single expression i.

The relationships between all suborganizations generated by individual ex-

pressions of an organization can be visualized in a lattice partially ordered by

inclusion. An example is shown in �gure 3. The topmost node represents the

entire organization. It is a combination of 11 suborganizations located at the

next lower level in the diagram. The leftmost suborganization, for example, is

an extension of the organization below it (darker node), which in turn is an

extension of the black node. Since the black node is contained in a number

of organizations above it, these organizations necessarily overlap (i.e., they

share some members). The bottom node is a small closed self-maintaining set

contained in all others. Despite its apparent complexity, only three interac-
tion laws involving only one terminal element and two pre�xes are required to
describe the system.

The substructure of an organization reects only the algebraic aspects of the or-
ganization. Any physical realization of such an organization is also a matter of
dynamic stability. Structure and dynamics jointly de�ne organization-speci�c
properties with respect to robustness and evolvability.

Higher-order organizations

We can combine disjoint organizations that have been obtained independently.
In some instances they build a stable higher-order organization that contains
the component organizations in addition to a set of products arising from

their cross-interactions. This set is not self-maintaining, yet it is crucial in
stabilizing their integration into a new unit. We call such a set of objects a

glue. Biologists will recognize this as an issue of some importance in history-

of-life [8, 61], e.g., the mitochrondria and chloroplasts of eucaryotic cells are
descendants of cells with an independent procaryotic ancestry.

Copy functions and the emergence of organization

Our model universe invites experimentation on the conditions which facilitate

or impede the emergence of organization. An example of one such condition
involves the role of replicating objects, that is, �-expressions that copy.

Replication is a term usually used to denote an autocatalytic kinetic role, i.e.,

19

an agent whose change in concentration is proportional to its own concentra-

tion. In addition to its kinetic aspect, the present model makes the operational

role of a replicator explicit. A replicator is the �xed-point of some interaction.

f is a replicator, if the system contains some g (including g = f) such that f is

a \left" or \right" �xed-point of its interaction with g: (g)f = f or (f)g = f .

Notice that g may turn f , but not another h, into a replicator (unless g is

the trivial identity function). Replicators, then, need not be universal copiers.

They may act to both copy and construct depending upon the expressions

they take as arguments.

A C

B

A

B

Figure 4: A basic alternative: copy actions (left) and non-copy

actions (right). Closure of the former yields hypercycles, or \Level

0" in our nomenclature [26]. Self-maintaining closure of the lat-

ter (in the absence of the former) yields \Level 1" organizations

[26]. A middle ground, copiers that also participate in construc-

tive interactions, impede the development of hypercycles, favoring

\Level 1" organization.

The distinction between the kinetic and operational aspects of replication is
key to understanding an essential condition for organization. Self-maintaining

structures capable of sustaining themselves solely on the basis of their copy
actions (i.e., without constructive interactions) are easily encountered in our

system (examples labelled as \Level 0" in [26]). Such structures are hypercy-

cles, just as Eigen and Schuster discovered some time ago [23]. If replicators

are disabled or if their operational role involves both constructive and copy

interactions, the system will organize (examples labelled as \Level 1" in [26]).
\Level 1" organizations di�er fundamentally from hypercycles in their self-
repair and extensibility properties.

20

2.1.4 Main limits

The results summarized above clearly illustrate that the merger of a dynamical

system (the ow reactor) with a universe of objects that entertain construc-

tive interrelations (�-expressions) does indeed achieve the desired objective. A

motion-in-the-object-space is induced, such that self-maintaining structures,

characterized by an invariant pattern of transformations, arise. Moreover,

these organizations possess properties { regeneration, structure-dependent ex-

tension, complex substructure, capacity for hierarchical nesting { akin to prop-

erties of living organisms. Yet, �-expressions are far from molecules and our

organizations far from organisms. The major limitations of Minimal Chemistry

Zero (MC0) are enumerated below.

1. Shape: Molecules interact selectively. Violated in MC0, because �-

operators can act on one another indiscriminately.

2. Symmetry: Reaction is a symmetric event. Violated in MC0, because
functional application is not commutative.

3. Mass action: With respect to a reaction event, molecules are resources
and are used up. Furthermore, atom types and number are conserved
during a reaction event. Violated twice in MC0, �rst by the kinetic
scheme (1), and second microscopically - which is far more serious - by
the multiple occurrence of the same bound variable in �-expressions.

To make the latter clear: when supplying the argument 5, say, to the
function f(x) = x2+2x+3, the 5 gets used twice; once when substituting
in x2 and once in 2x. Where does the second 5 come from? In chemistry,
a reaction has only as many atoms as are present in the reactants.

4. Reaction classes: Chemical reactions proceed according to a variety

of distinct schemes, such as substitutions, additions, and eliminations.
In particular, individual reactions can yield several molecules on the
product side. Violated microscopically in MC0, because application in

�-calculus yields at most one normal form (product). (Note that the

reaction scheme (1) is an exogenous condition we impose.)

5. Rate constants: In chemistry reactions proceed with di�erent veloc-
ities, which leads to a separation of time scales in reaction networks.

Violated in MC0, because every reaction event has the same unit rate
constant.

These limitations are substantial and motivate the improvements to which we

now turn.

21

2.2 Minimal Chemistry One

We consider an extension of MC0 designed to address the issue of \shape"

(item 1 in section 2.1.4). Pure �-expressions are strings of characters that

represent functions with no speci�c domain of de�nition (i.e., they can act on

any expression). Shape enforces a speci�city upon interaction.

2.2.1 Shape and action

The virtues of MC0 lie in the transparency of �-calculus and the connections

its use provides to abstract algebra and rewrite systems. It is di�cult to

imagine how a 3-dimensional interpretation could be given to the actions of �-

expressions in a canonical way. An explicit spatial representation would seem

to be required. However, a price for capturing shape would surely be paid

in transparency of the resulting model. Might there not be an abstraction of

shape that evades the costs of explicit spatial imitation?

Molecular shape derives from a self-consistent balance of nuclear and elec-
tronic motions inuenced by each other's �eld. At the same time the resultant
distribution of electronic and nuclear densities gives rise to speci�c chemical
properties. In this sense shape and chemical action are two sides of the same
coin. In a slightly more abstract sense, the speci�city of chemical action be-

tween molecules results from (i) the complementarity of chemical properties

between reacting functional groups and (ii) their spatial disposition. The �rst
aspect means, for example, that an electron donor group on one molecule must
meet an electron acceptor group on the other for an action between them to
occur. To put it in a cartoonish way, chemical complementarity emphasizes

that action occurs when one functional group is of the type \if I'm given

an x, then I yield a y", while the other group is of the \I'm an x"-kind.
If the latter were an \I'm a z", no action would take place. It is clear at once

that interaction selectivity, though invariably tied to space in real chemistry,
does not require space to be expressed abstractly.

When a reaction involves more than one chemically complementary group,

their spatial disposition further contributes to speci�city by excluding those

reaction partners that have the right groups at the wrong places. However,
this is a combinatorial aspect that is neither unique to spatial extension, nor

one that fundamentally alters the nature of speci�city caricatured above.

A rather di�erent issue is raised by non-reactive molecular interactions based

on shape. There, the geometric aspect of spatial form is essential in giving
rise to supramolecular morphologies, such as membranes or viral capsids. This

aspect necessarily escapes a formalization cast in a non-geometrical syntactical

system; it is as much outside the calculus-metaphor as is the ow-reactor

22

kinetics. At this stage of our program, however, we dispense from further

physical embeddings (beyond kinetics); our interest being in transferring as

much as possible of what appears to be physical to an abstract computational

domain.

Two aspects of molecular form, shape-as-conditional-action and shape-as-geometry,

are together responsible for chemical interaction speci�city. Here we formalize

only the �rst aspect, taking the stance that it is not the molecule's shape-as-a-

coordinate-list that counts, but rather how the spatial con�guration is parsed

into basic reaction classes. (A virtuoso synthetic chemist looks at a molecu-

lar con�guration in much the same way that a grand master looks at a chess

con�guration, perceiving the molecule in terms of what can be done with it,

i.e., which features can be exploited to make or break bonds with respect to

a synthesis goal.) Thus, to the extent that shape is abstracted as a suite of

lawful restrictions on permissible actions, it is plausible to capture its role by

imposing a suitable discipline upon �-interaction. This is done by augment-

ing the notion of function in �-calculus with the constructive analogue of a
\domain of de�nition" and a \range".

2.2.2 What is a type?

Minimal Chemistry One employs the use of typed versions of �-calculus, where
the system of types serves as an abstraction of restrictions on chemical action.
Here, we briey introduce the notion of a \type". A more detailed but still
expository overview can be found in appendix B. For a rigorous treatment the
reader should consult the literature [9, 10, 38, 55, 77].

A type is a statement about overall action. To appreciate this, consider an
untyped universe, such as a computer at the level of memory cells [10]. It
appears as an unstructured array of binary strings undergoing transforma-

tions. When looking at these strings we typically have no way of telling what

is being represented. In contrast, a typed universe, such as a programming
language, provides frames of interpretation for the digital contents of comput-
ers by imposing a kind of semantics de�ning intended use. Such frames work

by o�ering a repertoire of behavioral types, such as variables, arrays, point-

ers, procedures, and control structures. Furthermore, variables themselves are
often distinguished according to the type of value they are meant to hold:

boolean, real, integer, character, and so on. The e�ect of such constructs is

basically to enforce a discipline of interaction. For example, the interpreter

of a programming language rejects the application of a function that removes

blanks from character strings to an \inappropriate" object such as a vector of
numbers. In essence, a type is but an object's \interface" that regulates with
what it may communicate.

23

In programming languages a type serves as a speci�cation, that is, it provides

partial information about what an operator (a program) abstractly does. In

chemistry, however, there are no external reference frames, no intentionally

de�ned \integers", \character strings", or \vector products". The lawful be-

havior of chemistry is internally de�ned by the underlying physics. It is, there-

fore, important to understand that the abstract notion (and theory) of types

is independent of any particular meanings. A representation of chemistry at

a chosen level of resolution could be de�ned by a repertoire of primitive ob-

jects with assigned behaviors. Their internal structure is suppressed, and the

behaviors are de�ned reciprocally. This is what computation theory calls an

\abstract data type". Primitive objects of this sort could be atoms, or func-

tional groups, such as hydroxy, amino, carbonyl groups, etc., or they might be

further abstracted entities, those which carry \oxidizing"-behavior, others with

\reducing"-behavior, \acid"-behavior, \base"-behavior and so on. The action

of a chemical group as a primitive could be speci�ed by indicating which other

groups it interconverts, without indicating how this is done (e.g., mapping a
keto group into a hydroxy group under certain conditions). To turn this into

a chemistry, a mechanism for building complex objects from primitive ones
and for interconverting them is needed. That is what typed �-calculus pro-
vides. Admitting primitives with a speci�c behavioral interpretation amounts
to de�ning constraints as to which objects can be built and, therefore, which
reactive combinations are possible.

2.2.3 Improved metaphor

We have implemented a simple standard type system for �-calculus [15, 63],
following the path laid out by a very useful prototype [59, pp. 97{113]. The
system is explained in appendix B. Here we emphasize only those conceptual
features that are important for our chemical agenda.

� Syntactical structure and type are coupled. A type is not arbitrarily

attached to a �-expression. It is derived from its syntactical structure by

means of inference rules in a process called type synthesis. If an expression
is modi�ed, its type changes accordingly. The requirement to possess a type

constrains the syntactical structure, and excludes some of the expressions that

were possible in the untyped case. These constraints are interpreted to reect
the fact that a molecule's speci�c domain of action is based on its structure

and composition, and that the properties of atoms constrain what kinds of
molecules there can be.

� Type polymorphism and boundary conditions. Types can convey
di�erent degrees of speci�city. A particular type may constrain an expression

to act on one sort of argument only, while another may not discriminate at all.

24

This is type polymorphism (see appendix B). The degree of polymorphism is

controlled by assigning basis types of chosen speci�city to the variables (and

constants, if any) of the �-system. The set of basis types constitutes a new

boundary condition. It permits the tuning of the overall reactivity of our

abstract chemistry and the de�nition of primitives with speci�cally chosen

interrelations. It is in the de�nition of the basis set that an abstraction of

molecular shape-as-conditional-action (or any other intended restriction upon

action) succeeds or fails.

� Interaction speci�city. An expression that represents a map sending

objects of type � into objects of type � can act only upon arguments type

� . To decide when an interaction can occur is not as trivial as it seems. The

type-expression can be viewed as describing a domain whose size reects its

degree of polymorphism. Whether the polymorphic types of two colliding �-

expressions match properly is not a mere syntactic comparison, but involves

detecting whether one type is an instance of the other. The decision procedure

is outlined in appendix B.

The present formalization treats the abstract essence of \shape" as a statement
about a molecule's domain of action. It bears emphasis that in this formal-
ization the �-term continues to be the object corresponding to the physical
molecule. The type-expression derived from the �-term is but a device to en-
force an interaction speci�city. If the types of two colliding objects permit

their interaction, the syntactical manipulations follow the �-calculus. It is
good conceptual hygiene not to confuse the type with the object. This is plain
in chemistry, the shape of a molecule is not the molecule.

These features, in aggregate, de�ne the metaphor underlying Minimal Chem-
istry One:

chemistry � � � � � � typed calculus

physical molecule � � � � � � symbolic representation of an operator

molecule's behavior � � � � � � operator's action

speci�city of interaction � � � � � � type discipline

chemical reaction � � � � � � evaluation of a functional application

2.2.4 Model and preview of results

The reactor with Minimal Chemistry One is schematically shown in �gure 5.

Our results with the MC1 model have yet to be exhaustively reported in the

primary literature and, accordingly, we will not provide as detailed a summary

25

of results as presented for MC0.

random collision

remove

@
@@
@

@
@

@
@

@
@
@
@@

@

@
@@
@

@
@

@
@

@@
@@
@
@@

@

@

@@
@@
@@
@@

@@
@@
@@
@@
@

@
@
@
@ @

@@
@@
@

add

reactor

transform into
normal form

?

is this complex possible?

yes

σ τ

 does a ξ exist, such that
σ and τ −> ξ can be unified?

ξ

ξ

@
@@
@@

Figure 5: The �-calculus ow-reactor with function-particles that

discriminate among interaction partners on the basis of a type sys-

tem. Two randomly chosen expressions with types � and � (rep-

resented as shaded regions) collide. The validity of the interaction

complex depends on whether a type can be assigned to it. The

procedure is explained in appendix B. If the interaction complex is

typable, the reaction proceeds by normalizing the complex. Oth-

erwise, the types � and � are incompatible for interaction, and the

collision is regarded as elastic.

The major consequence, however, of the improved model is that organizations
are once again achieved and display properties akin to those documented for

26

MC0. Organization, however, is considerably more di�cult to achieve than

in the untyped case, as may be expected by a restriction on interaction. The

degree of di�culty is related to the degree of polymorphism, and, therefore, to

the type basis.

2.3 Minimal Chemistry Two

Only one of the limitations inherent in Minimal Chemistry Zero, section 2.1.4,

is addressed by our abstraction of shape as a lawful discipline upon inter-

action and our accompanying implementation of that abstraction in typed

�-calculus. Problems with MC0 regarding symmetry, resource accountability,

reaction classes and rate constants remain in MC1. Indeed, one might even

contend that our notion of types-as-shape is not mature until these problems

are solved - that is, until we succeed in de�ning a basis set that generates,

for example, the appropriate classes of reaction in some restricted chemical

domain.

The issue is one of the level of abstraction we chose. A critic might well con-
tend that our level of abstraction is so high as to willfully preclude eventual

maturation from an abstract to an actual chemistry. This, however, would
be a misreading of our intent, see for example [84]. The retention of a high
level of abstraction in the transition from MC0 to MC1 is anything but a re-
sistance of the actual. Rather it represents a strategic claim that the bene�ts
of a high level of abstraction exceed the costs of distance from actuality. A

principal bene�t lies in facilitating the transition between related formal sys-

tems. A return on costs will be realized if we are led to alternative formalisms
uniquely well-suited to stepwise re�nement of the original metaphor. Minimal
Chemistry Two is vindication of that strategy.

MC2 di�ers from the advance of MC1 over MC0 in two ways. First, in MC1
we retained the core elements of the MC0 metaphor, merely re�ning it to in-

clude shape. In MC2, we tinker with the ontology itself. Here we abandon

�-calculus as the chosen formalism and are empowered to do so without loss

of progress gained in the � framework by virtue of an isomorphism between

formalisms. Second, unlike MC0 and MC1, MC2 has yet to be implemented.
Hence, we limit ourselves below to the task of sketching, sequentially, how

the typed �-calculus leads naturally to formalisms in proof-theory, how the

chemical metaphor might be translated to and enriched by the proof-theoretic
connection, and what limitations of a �-based arti�cial chemistry this transla-

tion permits us to address.

27

2.3.1 From �-calculus to proof-theory

The Curry-Howard isomorphism

Within MC1, a small number of plausible basis sets were implemented and

characterized. These established that the typed system retained the capacity

to yield self-maintaining organizations �rst established in MC0. A multitude

of plausible basis sets remains unexplored. Exploring them with chemical

plausibility in mind, however, requires insight into how type construction may

be used to impose, for example, resource accounting within �-calculus. While

not impossible, the task would clearly be vastly simpli�ed if the syntax itself

imposed such a discipline of stoichiometry. Syntactical systems of this sort

exist. One is led to them through a mapping between typed �-calculus and

proof-theory. Indeed, the mapping lies at the core of a deep connection between

computation and logic (see appendix C.1).

Typed �-calculus can be viewed as a syntax for the derivation of logical for-
mulae. The mapping is known as the Curry-Howard isomorphism [38, 45] and
may be stated informally as (see C.1 for a more detailed introduction):

type � ! logical formula (proposition) �

�-term of type � ! proof of �

Since we use �-calculus to de�ne an abstract chemistry, any rigorous link
between typed �-calculus and other areas of mathematics extends the chemical

metaphor. Roughly:

\shape" ! logical formula (proposition)

molecule with that shape ! proof of that formula

Proof-theory is a large domain, characterized by an initially bewildering di-
versity of syntactical systems. Our task, to which we now turn, is to situate

our approach within this diversity, that is, to specify chemical interpretations

of a chosen syntax which are both consistent with the isomorphism and which

have potential in ameliorating the de�cits of the �-syntax.

What do proofs have to do with it?

The connection between typed �-calculus and proof-theory and our imputed

connection between both formalisms and chemistry will not demand that a
reader have a rich appreciation of logic. Some prefatory remarks are, nonethe-

less, in order.

28

A logical formula is built from atomic formulae using connectives like and (^),

or (_), implies (!), negation (:), and universal (8) and existential (9)

quanti�ers. There are two basic questions we may put to a logical formula.

We may ask for the truth value (true or false) of a formula, or we may

ask for its validity. Contrary to widespread folklore outside of logic, logic

is not exhausted by \truth-tables" that permit reading o� the truth-value of

compound statements, such as A^B;A_B;A! B;:A, given the truth-values

of the propositions A and B. Logic is far richer and much of the richness lies

in the latter of these questions.

A taste of the relation between truth assessments and validity may be intro-

duced by considering Frege's [30] distinction between the sense and denotation

of a logical formula. In 10=2 = 1 + 4 the denotation of both 10=2 and 1 + 4 is

5. Hence, the denotation of 10=2 = 1+4 is true. How, though, does one know

that 10=2 has the same denotation as 1+4? As Girard points out [36, 38], it is

not obvious that 10=2 = 1 + 4, for if it was we would need neither symbolism

for division and addition, nor, even �nd need to state an equality. This is what
is meant, then, by saying that 10=2 has a di�erent sense than 1 + 4.

Frege's distinction tells us that what matters in logical systems is not the
denotation (i.e., the content) of the propositions, but rather their relational
structure. When Aristotle says that \All men are mortal; all Athenians are

men; hence all Athenians are mortal", he is saying \All B is C; all A is

B; hence all A is C", he is not saying \true; true; hence true" [36]! Logic
manipulates the sense, not the denotation.

How then does one proceed from sense to denotation? Let us return to 10=2 =
1 + 4. In this example, it is clear. Something must be done to show that they
have the same denotation and here that \something" is a computation.

Just as di�erent logical systems are endowed with di�erent connectives, so
must proof-theory come in a diversity of avors. The avors of proof-theory
germane to our project are those which bear a correspondence with computa-

tional operations. These comprise a class known as constructive proof-theory

or constructive logic. The idea behind constructive proof-theory is that the

meaning of a formula is the set of its proofs, where the proofs are objects of an
e�ective calculus, i.e., proofs are seen as construction sca�olds for a formula.
Loosely speaking, the meaning of � ^ � is to exhibit a proof of � and a proof

of �. The meaning of �! � is to provide a function which transforms proofs

of � into proofs of �. Framed in this way, constructive logic appears not so
much as a tool for reasoning about computation than a computational activity

itself. Indeed, this is the essence of what is established by the Curry-Howard
isomorphism.

29

2.3.2 Ontological commitment, resultant metaphor, and formal rep-

resentation

Amongst the diversity of constructive logics is a recent innovation known as

linear logic [33]. We use it here to illustrate how the proof-theoretic context

re�nes the chemical metaphor. We do so in an intuitive fashion, building from

our (similarly intuitive) characterization of typed and untyped �-calculus. As

in our previous treatments, the reader is referred to Appendix (C.3) for a more

detailed, but still gentle, treatment.

In linear logic, indeed with proof-theory generally, the properties of a logical

connective are de�ned algebraically (rather than by truth-tables), through

rules stating how a connective can be inserted into and removed from a formula.

Proof-theory emphasizes what actions must be taken to construct a formula

using a set of rules governing introduction and elimination.

The introduction rules, elimination rules and connectives of a fragment of

linear logic appear in appendix C.3.1. Relative to the sparsity of axiomatic
operations in �-calculus, the rules in C.3.1 reveal a proliferation of syntactical
operators. This meets our intent to progressively re�ne our chemistry (after

all, one needs a richer syntax to describe an atom in quantum mechanical
terms than to describe it as \a little solar system"). As the basis for the
following discussion we use here only the smallest fragment of linear logic, so-
called multiplicative linear logic (MLL), in sequent notation. For details see
Appendix C.2, but for those who are in a rush ` means \logical consequence",

 and � are propositions, capital greek letters are sets of propositions, and
` ; � stands for a proof of the disjunction \or" (comma) � using the
inference rules of the proof-system. These rules are represented by a horizontal
bar separating the premises (above) from the conclusion (below). An axiom
is a conclusion without premises. By virtue of the par -rule the comma (\or")

behaves like a P.

axiom
` �; �?

` �; � ` �?;�
cut

` �;�
(5)

Connectives

` �; � ` ;�
times

` �
 ;�;�

` �; �;
par

` � P ;�
(6)

with negation, ?, de�ned as:

�??
def
== � (7)

(�
)?
def
== �? P ? (8)

30

What are the imputed chemical interpretations of this syntax and how do they

relate to that explored in MC0 and MC1? Recall the core of our original MC0

metaphor:

physical molecule : �-expression (an operator)

molecule's behavior : operator's action

chemical reaction : evaluation of a functional application

Our approach in MC1 merely extended the metaphor bymodulating a molecule's

behavior to include:

molecule's shape : type

Composing this with the Curry-Howard isomorphism yields:

molecule's shape : : : : : : : : : : : : : : : : type � : : : : : : : : : : : : : : : logical formula �
physical molecule : : : : : : : normal �-term of type � : : : : : : : : : : : : : : proof of �

The interpretation of a molecule as a proof, compelled by the isomorphism,
leads to the �rst re�nement. In linear logic (see appendix C.3), a proof is the
construction of a multi-set of logical formulae, known as a \sequent" (whose
raison d'être is explained in appendix C.2). Recall from Curry-Howard that
a formula is equivalent to the type of a �-expression, and that in MC1 a type

was the speci�cation of a reaction site. A proof of the sequent ` �1; : : : ; �n,
then, represents a molecule with n possible reaction sites �1; : : : ; �n, rather
than a single one as in MC1.

Now that we have logical formulae as descriptions of potential reaction sites, we
need an interpretation of a chemical reaction. Like in MC1 a chemical reaction

involves two issues: (i) which sites are allowed to interact (i.e., speci�city), and
(ii) what happens once two sites do interact (i.e., action). For this we turn to

linear logic and its syntactical machinery, rules (5, 6).

Let us again proceed intuitively. If we view a logical formula as a poten-

tially reactive site, then we must look for the logical counterpart to \chemical

complementarity" (see the discussion in section 2.2.1). In linear logic, this
is provided by negation, ?. The fact that negation is de�ned in terms of a

duality, rules (7, 8), �ts quite naturally with chemistry, where the encounter
of chemical \duals" (i.e., acid vs. base, oxidizing vs. reducing) is required for

a reaction to occur.

31

ψ

ψ

ψ

ψ⊥

cut elimination

Figure 6: A cartoon of negation, cut, and cut-elimination in linear logic.

In this logic, duality appears at the level of primitive building blocks. These

are axioms, i.e., syntactical entities of the form ` ; ?. The structure means

that a primitive object always enters the scene as a pair of connected dual

\avors", and ?. More complicated sequents (representing the reactive
options of a molecule) are constructed from such \atoms" using the rules (6)

for the connectives.

When two such sequents (molecules) meet, it is the cut rule that tells us

whether they can interact:

cut
` �; �? ` �;�0

` �;�0
(9)

The rule states that for an interaction to occur, each molecule must possess
the same formula �, but in a complementary avor. The cut-rule, therefore,
emphasizes the role of a logical proposition as an address, i.e., a structured
name enabling communication with a speci�c other address (of dual kind)5.

Girard's [34] metaphor of a plug, as sketched in �gure 6, renders the situation
best. A proof-system, then, functions as a formal \physics" in which such

addresses are constructed endogenously6.

The cut-rule states which objects can interact, but it doesn't state what hap-
pens once they do so. The fact that one has a lamp and an electrical outlet

5In this context, the reader is urged to resist giving a logical proposition an interpretation
linked to \human reasoning". It will not prove edifying. To further clarify the address issue,
consider conditions under which nothing happens. For example, both objects carry the same
avor of sort (proton-donor meets proton-donor), or both objects carry di�erent avors
but not of the same sort (proton-donor, say , meets electron-acceptor, say �?).

6Chemistry may be thought of as a system for constructing addresses that enable reac-
tions that further construct addresses. This perspective recalls the �-calculus paradigm of
Milner [67, 68, 69] (Appendix A.3).

32

does not mean one has light. All that cut does, is to initiate a chemical reac-

tion (the \plugging"). An action is still required. Mathematically, the cut-rule

enables two proofs to be joined into a new proof on the basis of a \trade"; one

proves (�) what the other assumes (�?). The cut rule is formally equivalent

to functional application in �-calculus which was used to initiate a chemical

reaction in MC0 and MC1. Indeed, in correspondence with reduction to nor-

mal form, Gentzen [32] showed that a cut can always be removed from a proof.

Crucially, Gentzen exhibited an e�ective process that performs this elimina-

tion by rearranging the proof structure (see appendix C.2). It is this process,

then, which is triggered by cut and that provides the associated action com-

pleting a reactive encounter. Cut-elimination yields a proof in normal form

(i.e., a \direct" proof of a sequent, where the previously involved intermediate

\lemma" � has been removed). Completing the synthesis of a molecule is seen

as \removing the intermediates" (by letting them react) yielding the product

molecule as a \normal form proof".

Thus, via negation, cut and cut-elimination we have speci�ed an interpreta-
tion of a chemical reaction and thereby completed our translation. The MC2
metaphor follows:

chemistry � � � � � � proof-theory

chemical properties of bonds � � � � � � algebraic properties of connectives

reaction site � � � � � � � logical formula (proposition) �

stable molecule with site � � � � � � � cut-free proof of �

chemical complementarity of sites � � � � � � negation (� and �?)

chemical reaction � � � � � � proof with cut between � and �?

This may be summarized (in words that might be chosen only by those deep

within its grip) in its barest essentials as follows. The proof-theoretic metaphor

views a molecule as the cut-free proof of a \shape", i.e., a chemical action. The
cut-rule corresponds to a chemical reaction at site �. Complementary chemical

propensities are mirrored by negation, � and �?. The coming into contact of
these complementary types creates an instability (the cut). In chemistry this

initial site of instability is propagated through the molecular skeleton, possibly

breaking old bonds and making new ones, until the stable product molecule
results. This reaction progress is mirrored in the mechanics of cut-elimination

that propagates the \unstable" cut-site through the proof-skeleton until normal
form is attained.

33

2.3.3 Addressing prior limits in the linear logic framework

MC0 is an absolutely minimal chemistry, consistent with our intent in assess-

ing the potentials inherent in adding constructive interactions to a dynamical

setting. The success of MC0 in yielding self-maintaining organizations with

properties seemingly so reminescent of biological systems renders its minimal-

ity a severe impediment to progress. The de�ciencies enumerated earlier (sec-

tion 2.1.4) were: (i) molecules had no speci�city of interaction (i.e., no shape),

(ii) reactions were asymmetric by virtue of the asymmetry of application in �-

calculus, (iii) mass-conservation (stoichiometry) was violated (i.e., no resource

accountability), and both (iv) reaction classes and (v) rate constants were

lacking. Content that the �rst issue has been addressed with typed �-calculus

and progress carried over to the proof-theory framework via Curry-Howard, we

here attempt to sketch the potential of the proof-theoretic representation in

addressing the remaining issues. We emphasize, however, that MC2 has yet to

be implemented and the following must therefore be regarded as \a transcript

from a lab notebook" recorded well before the �rst reagents have been mixed.

Symmetry

In both MC0 and MC1 a chemical reaction was represented as functional
application. Application in �-calculus is non-commutative, hence asymmetric
reactions come as a �xed de�cit of the formalism. In the proof-theoretic frame
a chemical reaction is modeled by the cut-rule, which is, in turn, dependent
upon negation. Negation in linear logic is de�ned via deMorgan-like dualities
(see equation (8) and section C.3) and is involutive: A?? = A (like a matrix

transposition). This permits a completely symmetric reaction. By this we
mean that in a reaction between sites � and �? it doesn't matter which of
the molecules carries the �-site and which the �?-site: the result is the same.

Symmetry of reaction is as generic to linear logic as is asymmetry in �-calculus.

Resource Accountability

Violation of mass-conservation is rampant within both MC0 and MC1. Re-

call that a failure in resource accounting obtains whenever the same variable

occurs multiple times in a �-expression. When, for example, a reaction be-
tween �Cl�:(Cl�)�y:(Cl�)y and some OH� occurs, the OH� is used twice dur-
ing normalization: (�Cl�:(Cl�)�y:(Cl�)y)OH� ! (OH�)�y:(OH�)y ! � � �. The

meaning and extent of this di�culty is apparent. We are e�ectively permit-

ting the same OH�-group to substitute for two distinct Cl� ions, or, equally

problematic, having the same Cl� be at two di�erent places in the molecule.

34

Moreover, if a variable is declared that never appears in the term, a reaction

would simply \annihilate" one reactant, such as in: (�Cl�:�y:y)OH� ! �y:y.

Serious attention to syntactical resource accounting is required in a mature

arti�cial chemistry and no such tools are inherent in the syntax of �-calculus.

Resource sensitivity is hardly a feature of classical logic, but several varieties of

constructive logic - including linear logic - have this attribute. In classical logic,

formulae are not viewed as physical entities (or tokens) - like chemicals (or

money) - that are consumed when they are deployed to cause e�ects. A lemma

proven by mathematicianX need not to be reproven after mathematicianY has

used it in proving a theorem. The lack of a resource problem in classical logic

derives from the contraction and the weakening rules (see section C.2) which

state that in the manipulation of proofs, available formulae can be copied or

surplus instances erased arbitrarily. For example, the classical conjunction of

twice the same formula, � ^ �, is equivalent to �. The problem with the real

world is that if � stands for some fact like a dollar, then classical logic states

that 2 dollars - and, hence, any number of dollars - are equivalent to one dollar.
Or that one molecule of a substance has the same e�ect as an Avogadro such
molecules. Here classical logic departs radically from the physical world.

Several constructive logics are resource sensitive, linear logic amongst them.
Linear logic achieves resource sensitivity by placing weakening and contraction
under explicit control. Depending on the tightness of the control several variant

logics are obtained (e.g., [78]). The basic idea shared by each system, however
strict its accounting, is to view formulae as \assets" that are consumed when
they are used. For our purposes here it is su�cient to note that the syntax of
linear logic permits resource accountability; attention is paid to enforce that
no formula may be used that has not �rst been generated and that, no formula,

once used, may be used again without generating it anew. This clearly permits
an arti�cial chemistry embedded in linear logic to escape another of the de�cits
inherent in �-representation.

Reaction classes

The reaction scheme of MC0 and MC1 shares a de�cit beyond that of re-

source accounting. Speci�cally, the �-framework explored only a very re-
stricted set of chemical reaction classes. Moreover, these were exogenously

imposed. The restriction is apparent in noting that a �-expression (a reac-
tant) applied to another can yield either a single product or no product at

all. How are commonplace chemical reactions with multiple products, e.g.,

RCOOH+R0OH!RCOOR0+H2O, handled in the �-framework? They are not.

35

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

C⊥

A⊥ B

&

&

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

x

A B⊥

C

x

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

000000000000
000000000000
000000000000
000000000000
000000000000
000000000000

C⊥

A⊥ B

&

&

x CA B⊥

x

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

A⊥ B

D D⊥

&

x&

000000000
000000000
000000000
000000000
000000000
000000000

x

A B⊥

C C⊥
x

β

β⊥

α
γ

δ

β⊥

β

CUT

β⊥ δ

α
β

γ
+ α

β

γ

β⊥ δ δ
α

γ
β⊥β+

&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&
&&&&&&&&&&&

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

A⊥ B

D D⊥

C⊥

&

x&

x CA B⊥

x

δ

α
γ

Figure 7: A chemical reaction with linear logic proof-nets. See

text and section C.3.2 for details.

Accomodating this de�cit within the linear logic framework is the challenge

that most limits implementation of MC2. In the case of �-calculus, the lim-
itation was inherent in the formalism. In contrast, linear logic - as well as

alternative formalisms motivated by linear logic (e.g., [54]) - provide a broad

set of options. They raise, however, important issues of chemical interpretation
(much like certain chemically motivated extensions to the logical framework

raise interesting issues of logical interpretation). For the purpose of this con-
tribution there is little to be gained in fully developing the various candidate

schemes. It will su�ce to introduce an example to illustrate the power of this
route to MC2. We chose this particular example because it makes especially

apparent a larger issue which lurks within any choice of chemical interpreta-

36

tion.

Recall that we identify a molecule with a proof, initiate a reaction with the

inference rule \cut" and complete the reaction by cut-elimination. As with �-

calculus, it is a simple matter to generate a single product. Figure 7 illustrates

a simple scheme that stretches the usual inference by yielding multiple prod-

ucts (i.e., more than one sequent as a conclusion). The reaction is presented

in Girard's [33] proof-net notation, a concise presentation mode detailed in

appendix C.3. Mastery of proof-net notation is not required to appreciate the

reaction intuitively, however. It is su�cient to know that each structure is

a valid proof and that the shaded regions are propositional formulae. Imag-

ine the �gure to represent esteri�cation of a carbonic acid with an alcohol:

RCO OH +R0O H!RCOOR0+ H�OH with OH labelled (as in �gure 7) as

� and H as �?. The cut performed on � and �? is now seen as the chemical

action between an acid and its complementary base. The by-product of the

esteri�cation is water, captured here as the combination of the two cut-formula

avors, H and H? �OH, in a single molecule corresponding to ���? in �gure

7. Clearly, exchange of shaded components between the reactant proofs has
yielded the desired disconnected product proofs. The interpretation presented
in �gure 7 is illustrative of how particular issues of chemical interpretation
are raised. In the cut rule (9), the single conclusion sequent has lost (both
avors of) the cut formula. Yet, in our �gure, we have simply collected the

garbage that would otherwise be thrown away during cut-elimination. One
might justify this practice on the grounds that in real chemistry, nothing is
ever annihilated. The attribution purchased by this justi�cation is that of
imparting a physicality to the cut-formula.7. The process shu�es a reaction
site from one molecule to another. This, then, is a clean interpretation of the

7The attribution has consequences. (i) In linear logic, the cut formula is erased. Its
erasure makes cut irreversible. Keeping the latter in our interpretation (see �gure 7) pre-
serves all information necessary for its reversal. Yet, we cannot reverse it, because the
reverse reaction does not proceed via the cut rule which we took as the formal de�nition of
a reaction. (ii) Treating the cut-formula as an object, say the functional group OH, makes
it impossible to subsequently cut within that object, e.g., separating the H from the O.
(iii) Our interpretation only implements substitution reactions of chemistry. The scheme
is unable to introduce, or eliminate, connectives (i.e., types of chemical bonds). The rules
for the connectives (6) are not suited to model such reactions, because they don't provide
interaction speci�city (see the discussion of cut in section 2.3.2).
Other attributions to the cut formula are no less plausible, but carry their own suite of

consequences. One might argue that the cut-formula has no physicality, yet retain chemical
plausibility by holding that what is cut are the bonds themselves and not \that which is
bound". A variant of linear logic, known as linear logic with MIX (direct logic) [2, 16, 25],
readily permits both connected and disconnected proofs, and may be employed in generating
multiple products. This attribution, however, purchases its power at the cost of (i) losing
a strict control over weakening (and, thereby, a relaxation of strict resource accounting), as
well as (ii) a far greater complexity in implementing cut-elimination.

37

reaction class known in chemistry as substitution reactions.

Treating the cut-formula as a physical object introduces a larger issue. Disar-

ticulating the physical - whether it be an object like a molecule or a memory

location in a computer - from the syntactical rules used to perform computa-

tion is a principle challenge within the domain of computer science addressing

concurrency. Linear logic is one candidate formalism for concurrency. Our

interpretation of the cut formula in linear logic as representing a physical ob-

ject is one of several possible representations of the physical8. The diversity

of paths within MC2 for addressing the limitation of reaction classes in MC0

and MC1 reects this larger issue. We return to the general topic in later

discussion.

Rate constants

Rate constants are an aspect of chemical reactivity with important conse-

quences for reaction networks. In MC0 and MC1, all reactions proceed at an
identical rate. A plausible foundation to endogenize rate constants within the
�-syntax would be to interpret as a rate constant the number of reduction steps
needed to obtain normal form. For this to make chemical sense, reduction must
be expressed in terms of true \unit-time" events, i.e., truly elementary steps of

recon�guration. This is not the case with standard de�nitions of �-reduction.
The linear logic framework, however, has made it possible to resolve reduc-
tion into elementary events [17, 35]. We could imagine them as taking place
at the beat of an external clock. Two simultaneously occurring interactions
would terminate after di�erent periods of time, thus yielding di�erent \rate
constants".

We have focussed above on the power accompanying the shift in formalism

enabled by the Curry-Howard isomorphism. It is remarkable that linear logic

appears to have the capacity to addresss each and to solve some of the prin-
cipal limitations of MC0 and MC1. In focussing upon comparison with the
�- framework, we may have given the inadvertent impression that address-

ing these limitations exhausts the utility of the linear logic frame. Indeed, it

may well prove to be the case that features of linear logic unrelated to the
limitations of MC0 and MC1 will ultimately provide most important.

8Attempting to give chemical processes a logical interpretation feeds back to logic itself.
We interpret here a chemical reaction as being a logical inference (governed by a rule such
as cut). But what logical interpretation should be given to chemical reactions that yield
multiple products? That is, what is the meaning of a rule of inference that splits proofs,
i.e., that generates two or more conclusion-sequents at the same time?

38

2.4 A Roadmap from chemistry to proof-theory

We pause to ask: How natural is the analogy between a molecule and a proof?

Suppose Dr. X claims that a certain chemical action � is possible. Prof. Y

challenges her to prove that claim. X returns a few years later and exhibits

an actual molecule that provides that action, thereby proving her claim. Al-

though the molecule does what X claimed it to do, Y will rightly wonder:

\How did you produce it?". The question is fair, because by just looking at

a molecule it isn't clear how it was produced, despite being evident that it

was produced. The reason is that in chemistry we typically can't just stick

atoms together one by one like in a Ball-&-Stick model. A molecule tells

little about its synthesis path, just as a mathematician's direct proof from

�rst principles does not convey the insight that led to it. Indeed, a mathe-

matician usually proceeds by intermediate steps, proving lemmas, and then

combining them with the cut rule (9) to achieve the desired theorem. Cut

permits a proof to be factored into generic modules (\subroutines"), thereby

preserving the proof idea. A mathematician, therefore, rarely normalizes the
proofs. The situation in chemistry is subtly di�erent. First, a direct synthesis
of a molecule by plugging atoms together is almost never feasible. Thus, a

chemist is forced to synthesize a molecule by using other molecules as inter-
mediates, i.e., he cannot fully exploit what logicians know as the subformula
property. Second, as soon as the chemist mixes the reactants, the reaction
proceeds, i.e., the mixture spontaneously \normalizes", courtesy of thermo-
dynamics. The self-maintaining organizations we found with MC0 and MC1

appear from this standpoint as speci�c ensembles of molecules that collectively
retain their synthesis pathways, because every molecule is both \�nal prod-
uct" and \intermediate". Since in MC2 molecular actions are seen as theorems
whose proofs are the molecules that perform those actions, MC2-organizations
- had we produced them - would appear as sets of theorems that are closed

with respect to inference. The technical word for such sets is a theory.

From the initial observation that dynamical systems evade construction and
that computation is construction, we have arrived at a representation of chem-

istry as proof-theory. This path has proven su�ciently surprising to us so as

to expect that others might �nd a roadmap helpful.

39

Table 1: The Chemistry / Proof-Theory Roadmap

Chemistry �-calculus Linear logic

molecule as

physical object
(the nature of atoms and their
bonds)

�-term

in normal form

proof-net

in normal form
(multiplicative fragment of lin-
ear logic)

shape as action

(domain of interaction)
(with whom and how
a molecule interacts, as deter-
mined by its shape and the na-
ture of its reactive groups)

type
(speci�cation of an action: a
description of what the term
does at a particular level of res-
olution)

multiset of

propositional formulae

(theorem)
(a set of \actionable" ad-
dresses, \interfaces", or \plug-
ging speci�cations")

bonds

(connectors of molecular parts)

abstraction and

application

left and right rules

of logical connectives

initiation of a
reaction

application

rule of inference:
cut

(reactants are the premises,
products are the conclusions)

completion of a
reaction

(structural rearrangements

into stable products)

normalization cut elimination

branching reaction
(multiple reaction pathways
among the reactants)

|
multiple cut
options

(a sequent is a multiset)

synthesis pathway
(representation of a molecule

as a suite of reactions between
intermediates which enable its
synthesis)

�-term
containing redexes

proof-net with cut(s)
(a proof making use of inter-
mediate results { lemmas a.k.a
cut-formulas)

synthesis planning
(how do we break up a
molecule into achievable sub-

goals for synthesis?)

theorem proving
(in typed �-calculus only, e.g.,
Automath [18]; see also linear

logic)

theorem proving
(how do we break up a formula
into achievable subgoals (lem-

mas)?)

determinism
(for a particular reactive en-

counter the products are deter-
mined)

Church-Rosser
(reduction is conuent; in ad-
dition, some type systems have

strong normalization proper-
ties, i.e. any reduction se-
quence always terminates)

Church-Rosser
(cut elimination is conuent

and obeys strong normaliza-

tion in MLL)

40

Table 1: The Chemistry / Proof-Theory Roadmap (continued)

chemistry �-calculus Linear logic

duality
(dualities apparent in stereo-
chemical complementarity, hy-
drophilic/hydrophobic, proton
donor/acceptor,
reductant/oxidant)

|

duality
(linear negation is involutive,
de�ned by DeMorgan duali-
ties)

symmetry
(reactive interaction is sym-
metric)

asymmetric
(functional application is not
commutative)

symmetric
(assumption and conclusion
are dual - i.e., to switch is to
negate)

resource sensitive

(obeys mass conservation) |

resource sensitive
(weakening and contraction
are absent in MLL, or con-
trolled in full linear logic)

The match is suggestive, and one cannot fail to wonder whether the level
of metaphor might someday be trespassed. If so, there would be a level of
explanation at which chemistry would e�ectively be logic. This possibility is
one we do not dismiss. It is no more ludicrous than, say, becoming accustomed
to regarding physical space to \be" the threefold cartesian product of the real

numbers, IR3.

3 From dynamical systems to bounded orga-

nizations: The thread from chemistry : : :

The long excursion into the speci�c case of chemistry serves to illustrate that

it is indeed possible to move beyond the limits of dynamical systems claimed
at the outset, section 1. Here we return to the general point, reiterating its
major features in the context both of our own attempt and those of others

grappling with related issues in often quite di�erent settings. Our treatment

of related issues is admittedly eclectic, representative only of our own interests

and backgrounds.

The following de�ne our conceptual coordinates. We sequentially amplify on

each point in the sections that follow.

1. The identi�cation of the \object problem" as a fundamental limit in
applying the dynamical systems methodology to the biological sciences

and beyond (section 1).

41

2. The claim that overcoming that limit requires a theory of object con-

struction and, thus, necessarily involves a substantive overlap with the

foundations of the computational sciences.

3. The position that a concept of \organization" derives from placing a

theory of objects in a suitably constrained many-body dynamical setting

(section 2.1.2). The conventional settings of either dynamics alone or

syntactical manipulation alone are insu�cient; \organization" derives

(or, if one prefers, self-organizes) from their combination in a constructive

dynamical system.

4. Finally, the \organizations" resulting from a constructive dynamical set-

ting have the potential to address problems that have stubbornly resisted

solution.

3.1 : : : to the \object problem"

The identi�cation of the \object problem" as a fundamental limit in apply-

ing the dynamical systems methodology to the biological sciences and beyond

(section 1).

Whenever a particular level of analysis of Nature is populated with objects
whose internal structure engenders speci�c action capable of changing or cre-
ating other objects, the dynamical systems methodology encounters a funda-
mental limit. The reason is that the formal machinery of dynamical systems
is geared to handle changes in quantities, but not changes in object structure.

We believe that a formal understanding of such a level of Nature requires a
theory that combines variables that can take objects as values with the more
familiar variables that hold quantitative values (such as concentrations). To
convey an intuitive avor of this, think of action as \parametrized" by struc-
ture, and imagine a \derivative" in object space giving information about the

change of object action resulting from a change in object structure. Clearly,

being able to meaningfully de�ne such a thing puts stringent conditions on
how structure is coupled to action. To even start thinking about this requires
a powerful formal machinery capable of expressing the coupling of structure

to action for the objects pertinent to a particular domain of application. This

is the \object problem".

The \object problem" is nowhere seen more crisply than in chemistry. Chem-

ical reactions are events in which both concentrations (i.e., quantities) and
objects (i.e., structures) change. The projection of a chemical reaction involv-

ing large numbers of molecules on a phase-space of concentrations is known
as reaction kinetics. To set up a chemical reaction as a dynamical system

42

in concentration space, one only requires knowledge of the proper couplings

among the concentrations of reactants and products. It is su�cient if these are

known as empirical facts; knowledge of the chemical identity and properties of

reactants and products is not necessary. Cranking the tools of, say, in�ntesi-

mal calculus yields the time evolution of reactant and product concentrations.

Remove kinetics for a moment by considering just the information conveyed

by a chemical reaction when it is notated on paper. We are left with a reac-

tion arrow, \!", expressing a relation among molecular structures. A general

method capable of describing the time evolution of the contents of a reaction

vessel for an arbitray initial mixture of molecular species would require noth-

ing less than a formal system implicitly representing the space of molecular

objects and the relation \!" over them. That is a formal theory of chemistry.

3.2 : : : to the foundations of mathematics

The claim that overcoming that limit requires a theory of object construction

and, thus, necessarily involves a substantive overlap with the foundations of

the computational sciences.

Where do we get a formal theory of chemistry? The answer is crucial to our
approach. To date we do not have a formal, axiomatized theory of chemistry

that is useful in everyday practice, despite the fact that quantum mechanics
successfully grounds chemistry in the behavior of electrons and nuclei. The
problem is one of choosing the \right" level of description. With respect to
both molecular biology and industrial metabolisms alike, quantum mechanics
is far too �ne grained, and, aside from issues of feasibility, does not convey
a satisfactory understanding of \what chemistry is actually doing"; it is too

close to the trees to see the forest. To put it provokingly, our understanding of
life will derive in large measure from how we understand chemistry. It is clear,
then, that identifying a coarser grain of analysis capable of hosting a formal

theory of chemistry would be of tremendous practical import and by no means
limited to the foundations of theoretical biology.

Chemistry and computation

The stance we took in prior work [26, 27], and further elaborated here, is based

on the intuition that at some level of description the reactive processes of chem-
istry are analogous to manipulations (rewrites) of syntactical objects. This

puts us right into the domain of the computational sciences, section 2.1.1. In
the present context, the reader is well advised to detach from an all-too narrow

notion of computation as \number crunching". Much e�ort in the computa-

tional sciences goes into devising formal systems of syntactical constructs (we

43

call \objects") that are interrelated by operations of transformation de�ned on

them. It is in this sense that \computation" is the science of the construction

of abstract objects with structure-speci�c \behavior".

What is crucial in the present context is how object behavior is synthesized

from basic elements, as it is here that insights into fundamental mechanisms

of \construction" or \interaction" are revealed, and can be compared with em-

pirical facts. For what is desired in a theory of objects is not just a formalism

and the theorems that accompany it, but a transparency of interpretation in

the intended application domain. In a chemical application, one wants to cap-

ture at least the twin facts that (i) product molecules are lawfully constructed

from substitution of parts of reactant molecules and (ii) that the same product

can be produced by a diversity of di�erent reactants. One wants, therefore,

a theory of combinational structures and substitution together with the resul-

tant theory of equality. Indeed, this is what drew us originally to �-calculus.

A great variety of alternative formal systems - Turing machines, Petri nets,

Post systems, cellular automata, to mention but a few - allow expression of
the same set of functions on the natural numbers, and, thus, may be regarded
as being equivalent in that respect . It should be clear by now, however, that
what is needed here is not merely a member of this universality class, but a

member whose features are germane to the chemical problem at hand.

Identifying �-calculus as a plausible candidate for a chemical interpretation

hardly quali�es �-expressions as anything but the most metaphorical of molecules.
It is merely a foothold. A crucial one, however. It enabled our painstaking
progression from MC0 to MC2, showing how a formal representation can be
preserved, while progressively re�ning the chemical interpretation of the op-
erators of the formalism. This would have hardly been possible with, say,

Turing machines, Boolean operators, or assembler code. In that respect we
di�er markedly from pertinent work by Kau�man [47, 49], Rasmussen [76],
McCaskill [62], Th�urk [85] and Ikegami [46].

The issue here is one of grounding and formalizing an ontology, not just of

capturing a phenomenology. Yet, this does not require a one-to-one mapping

between some formalism expressing computational processes and real-world
molecules with their chemical reactions. The map should not be confused

with the territory; we do not want to \simulate" chemistry. We take the com-
putational perspective as one enabling a di�erent - logical - level of description

of chemistry which is distinct from one that accounts for its actual physical
implementation. The latter is the domain of quantum physics. For example,

whether the actual protein folding process belongs to the class of computable
functions is entirely irrelevant to us. For all we need to capture is the logic

of the connection between structure and action speci�city, not the physical

process by which this connection is implemented. Herein lies the point of a

44

speci�cation language for chemistry.

What is gained by a computational theory of objects?

What is gained is best seen in comparison with prior approaches to modelling

chemical collectives [3, 24, 48, 70, 79], following Kau�man's [47, 48] original

casting of the problem. Particularly germane here are the e�orts of Bagley,

Farmer, Kau�man and Packard [3, 24]. Their work is an ideal contrast, in that

the objective is identical to our own, but the methodology used to achieve the

end di�ers. In its essence their model consists of strings over some alphabet, for

example 0's and 1's, meant to represent polymers that recognize each other by

\complementarity" (0 pairs with 1). A string can act as the docking place for

others, thereby catalysing speci�c concatenation and splicing reactions. This

leads to the assembly of reaction networks capable of maintaining themselves

on the basis of a monomer or string ow through the system. Such a model

shares with our own the appearance of self-maintaining collectives (that they
call autocatalytic).

The crucial di�erence between our approaches is that the core of our model is
a theory of object construction - rather than the imitation of particular chem-
icals. This is what gives us the capacity to specify what the \organization"

of an emerging collective of objects is in terms of a mathematical formalism.
Three broad consequences follow.

1. The abstraction of molecules in MC0 and MC1 as symbolic functions
allows organization to be detected as a closure of interaction, manifested
by invariant syntactical regularities and invariant algebraic laws charac-

terizing the action of those objects maintained in the collective. It cannot
be overemphasized that this characterization can be made by an observer
of the system who is ignorant of �-calculus. Indeed, an organization can
be speci�ed as an algebraic rewrite system that is independent from �-

calculus, and, thus, the process by which it originated. With the theory

of objects comes whole-cloth a quite di�erent theory of the collective.

2. A formal theory of objects makes transparent which features of the col-

lective organization derive from the underlying theory of objects, and

which features are curiosities derived from particular initial conditions,

parameter settings, or a particular chemical stance. The distinction is
between what we have elsewhere called \digital naturalism" [29] and the

claim for a theory of self-maintenance.

3. As emphasized at the outset, section 1, an abstract theory of objects

plays a role analogous to that of di�erential equations. The analysis

45

of a dynamical system cast in terms of di�erential equations yields the

characterization of manifolds in phase space that govern the set of its

possible trajectories. Consider our MC0 implementation and imagine

we seeded our reactor with one �-expression known to be a basis for all

�-calculus. Imagine further that the container is itself in�nite in size

and the reactor would then be capable of holding all possible (normal

form) expressions. When we impose a dynamics on the objects (which,

in our case, is a scheme coupled to the reactor size), we sieve particular

\trajectories" in object space. Recall that our kinetic scheme is designed

to favor the maintenance of objects that are constructed by the extant

population of objects. As a consequence \trajectory" in object space

\converges" to an \attractor" - a self-maintaining organization.

This casting emphasizes the need for a theory of the \motion" in \object

space" induced by the object constructors (here, functional application

or logical inference) under the continously updating kinetics imposed by

the extant network of objects. How might such a motion di�er under
dynamics di�erent from our own (see for example [46])? Or with equiv-

alent dynamics and di�erent object-constructors? Is there a meaningful
formal concept of a \trajectory" in \object space"? What is \continu-
ity"? Is there a useful de�nition of \distance" between \attractors" (in
our case, algebraic structures in �-space)? Questions like these require a
theory of objects, not only to be answered, but even to be asked.

The value is apparent. Consider just one instance. A methodological impera-
tive of the dynamical systems approach is the a priori choice of the pertinent

entities and their functional couplings de�ning the system. The fact that the
choice must be made a priori has the consequence that the dynamical sys-

tems methodology can never be used to address the origin of that same system,
a profound limitation to which we have referred elsewhere [26] as the exis-
tence problem. It is apparent in MC0 that our reactor in settling upon a

self-maintaining set of objects has settled upon a �xed system of variables and
functional couplings between them; thus, particular dynamical systems appear

as limiting cases (such as \�xed points") of constructive dynamical systems.

Are constructive dynamical systems \generators" of dynamical systems? If so,
a formalization of the motion in such a space holds promise as a methodology

to address scienti�c questions which include the phrase \the origin of...".

Grounding and unifying other's ideas

Attractive intellectual constructs previously lacking a formal interpretation are

rendered accessible to conventional modes of scienti�c investigation in our set-

ting. Maturana and Varela's concept of \autopoiesis" [56, 57, 58, 87, 88] is

46

particularly close, indeed arguably indistinguishable, from our concept of or-

ganization. It shares the key ingredient that the system is composed of \com-

ponents" which engage in a network of interactions that enable the continuous

regeneration of these same \components". Thus the autopoietic system is, at

essence, a matter of constructive relationships closed upon interaction; this

Varela labels autonomy (we say, self-maintenance). Autopoietic systems share

with our �-organizations a number of other features, including regenerative

abilities, accessibility only to inputs that inuence \component" interrelations,

and capacity for hierarchical coupling.

Rosen's (M,R)-system (for metabolism-repair system) [20, 80] resembles an au-

topoietic system, but Rosen's \components" are pure abstract functionalities.

Rosen packs a whole metabolism into a single functional letter (a \metabolic

function"), or speaks of a \repair function" and a \replication function", the

three of which entail each other in a circular fashion by mutually acting on

their domains and ranges. The point that we �nd concordant here is Rosen's

emphasis on the causal circularity inherent to functional organization. Note,
however, that Rosen's (M,R)-systems lack any notion of object construction9.

Thus both contructs - autopoietic systems and (M,R)-systems - share with
ours the essential notion of closed relations of construction between the parts
of the system. Our work departs from both, however, in providing a concrete
theory of the conditions necessary to realize a universe of such systems and to

characterize their features in a standard formal setting.

We suspect that the autopoietic concept di�ers only as a consequence of Mat-

urana and Varela and subsequent investigators [71] having come to it without
the bene�ts of viewing organization as the consequence of joining dynamics and
construction. The only claim of Maturana and Varela that is not instantiated
in our organizations is their requirement that the system be spatially bounded.
This is essential for them, for it is the only device by which their \components"

may be isolated from the \rest-of-the-world". The seeming need of a membrane
laid out in space is, in our view, only required because the characterization of

autopoietic systems is not built upon a theory of its components. Our orga-

nization are indeed bounded, but bounded syntactically (i.e., �-organizations
are special invariant subspaces of �-space). A bounding is indeed a necessary

feature of organizations, but the space need not be 3-space. Perhaps it is not
surprising that several disciplines which have found the concept of autopoiesis

of utility (e.g., notably law and social psychiatry) �nd the requirement of spa-
tial bounding dispensible (see review by [71]). At minimum, then, our work has

converged to a notion similar to that of autopoiesis from an independent angle;
quite plausibly, though, we have unwittingly generated a formal interpretation

9Rosen claims that (M,R)-systems are inherently unformalizable. Casti [11, chapter 7]
approaches some of their aspects by means of dynamical systems.

47

of a heretofore frustratingly elusive notion of considerable importance.

3.3 : : : to concurrency and self-organization

The position that a concept of \organization" derives from placing a theory of

objects in a suitably constrained many-body dynamical setting (section 2.1.2).

The conventional settings of either dynamics alone or syntactical manipulation

alone are insu�cient; \organization" derives (or, if one prefers, self-organizes)

from their combination in a constructive dynamical system.

It bears emphasis that \objects", as we frame them here, are de�ned by

structure-action relationships where each action is a mapping from structures

to structures. In a many-body setting this generates a constructive feed-back

loop (in analogy to dynamical feed-backs) which causes the emergence of \or-

ganization". The so-de�ned constructive feed-back is absent in genetic algo-

rithms [44, 39], genetic programming [53], classi�er systems [43], and models of
evolutionary optimization [1, 28]. While these systems deal with objects whose
structure entails action, the action does not participate in object construction.
This is exactly what puts our concept of organization outside their scope.

We hestitate to attribute to constructive dynamical systems claims of \emer-
gence" or \self-organization", in that these terms are increasingly used with

quite di�erent attributions. Our organizations, however, do emerge in the sense
that an organization possesses (ex post) a level of description that is indepen-
dent of the abstract chemical universe within which it originated. Similarly, the
core-objects (constructors) of the organization self-organized in the restricted
(but meaningful) sense that the constructive dynamical system converged to

them by an endogenous motion in object space.

Our use of the words self-organization and emergence di�er sharply from the

frequent use of these terms as meaning \a phenomenon displayed by a collective
and unexpected by the investigator." The distinction is, again, one between a

theory of the collective grounded in a formalism to which an interpretation (a

meaning) is given to the operators of the formalism and the observation of an
instance of collective phenomena for which no underlying theory guides inter-

pretation or guarentees generality (i.e., \digital naturalism", sensu [29]). In
drawing this distinction, we intend no disrespect for the value of such \com-

plex systems" studies. In at least two cases a lack of formal grounding of
components of the collective is appropriate. First, it is appropriate whenever

the underlying suite of behaviors of the components are themselves empirically

established to be disassociable from the features of the system left unmodelled.

Examples include much of individual-based modelling in behavioral and com-

munity ecology (i.e., there is no need for a theory of molecules-as-proofs to

48

study the consequences of odor trails on patterns of ant dispersion). Second,

it is often desirable to leave uninterpreted the nature of the objects when one

is seeking to implement a system whose objective is a search. Holland's genetic

algorithms [44] and classi�er systems [43] need not be faithful chromosomes

or genotype-to-phenotype representations when the intended objective is an

e�cient search engine.

A more appropriate embedding of constructive dynamical systems lies in the

domain of computer science addressing concurrency. The ground here is not so

much infertile as it it poorly prepared for sowing. Susan Oyama's underground

classic, The Ontogeny of Information [73], documents the lack of rudimentary

intellectual hygiene in the free use of metaphor from computer science to de-

scribe and interpret biological observations. The attributions are ubiquitous:

the genes as \code", the genome as \algorithm", the cell as \massively par-

allel computer", and the like. Indeed, the metaphors are not merely passive

inaccuracies in the service of rhetorical aims; they actively frame our thinking

(see, e.g., [74] on representations of the ras pathway). We will not tread lightly
here. The use of the computational metaphor is crucially vacuous without a

formal translation between a chemical syntax and a syntax of computation.
Here we reawaken the problem of interpretation; our as-yet-incomplete march

from MC0 to MCn has achieving this formal interpretation as its intent.

It is, indeed, our stance that the formalisms natural to biology derive not

from physics (as a discipline), but from imposing those of physics on those of
computer science. Organisms are coherent chemical collectives, molecules are
constructed from molecules, and computation is a science of representing pos-
sible constructions. The control of timing the interaction of physical objects
and the representation of the same objects as performing constructions (com-

putations) lies at the heart of both realizing a genuinely parallel computer and
our attempt to develop a meaningful representation of a chemical parallelism
(viz our discussion of reaction classes in MC2, section 2.3.2). Disarticulating
the physical from the computational is what makes parallelism a hard problem

in computer science.

The relation is su�ciently subtle to remind the reader of the manner in which
our organizations were realized. The strategy we adopted was two-pronged:

we �rst have projected chemical objects onto abstract logical entities, using
�-calculus as a formalization of their constructive interactions. Then we have

dipped these entities into a cocktail of chosen physical modalities: (i) many
objects coexist in the same system (reactor), (ii) an object-species has a con-

centration (objects can occur in multiple instances), (iii) objects interact by
random collision, (iv) objects have a �nite lifetime (constrained ow reactor).

Point (i) enables a constructive feed-back loop by providing a context from

49

which the interaction partners of an object are drawn, and to which the prod-

uct of a reaction is returned. Points (ii) and (iii) provide a simple (pseudo-

chemical) kinetics that biases interactions to occur among object species with

the highest concentration (relevance). Point (iv) implements the overall e�ect

of removal, such as loss, decay, or inactivation. In conjunction with points

(ii) and (iii) this removal reinforces precisely those reaction pathways whose

constituents on the reactant side also appear on the product side somewhere

along the path. The result are self-maintaining collectives of objects, with each

object being simultaneously interpreted as a physical object and a function.

We are drawn to this view of parallelism by physical intuition { ow reac-

tors and chemicals being common laboratory objects. The computer scientist

comes from a quite di�erent intuitional base. Physicality is foreign ground, the

strength of computation by syntactical manipulation lies in its leaving open

the interpretation of the syntax. We �nd it remarkable, then, to what degree

our work abrades with that of theoretical computer science. The body of work

known as communication and concurrency [42, 64, 65, 67], aims at a formal-
ization of the behavior of systems consisting of many coexisting and indepen-
dently interacting heterogenous computational agents. Individual agents are
referred to as \processes". Processes \communicate" to inuence each other's

behavior (i.e., the ability to communicate). Two examples serve to illustrate
how short the intellectual distance is separating the issues in concurrency and
our approach to organization. In �-calculus [68, 69], a popular concurrent for-
malism (Appendix A.3), a single expression is equivalent to the entire content
of our reactor at a given point in time. The evolution of the reactor appears

as a series of \reductions" of this large expression. Even more striking is the
correspondence between our system and a device used to choose among the
multiple communication channels available to a given concurrent process. To
address this issue, Berry and Boudol [5, 6] introduced the notion of a Chemical
Abstract Machine as a possible execution machine for the �-calculus. Berry

and Boudol's insight - which predates our work - was to use physical aspects of
chemistry (such as randomly colliding objects) to implement a concurrent com-

putation, while we independently originated the reverse interpretation, i.e., to

use computational objects as a proxy for molecules and to join them together
into a concurrent setting. Despite the distance in intended application, then,
both approaches share the underlying challenge of imposing a physics upon

computational construction. Computer scientists seeking to implement con-

currency no longer have the luxury of ignoring physical modalities - their pro-
cesses must communicate in time to other processes with \real-world" positions

and properties. This is, again, little di�erent from our own problem in reverse;
we start from a dynamical systems setting and need to add to it a formalism

of object construction. We both face the challenge of confronting time and

properties that characterize objects as physical entities, while simultaneously

50

endowing the same entities with the power of construction.

Despite this correspondence, our e�orts depart sharply from work in concur-

rency and communication in one important respect. Our organizations self-

organize from random communications in a many-body, ow-reactor setting.

Self-organization is anathema to computer engineers - indeed, such lack of rigid

control over communication is precisely what they seek a formalism to avoid.

Control over communication is deemed essential; one need only imagine the

task of a systems administrator attempting to communicate with an operating

system after a series of system calls have unexpectedly self-organized. Yet, as

our organizations indicate, the product of constructive dynamical systems is

not a lack of coherent behavior, but the creation of collectives with predictable

features and properties. Perhaps the treatment of concurrency would bene�t

from exploring the feature in which our work departs from their own. Surely

- at the moment - the prospect of e-mail messages spontaneously combining

into a coherent manuscript strikes the authors as an acceptable price to pay

for an occasional unexpected core dump!

3.4 : : : to biology and beyond

Finally, the \organizations" resulting from a constructive dynamical setting

have the potential to address problems that have stubbornly resisted solution.

Biology has only two claims to theories unto itself - Mendel's theory of trans-
mission and Darwin's theory of natural selection. The intellectual history of
the �rst half of this century is a story of continuing debate over whether the
two theories were in conict. Fisher, Haldane, and Wright demonstrated that

no conict existed and the same �elds are �lled today by a self-perpetuating
army of investigators using the same plows (powered now by computers much
as farmers today use tractors). The talk of plows and tractors is not intended
as idle ridicule, for the tools are the issue here; the limits of the tools de�ne

the \barrier" we address. The tools employed by Fisher to show that the

great theories of biology were concordant required casting the problem in a

fashion that threw out the constructive aspects of biology, rendering the prob-
lem tractable as one in dynamical systems. Throwing out construction meant
throwing out the organism; trying to put the organism back in is fair epitome

of the intellectual history ever since.

The claim is that biology requires a trinity of theories; we have two of them;
we lack only \a theory of the organism". The claim we make is that the

self-maintaining organizations we derive hold promise as that missing theory.
Indeed, such a theory need not await a global solution to the speci�cation

language for chemistry. The fact that our organizations can be described in

51

a formalism distinct from that in which they were generated (i.e., as abstract

rewrite systems rather than �-expressions) leaves their terms (like those of

any syntax) open to interpretations other than chemical. From this realization

ows a diversity of potential applications.

Given a universe of self-maintaining abstract rewrite systems (ARS), the uses

are limited solely by the properties of the particular ARS and the interpreta-

tion given to its terms. An interpretation of the terms as engineering functions

in a machine might be route to a self-repair mechanism, an interpretation as

a semiotic unit as a device for natural language interpretation, and interpre-

tation of terms-as-molecules as germane to a blueprint for the design of a

self-maintaining chemical manufacturing process [7], as it is to a metabolic

cycle in a cell or a system of cell-cell communications de�ning an organ. The

origin of such speci�cations from a research program in arti�cal chemistry or

in experimental �-calculus is irrelevant. It cannot be overemphasized that

herein lies the signi�cance of the characterization of our organizations in an

alternative formalism.

To the extent that one accepts that the missing \theory of the organism" is
recognizable as a general speci�cation procedure for self-maintaining systems
of constructive relations, MC0 su�ces. Application to the biological issues
left wanting for a generation - indeed to domains distinct from biology - are
limited solely by the interpretation given to the terms of the abstract rewrite

system and the extent to which its properties are germane to the question at
hand. While work-in-progress portends considerable promise in applications
to evolutionary biology in particular, it is neither feasible nor appropriate to
address them here. After all, the editors asked us to identify a \barrier to
knowledge", they did not ask us to lift it.

The claim for relevance here is large indeed. Hence, we conclude with a warn-
ing. The optimism and the passion with which we assess the potential of

constructive dynamical systems has all the characteristics of a bullish investor
at the eve of the market's collapse. The reader would do well to heed the

admonition

...beware of the boa constructor.

Erwin Panofsky

Acknowledgements: We thank Harald Freund for numerous discussions on

the limits and potentials of MC0. This is paper #41 from the Center for
Computational Ecology at Yale.

52

References

[1] C. Amitrano, L. Peliti, and M. Saber. Population dynamics in a spin-glass

model of chemical evolution. J. molec. Evol., 29:513{525, 1990.

[2] A. Asperti. Causal dependencies in multiplicative linear logic with MIX.

Math. Struct. in Comp. Sci., 11:1{31, 1993.

[3] R. J. Bagley and J. D. Farmer. Spontaneous emergence of a metabolism.

In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,

Arti�cial Life II, Santa Fe Institute Studies in the Sciences of Complexity,

pages 93{141, Redwood City, 1992. Addison-Wesley.

[4] H. G. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Stud-

ies in Logic and the Foundations of Mathematics. North-Holland, Ams-

terdam, second revised edition, 1984.

[5] G. Berry and G. Boudol. The chemical abstract machine. In 17th ACM

Annual Symposium on Principles of Programming Languages, pages 81{
94, New York, 1990. ACM Press.

[6] G. Berry and G. Boudol. The chemical abstract machine. Theoretical

Computer Science, 96:217{248, 1992.

[7] P. Bro. Arti�cial life in real chemical reaction systems. Book manuscript
in preparation (contact address: P. Bro, Santa Fe Institute, 1399 Hyde
Park Road, Santa Fe NM 87501), 1995.

[8] L. W. Buss. The Evolution of Individuality. Princeton University Press,
Princeton, 1987.

[9] L. Cardelli. Type systems. Chapter in a forthcoming CRC Handbook of

Computer Science and Engineering, available at http://www.
research.digital.com/SRC/personal/Luca Cardelli/Papers.html, 1996.

[10] L. Cardelli and P. Wegner. On understanding types, data abstraction,

and polymorphism. Computing Surveys, 17:471{522, 1985.

[11] J. Casti. Reality Rules (vol.2). Wiley, New York, 1992.

[12] A. Church. A set of postulates for the foundation of logic. Annals of

Math. (2), 33:346{366, 1932.

[13] A. Church. A set of postulates for the foundation of logic (erratum).

Annals of Math. (2), 34:839{864, 1932.

53

[14] A. Church. The Calculi of Lambda Conversion. Princeton University

Press, Princeton, 1941.

[15] L. Damas and R. Milner. Principal type-schemes for functional programs.

In Proceedings of the 9th Annual Symposium on Principles of Program-

ming Languages, pages 207{212, New York, 1982. ACM.

[16] V. Danos and L. Regnier. The structure of the multiplicatives. Arch.

Math. Logic, 28:181{203, 1989.

[17] V. Danos and L. Regnier. Proof-nets and the Hilbert space. In J.-Y.

Girard, Y. Lafont, and L. Regnier, editors, Advances in Linear Logic,

London Mathematical Society Lecture Note Series, pages 307{328, Cam-

bridge, 1995. Cambridge University Press.

[18] N. G. de Bruijn. A survey of the project Automath. In J. R. Hindley

and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda-Calculus and Formalism, pages 579{607. Academic Press, New
York, 1980.

[19] M. E. Szabo (ed.). The Collected Papers of Gerhard Gentzen. North
Holland, Amsterdam, 1969.

[20] R. Rosen (ed.). Foundations of Mathematical Biology (vol.2). Academic
Press, New York, 1972.

[21] M. Eigen. Self-organization of matter and the evolution of biological
macromolecules. Naturwissenschaften, 58:465{526, 1971.

[22] M. Eigen, J. S. McCaskill, and P. Schuster. The molecular quasi-species.

Advances in Chem. Phys., 75:149{263, 1989.

[23] M. Eigen and P. Schuster. The Hypercycle. Springer Verlag, Berlin, 1979.

[24] J. D. Farmer, S. A. Kau�man, and N. H. Packard. Autocatalytic replica-
tion of polymers. Physica D, 22:50{67, 1982.

[25] A. Fleury and C. Retor�e. The mix rule. Math. Struct. in Comp. Sci.,
4:273{285, 1994.

[26] W. Fontana and L. W. Buss. `The arrival of the �ttest': Toward a theory

of biological organization. Bull. Math. Biol., 56:1{64, 1994.

[27] W. Fontana and L. W. Buss. What would be conserved `if the tape were
played twice'. Proc. Natl. Acad. Sci. USA, 91:757{761, 1994.

54

[28] W. Fontana, W. Schnabl, and P. Schuster. Physical aspects of evolution-

ary optimization and adaptation. Phys. Rev. A, 40:3301{3321, 1989.

[29] W. Fontana, G. Wagner, and L. W. Buss. Beyond digital naturalism.

Arti�cial Life, 1:211{227, 1994.

[30] G. Frege. Begri�sschrift, eine der arithmetischen nachgebildete Formel-

sprache des reinen Denkens. Louis Nebert, Halle, 1879.

[31] H. Freund. Self-maintaining �-organizations and analysis via rewrite sys-

tems. Poster presented at the 3rd European Conference on Arti�cial Life

(ECAL 95) in Granada, Spain, June 1995.

[32] G. Gentzen. Untersuchungen �uber das logische Schlie�en. Mathematische

Zeitschrift, 39:176{210, 405{431, 1935.

[33] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[34] J.-Y. Girard. Towards a geometry of interaction. In J. W. Gray and
A. Scedrov, editors, Categories in Computer Science and Logic, pages 69{
108. AmericanMathematical Society, 1989. Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference, June 14{20, 1987, Boulder,
Colorado; Contemporary Mathematics Volume 92.

[35] J.-Y. Girard. Geometry of interaction II: Deadlock-free algorithms. In
P. Martin-L�of and G. Mints, editors, COLOG-88, pages 76{93. Springer-

Verlag LNCS 417, 1990.

[36] J.-Y. Girard. La logique lin�eaire. Pour La Science, Edition Fran�caise de

`Scienti�c American', 150:74{85, April 1990.

[37] J.-Y. Girard. Linear logic: Its syntax and semantics. In J.-Y. Girard,

Y. Lafont, and L. Regnier, editors, Advances in Linear Logic, pages 1{

42. Cambridge University Press, 1995. Proceedings of the Workshop on
Linear Logic, Ithaca, New York, June 1993.

[38] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge

Tracts in Theoretical Computer Science 7. Cambridge University Press,

1988.

[39] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley, Reading, Mass., 1989.

[40] C. Hankin. Lambda Calculi. A Guide for Computer Scientists. Clarendon

Press, Oxford, 1994.

55

[41] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge,

Mass., 1988.

[42] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,

Englewood Cli�s, 1985.

[43] J. H. Holland. Escaping brittleness: The possibilities of general purpose

machine learning algorithms applied to parallel rule-based systems. In

R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors, Machine

learning: An arti�cial intelligence approach. Kaufmann, Los Altos, CA,

1986.

[44] J. H. Holland. Adaptation in Natural and Arti�cial Systems. Bradford

Books, The MIT Press, Cambridge, Mass., 1992. reprint edition.

[45] W. A. Howard. The formulae-as-types notion of construction. In J. R.

Hindley and J. P. Seldin, editors, To H. B. Curry: Essays on Combinatory

Logic, Lambda-Calculus and Formalism, pages 479{490. Academic Press,
1980.

[46] T. Ikegami and T. Hashimoto. Coevolution of machines and tapes. In
F. Mor�an, A. Moreno, J. J. Merelo, and P. Chac�on, editors, Advances in

Arti�cial Life, Third European Conference on Arti�cial Life, Granada,
Spain, pages 234{245, Berlin, 1995. Springer Verlag.

[47] S. A. Kau�man. Cellular homeostasis, epigenesis and replication in ran-
domly aggregated macromolecular systems. J. Cybernetics, 1:71{96, 1971.

[48] S. A. Kau�man. Autocatalytic sets of proteins. J. Theor. Biol., 119:1{24,
1986.

[49] S. A. Kau�man. The origins of order. Oxford University Press, New
York., 1993.

[50] J. W. Klop. Term rewriting systems. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors, Handbook of Logic in Computer Science,

volume 2, pages 1{116. Clarendon Press, Oxford, 1992.

[51] J. W. Klop and A. Middeldorp. An introduction to Knuth-Bendix com-

pletion. CWI Quarterly, 1, 1988.

[52] D. E. Knuth and P. E. Bendix. Simple word problems in universal al-

gebra. In J. Leech, editor, Computational Problems in Abstract Algebra.

Pergamon Press, New York, 1970.

[53] J. R. Koza. Genetic Programming: On the Programming of Computers

by Means of Natural Selection. The MIT Press, Cambridge, Mass., 1992.

56

[54] Y. Lafont. From proof-nets to interaction nets. In J.-Y. Girard, Y. Lafont,

and L. Regnier, editors, Advances in Linear Logic, London Mathematical

Society Lecture Note Series, pages 225{247, Cambridge, 1995. Cambridge

University Press.

[55] R. Lalement. Computation as Logic. Prentice Hall, Englewood Cli�s,

1993.

[56] P.-L. Luisi. De�ning the transition to life: self-replicating bounded struc-

tures and chemical autopoiesis. In W. Stein and F. J. Varela, editors,

Thinking About Biology, Santa Fe Institute Studies in the Sciences of

Complexity, pages 3{23, Redwood City, 1993. Addison-Wesley.

[57] H. Maturana and F. J. Varela. De M�aquinas y Seres Vivos: Una teor��a de

la organizac��on biol�ogica. Editorial Universitaria, Santiago de Chile, 1973.

Reprinted in: H. Maturana and F. J. Varela, Autopoiesis and Cognition:

The Realization of the Living, 1980.

[58] H. Maturana and F. J. Varela. Autopoiesis and Cognition: The Realization
of the Living. D. Reidel, Boston, 1980.

[59] M. Mauny. Functional programming using Caml Light. User's manual
available from ftp.inria.fr by anonymous ftp, January 1995.

[60] J. Maynard-Smith. Natural selection and the concept of a protein space.
Nature, 255:563{564, 1970.

[61] J. Maynard-Smith and E. Szathm�ary. The major transitions in evolution.
W. H. Freeman, Oxford, 1995.

[62] J. S. McCaskill. Polymer chemistry on tape: a computational model
for emergent genetics. unpublished manuscript, MPI f�ur biophysikalische
Chemie, G�ottingen, 1988.

[63] R. Milner. A theory of type polymorphism in programming. Journal of

Computer and System Sciences, 17:348{375, 1978.

[64] R. Milner. A Calculus of Communicating Systems. Lecture Notes in

Computer Science, Vol 92. Springer-Verlag, Berlin, 1980.

[65] R. Milner. Communication and Concurrency. Prentice Hall, New York,

1989.

[66] R. Milner. The polyadic �-calculus: a tutorial. Report ECS-LFCS-91-180,
University of Edinburgh, 1991.

[67] R. Milner. Elements of interaction. Comm. ACM, 36:78{89, 1993.

57

[68] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I.

Information and Computation, 100:1{40, 1992.

[69] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II.

Information and Computation, 100:41{77, 1992.

[70] E. Minch. Representation of Hierarchical Structure in Evolving Networks.

PhD dissertation, State University of New York at Binghamton, 1988.

[71] J. Mingers. Self-Producing Systems - Implications and Applications of

Autopoiesis. Plenum Press, New York, 1995.

[72] H. J. Morowitz. Beginnings of Cellular Life: Metabolism Recapitulates

Biogenesis. Yale University Press, New Haven, 1992.

[73] S. Oyama. The Ontogeny of Information. Cambridge University Press,

Cambridge., 1985.

[74] S. Oyama. The accidental chordate: contingency in developmental sys-
tems. In B. H. Smith and A. Plotnitsky, editors, Mathematics, Science,

and Postclassical Theory (South Atlantic Quart., Vol. 94), pages 509{526.
Duke University Press, Durham, NC, 1995.

[75] V. R. Pratt. The duality of time and information. In W. Cleaveland,
editor, Proceedings of the Third International Conference on Concurrent

Theory, pages 237{253, New York, 1992. Springer-Verlag.

[76] S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm. The core-
world: Emergence and evolution of cooperative structures in a computa-

tional chemistry. Physica D, 42:111{134, 1990.

[77] C. Reade. Elements of Functional Programming. Addison-Wesley, Read-

ing, Mass., 1989.

[78] C. R�etor�e. R�eseaux et S�equents Ordonn�es. PhD dissertation, University
of Paris VII, 1993.

[79] D. S. Rokshar, P. W. Anderson, and D. L. Stein. Self-organization in

prebiological systems: Simulation of a model for the origin of genetic

information. J. Mol. Evol., 23:110, 1986.

[80] R. Rosen. Life Itself: A Comprehensive Inquiry into the Nature, Origin,

and Fabrication of Life. Columbia University Press, New York, 1991.

[81] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and

Higher-Order Paradigms. PhD dissertation, University of Edinburgh,

1992.

58

[82] M. Sch�on�nkel. �Uber die Bausteine der mathematischen Logik. Math.

Annalen, 92:305{316, 1924.

[83] B. C. Smith. On the Origin of Objects. Bradford Books, The MIT Press.,

1996.

[84] E. Szathm�ary. A classi�cation of replicators and lambda-calculus models

of biological organization. Proc. R. Soc. Lond. B, 260:279{286, 1995.

[85] M. Th�urk. Ein Modell zur Selbstorganisation von Automatenalgorithmen

zum Studium molekularer Evolution. PhD dissertation, Universit�at Jena,

Germany, 1993.

[86] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29, Center

for the Study of Language and Information, Stanford, California, 1992.

[87] F. J. Varela. Principles of Biological Autonomy. North-Holland, New

York, 1979.

[88] F. J. Varela, H. R. Maturana, and R. Uribe. Autopoiesis: the organization
of living systems, its characterization and a model. BioSystems, 5:187{
196, 1974.

59

Appendix

A �-calculus for tourists

A.1 Conceptual

The modern view of \function" is that of an arbitrary set of pairs - (argu-

ment/value) - whose �rst element is unique. The entire graph of the function

is taken to be available at once, as a given, with no \cost" for its generation.

For example, you are given the following graph, in which a prime is paired

with 1 and a non-prime with 0, as fully completed to the in�nite right.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

In contrast, an older view emphasizes a function as a rule of computation, i.e.,
as a process of symbolic manipulation that produces a value when applied to
an argument.

Given a number n try dividing it by 2 and by each odd

integer up to the biggest integer which is smaller or

equal to the square root of n. If none of the trial

divisors divides n, return 1, otherwise return 0.

The point is that one trades the instant random access to a look-up table which
is so big as not to �t into the universe, with a procedure which �ts into your

pocket, but at the \cost" that it must be carried out. Procedures have to be
expressed in some formal language. The requirement of a language, in turn,

entails a re�nement of the world into \behavior" and \that which behaves."

The former remains the still \ethereal" graph, while the latter is an \object",
that is, a symbolic structure shaped by some sort of syntax that can be subject

to new kinds of manipulation. This procedural or computational paradigm lies
at the base of our project. It takes seriously the fact that in the physical world

one never manipulates behavior, only the objects that behave.

Of course, the above example is no more than a joke; we would have to be

equally explicit about what we mean by \divide", \2", \each", \integer",
\biggest", \smaller", \or", \equal", \square root". It is no joke, however,

that the �-calculus invented by A. Church in the 1930's [12, 13] (following a

trail pioneered by M. Sch�on�nkel [82]) does just that.

60

A.2 Instant Syntax and Semantics

The universe of �-objects consists of terms with a particular structure. This

structure is de�ned inductively, starting from \atoms".

Terms

�-calculus Informal Interpretation Tourist Notation

x
x is an atomic name taken from
some available name space.

x

�x:A

Make the �-term A into a func-
tion of x. This is done by turn-
ing x in A from being a literal
\x" into something replaceable,
a variable. Since x now holds
a place, it's particular name has
lost signi�cance. All that mat-
ters is the link to its correspond-
ing � marker, indicated by writ-
ing �x: One says, x has been ab-

stracted.

Given the expression x2+ 4x+ y

we turn it into a function in x

by declaring x to be a variable:
x! x2 + 4x+ y.

(A)B
If A and B are �-terms, then
their juxtaposition (A)B denotes
the application of A to B

Given the function f : x ! x2 +
4x+y and given 6, we can speak
of f(6).

So far we have only terms. Let's have some action.

Reduction

�-calculus Informal Interpretation

(�x:A)B ! A[x := B]

When applying a function �x:A
to an argument B, we proceed
by literally substituting for the
placeholder x the argument B.
The fact that the place(s) held
by x has (have) been �lled is doc-
umented by removing the place-
holder declaration �x: In the
above example, f(6)! 60 + y.

61

That's all there is.

Some details on reduction

There are two technical details one should be aware of. (i) The abstractor
� has a scope (like an ordinary integral sign), i.e., in (�x:A)B the binding
inuence of � stops at A, and does not continue into B. (ii) The idea be-
hind substitution is to replace equals by equals, meaning that the behavior of
(�x:A)B should be the same as that of A[x := B]. Unbound literals must,
therefore, never get bound during substitution. This one, for example, is ille-
gal: (�x:�y:(x)y)�z: y ! �y:(�z: y)y. The boxed y has been captured by a

�y. To perform the substitution safely, one has to rename the bound y into,
say, w. We skip the formalization of these statements.

In a reduction step an \application" annihilates an \abstraction". Nor-

malization is the process in which all the reductions that are possible within
a term are carried out. At that point a term is said to be in normal form.
The normal form is unique (if it exists - see below). This property of the
reduction relation on �-terms is called conuence. The reexive, symmetric
and transitive closure of the reduction relation is an equivalence relation on
terms, i.e., two �-terms are equivalent, if they have the same normal form.

Within the scope of our chemical metaphor a normal form is the analogue of
a stable molecular form. The application of one (abstraction) term to another
is analogous to a reactive encounter. Such a con�guration is (usually) not
a normal form, and is \stabilized" by normalization - the �-analogue of a
\reaction path". In this view of chemistry, \(free) energy" is that which causes
molecular transition states to stabilize into products and is captured by our
requirement that terms be in normal form. Other aspects of energy, such as
di�erential rate constants, are not captured in Minimal Chemistry Zero (but
see section 2.3.3 for MC2).

Two examples: A
def
== �x:((x)�y:y)x is in normal form; so is B

def
==

�u:(u)�v:v, but not (A)B
def
== (�x:((x)�y:y)x)�u:(u)�v:v. We normalize

(underlining the subterms being reduced at each step):

(�x:((x)�y:y)x)�u:(u)�v:v ! ((�u:(u)�v:v)�y:y)�u:(u)�v:v !

((�y:y)�v:v)�u:(u)�v:v ! (�v:v)�u:(u)�v:v ! �u:(u)�v:v

In this case B is a �xed point of A.
Not every term has a normal form. For example, here's a term which is not

normalizable:
(�x:(x)x)�x:(x)x ! (�x:(x)x)�x:(x)x

A calculus in which every term has a normal form is called strongly nor-

malizing. Our model utilizes only terms with a normal form. Indeed, we even
discard those terms which fail to normalize within some speci�ed limits.

It is worth pointing out that in this version of �-calculus every term can be

applied to every term. Thus, any term can be �lled into the place held by a

62

variable. Or, by means of slogan, there's no syntactical distinction between

function and data. Everything in � is, in some sense, a function. This is a very

powerful concept. You may have wondered where the \numbers" are, or where

the familiar \addition" has gone. No such operations are given. Everything

has to be constructed just with what we've got, i.e., variables, abstraction and

application. (It can be done.) The intriguing feature of �-calculus is in forcing

one to realize that something is, for example, a numeral (a representation

of a number), if it behaves - via application and reduction - like a number.

Something is a numeral when it is a member of a sequence of distinct terms that

have a successor function, and there exists a test for a distinguished element

\zero". Likewise, something is an \addition", if it behaves like an addition in

relation to some system of numerals. Change the system of numerals and the

object that behaved like an addition doesn't anymore. Here's an example of a

numeral system:

�f:�x:x corresponds to 0
�f:�x:(f)x corresponds to 1

...
...

...

�f:�x: (f):::(f)| {z }
n times

x corresponds to n

...
...

...

Relative to it, the addition operation becomes +
def
== �m:�n:�f:�x:((m)f)((n)f)x.

The normalization of 3 + 2 is displayed in table A1. It looks slightly frighten-
ing, but most of the 54 intermediate steps are just necessary rearrangements
in preparation for reductions.

Note then the \relativity" of the system { one de�nes what behaves and gen-
erates behaviors. The power of the system derives from just this exibility.

\Behavior," in the example above, was treated as a device which sends nu-
merals into numerals. This frame need not be maintained. In fact, nothing

prevents us from taking the addition function, +, and apply it to something
else than a numeral - to itself, say. So here is (+)+:

(�m:�n:�f:�x:((m)f)((n)f)x)�m:�n:�f:�x:((m)f)((n)f)x! � � �

� � � ! �n:�f:�x:�u:�v:((f)u)((((n)f)x)u)v

(Where the variable names u and v come from renaming during normalization.)

Can we still meaningfully say that a \function" has been computed? No. In
full �-calculus the notion of a \function" is better replaced by the more vague
notion of an \operator". This point is crucial for our usage of �-calculus.

Indeed, the individual interactions in our reactor by and large don't compute

63

anything, they solely rearrange symbolic structures. The interpretation of their

\behavior" is framed by the algebraic and kinetic properties of the organiza-

tion that their actions participate in maintaining. The same can be said of

chemistry.

((�m:�n:�f:�x:((m)f)((n)f)x| {z }
+

)�f:�x:(f)(f)(f)x| {z }
3

)�f:�x:(f)(f)x| {z }
2

1 (�n:(�m:�f:�x:((m)f)((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
2 (�n:�f:(�m:�x:((m)f)((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
3 (�n:�f:�x:(�m:((m)f)((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
4 (�n:�f:�x:((�m:(m)f)�f:�x:(f)(f)(f)x)(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
5 �f:(�n:�x:((�m:(m)f)�f:�x:(f)(f)(f)x)(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
6 �f:�x:(�n:((�m:(m)f)�f:�x:(f)(f)(f)x)(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
7 �f:�x:((�m:(m)f)�f:�x:(f)(f)(f)x)(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
8 �f:�x:(((�m:m)�f:�x:(f)(f)(f)x)(�m:f)�f:�x:(f)(f)(f)x)(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x
9 �f:�x:((�f:�x:(f)(f)(f)x)(�m:f)�f:�x:(f)(f)(f)x)(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x

10 �f:�x:(�x:(�f:(f)(f)(f)x)(�m:f)�f:�x:(f)(f)(f)x)(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x

..

.
..
.

25 �f:�x:(f)(f)(�y1:(�x:(y1)x)(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f

26 �f:�x:(f)(f)((�y1:�x:(y1)x)f)(�y1:(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f
27 �f:�x:(f)(f)(�x:(�y1:(y1)x)f)(�y1:(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f

28 �f:�x:(f)(f)(�x:((�y1:y1)f)(�y1:x)f)(�y1:(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f
29 �f:�x:(f)(f)((�y1:y1)f)(�x:(�y1:x)f)(�y1:(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f
30 �f:�x:(f)(f)(f)(�x:(�y1:x)f)(�y1:(�n:(�m:((n)f)x)�f:�x:(f)(f)(f)x)�f:�x:(f)(f)x)f

..

.
..
.

43 �f:�x:(f)(f)(f)(�x:((�f:f)(�n:f)�f:�x:(f)(f)x)(�f:(f)x)(�n:f)�f:�x:(f)(f)x)(�n:x)�f:�x:(f)(f)x

44 �f:�x:(f)(f)(f)((�f:f)(�n:f)�f:�x:(f)(f)x)(�x:(�f:(f)x)(�n:f)�f:�x:(f)(f)x)(�n:x)�f:�x:(f)(f)x
45 �f:�x:(f)(f)(f)((�n:f)�f:�x:(f)(f)x)(�x:(�f:(f)x)(�n:f)�f:�x:(f)(f)x)(�n:x)�f:�x:(f)(f)x

46 �f:�x:(f)(f)(f)(f)(�x:(�f:(f)x)f)(�n:x)�f:�x:(f)(f)x
47 �f:�x:(f)(f)(f)(f)((�x:�f:(f)x)(�n:x)�f:�x:(f)(f)x)(�x:f)(�n:x)�f:�x:(f)(f)x

48 �f:�x:(f)(f)(f)(f)(�f:(�x:(f)x)(�n:x)�f:�x:(f)(f)x)(�x:f)(�n:x)�f:�x:(f)(f)x
49 �f:�x:(f)(f)(f)(f)(�f:(f)(�x:x)(�n:x)�f:�x:(f)(f)x)(�x:f)(�n:x)�f:�x:(f)(f)x
50 �f:�x:(f)(f)(f)(f)((�f:f)(�x:f)(�n:x)�f:�x:(f)(f)x)(�f:(�x:x)(�n:x)�f:�x:(f)(f)x)(�x:f)(�n:x)�f:�x:(f)(f)x

51 �f:�x:(f)(f)(f)(f)((�x:f)(�n:x)�f:�x:(f)(f)x)(�f:(�x:x)(�n:x)�f:�x:(f)(f)x)(�x:f)(�n:x)�f:�x:(f)(f)x
52 �f:�x:(f)(f)(f)(f)(f)(�f:(�x:x)(�n:x)�f:�x:(f)(f)x)f
53 �f:�x:(f)(f)(f)(f)(f)(�x:x)(�n:x)�f:�x:(f)(f)x
54 �f:�x:(f)(f)(f)(f)(f)(�n:x)�f:�x:(f)(f)x

5z }| {
�f:�x:(f)(f)(f)(f)(f)x

Table A1: 3 + 2 = 5 in �-calculus.

�-calculus is a theory of equality based on substitution. In a more specialized

sense, �-calculus is a general theory of functions. Having served as a tem-

plate for LISP, it inspired the \functional style" of programming. Moreover,
as detailed in text, �-calculus has served as a tool in constructive proof-theory

and, accordingly, in mechanizing parts of logic (see section C.1). This makes

64

�-calculus an almost obligate check point when introducing new paradigms of

computation to which properties such as termination, conuence, normaliza-

tion, or substitution are central. In the computational sciences these ingredi-

ents of �-calculus play a role comparable to that of the fundamental principles

of physics [55]. Good introductions are Hankin [40] or Lalement [55], an en-

cyclopedic treatment for a�cionados with a good pair of shoes is Barendregt

[4].

A.3 Beyond �

The limits of �-calculus are found in its inherently sequential paradigm. This

is reected by its non-commutative basic mode of interaction, application.

What would be a commutative analogue? This question leads one to paral-

lelism, or more precisely, concurrency. In contrast to sequentiality, the con-

current paradigm of computation considers a system of many heterogenously

behaving independent entities that \interact" with one another (usually asyn-
chronously). The proper technical word for interaction in such a setting is
communication and the entities are called processes. The theory of communi-

cation and concurrency is among the most exciting and challenging frontiers in
today's computational sciences. This is obviously not the place for a tutorial
in concurrency; some places to start are [42, 65, 67]. Here we paint with a
broad brush just some of the issues at stake so as to situate our work relative
to it.

The transition from the concept of \function" to that of a \process" is illus-
trated by means of an example due to Robin Milner [67]. Consider the behavior
of the following program, A, where \:=" means an assignment:

1: x := 2; (assign 2 to x)

2: y := x+3; (assign to y the content of x plus three)

3: print y;

Clearly, the program A will print 5. Suppose now that there is a further con-
currently running program B that has access to the memory location referred
to by x in A. Such a program can alter the value at x after A has executed

its �rst statement and before it executes the second. As a consequence, the

observation of A does not yield a speci�c result anymore; it may print any-
thing, depending on the behavior of B. This is the kind of situation that the

theme of \communication and concurrency" is roughly about. The concept
of \process" emphasizes behavior primarily as the ability to communicate at

various points in time [41] rather than a computational activity. The issue, as

emphasized in [75], is one of an apparent duality of time and information.

65

What is being communicated? The simplest kind of communication is a syn-

chronization between two processes, i.e. a \handshake". One process pauses

until it receives a signal from another upon which it resumes its behavior [64].

The next order of communication involves the sending and receiving of port

names themselves. This yields a system where \pointers" are passed around,

thereby changing the communication topology of the system over time [68, 69].

At the next order whole processes rather than their address can be communi-

cated [81]. This in turn raises the issues of \access" and \privacy". On the

formal side the challenge is to �nd \calculi" which enable to reason about var-

ious notions of processes and their equivalence, in analogy to what �-calculus

does for the sequential realm.

Communication occurs between ports of processes. Ports are named, and

each name has a complement. For example: a and a, where a may stand

for an input port and a for an output port. Communication can only occur

between ports that bear complementary names. This ensures commutativity

of communication by de�nition.

�-calculus

One foundational attempt at mobile processes (systems with changing com-
munication topology) is the �-calculus of Milner, Parrow and Walker [68, 69].
Just to give a glimpse of it for the purpose of comparison with �-calculus,
here's a �-expression:

�xy:A| {z }
1

j x(u):�uv:B| {z }
2

j y(z):C| {z }
3

It denotes a soup of three processes, 1; 2; 3, that co-exist independently. This
concurrence is expressed by the operator j. The processes in the example are
only partially speci�ed, since A;B and C stand for further structure which
we disregard. �xy means \output the name y along channel x", while x(u)

means \receive a name along channel x and substitute that name for u in the
remaining process" (this input pre�x binds u much like a �). In the above
example a communication can occur between process 1 and process 2 along
channel x, yielding:

A|{z}
10

j �yv:B[u := y]| {z }
20

j y(z):C| {z }
3

The point is that, as a result of this event, process 2 (now 20) has obtained a
port name that enables it to communicate with process 3:

A|{z}
10

j B[u := y]| {z }
200

j C[z := v]| {z }
30

Concurrent processes can occur embedded within a process, such as in �xy:(AjB).
Furthermore, there is a scoping operator � which restricts the use of x to pro-
cess A in (�x)A, and there is a choice operator + behaving so that in A + B

66

a communication with A destroys B and vice versa. Finally, there is a repli-
cation operator !A which permits process A to spin o� further copies of itself
allowing for recursion.

\j" might be a way to notate the concurrency of the �-particles in our ow-
reactor. As in �-calculus, a \type"-discipline for �-calculus can be de�ned.
For the further development of our model, we are inclined towards the logic
path to concurrency rather than �-calculus, as developed in the text. Readers
wishing to further explore �-calculus are referred to [66].

The world of functions and the world of processes emphasize the halting prob-

lem di�erently. While termination is a desideratum for functions or algorithms,

the opposite is typically true for processes. There one looks for conditions

under which a community of processes is guaranteed never to dead-lock, as

there are many situations where ongoing communication or interactivity is

required. Examples include operating systems, whether in air tra�c control

systems, computer systems, mobile telephone networks, or...living and cogniz-

ing systems. The focus on the absence of dead-lock shifts the attention from

computation to organization. This clearly locates concurrency very close to
our project.

B Types for tourists

B.1 The chemistry of types

Types are a high-level statement about the behavior of objects. A conventional
addition function, for example, has type N �N ! N , meaning that it accepts
pairs of integers, and returns integers. This is not su�cient to distinguish it

from a subtraction function, but is enough to distinguish it from a function

that adds \carriage returns" to a string of characters. The de�nition of a type

system decides on how much about the actual behavior of an object is conveyed
by its type. A type system also provides a procedure to infer the type of a

compound object from the types of its components.

We �rst need a way to express types. The notation is inductive like the syn-
tax of �-calculus. We start by de�ning a set of atomic types, called simple

(or ground) types, say T = fa; b; c; : : :g. From simple types we construct com-
pound types with the help of type constructors. This is analogous to �-calculus

where compound terms are built from two term constructors - abstraction and
application (see Appendix A). The choice of type constructors reects the

kind of actions one seeks to capture. For the sake of simplicity we consider

here only one type constructor: the function type \!". A type, then, is either

67

� a simple type: s 2 T , or

� a function type: s! t, where s and t are types.

The function type s ! t denotes a mapping which accepts objects of type s

and returns objects of type t. Think of it as one kind of chemical bond (\!").

It links together the action(s) of atoms (or groups of atoms).

The type system is coupled to the �-calculus by means of inference rules based

on the structure of �-terms. Let's proceed intuitively at �rst: if a variable x

in �-calculus has type s, notated x : s, and if the expression E has type t,

notated E : t, then the term �x:E has type s ! t, notated �x:E : s ! t.

What we have just made is a bond connecting action s with action t. The

corresponding term - the abstraction �x:E - is the physical bond - as opposed

to its type (!) which indicates it's potential chemical activity. Indeed, a bond

that can be made, can be broken. This holds for types as well. When the

object �x:E whose action is s ! t is brought into contact with an object
F : s, the bond is broken, and the action t is recovered: (�x:E)F : t. The
corresponding normalized object can be shown to have the same type. The fact

that the type doesn't change upon normalization indicates that types do not

compute results; the computation is done by the �-calculus mechanics. Types
are just a statement about the possible reactions and results.

Summing up, \abstraction" makes bonds, \application" breaks bonds (of the
\!" kind). A bond works here like an \if-then" relation, since s! t speci�es
the conditions that have to be met to break and to release the \then" portion
(in this case simply to encounter an object of type s).

B.2 Polymorphism

A function of type s ! t, where s and t are simple types, is monomorphic,

because - in terms of our metaphor - it only has one shape: it recognizes only

things of the shape s, and it returns things of the particular shape t. Seen this
way there are in�nitely many identity operations, �x:x, with di�erent types -
such as: a! a, b! b, (a! b)! (a! b), etc. - yet all do the same thing. In

fact, these di�erent types are but speci�c instances of a generic type � ! �,

where � can be anything. Because it can be anything,we can treat it as a
variable - a type variable. This is expressed as 8�:�! �, also known as a type

scheme. The introduction of type variables yields the concept of a polymorphic

type. In contrast to a monomorphic operator, a polymorphic one can act on

a variety of things with di�erent shapes. For example, a function with type

8�:(� ! a) ! (b ! �) can operate on any object which is an instance of
the type 8�:�! a, such as c ! a or 8�:(c! �)! a, but it cannot act on

68

instances of 8�:�! c. In the context of the chemicalmetaphor, polymorphism

means that our abstract molecules can have di�erent degrees of \speci�city".

Some could be \rigid" (monomorphic), others could be completely unspeci�c,

and still others could cover the spectrum of speci�city in between.

B.3 Type inference

Given the structure of a �-term how do we infer its type? To begin with we

assign type schemes to certain variables initially. This initial assignment, A,

has the status of a boundary condition. It speci�es our \chemistry". We will

write the derivation of type � for the expression P under the assumptions A

as an inference: A ` P : � (read: \from A derive P of type �"). Here's the

complete set of rules for this game [55, 63], which we explain intuitively below:

Tautology x : � 2 A ` x : �

Instantiation
A ` e : �

(� > �0)
A ` e : �0

Generalization
A ` e : �

(� not free in A)
A ` e : 8�:�

Application
A ` e : � 0! � A ` e0 : � 0

A ` (e)e0 : �

Abstraction
Ax [fx : �

0g ` e : �

A ` �x:e : � 0! �

Let
A ` e : � Ax [fx : �g ` e

0 : �

A ` (let x = e in e0) : �

The meaning of the Taut-rule is simply that a free variable has the type as-
signed to it in the boundary condition. If there is no assignment the expression

x is not typable, and is barred from the universe.

The meaning of rule App is also clear. It is useful, however, to know how the

rule is implemented, since it introduces an important concept. Suppose that
we have an object e whose type has been established to be �, and that we

want to apply it to an object e0 of type � 0. For this to be possible e must have
a type of the form � 0 ! � where � stands for a generic unknown type of (e)e0

that needs to be determined. Hence, for the interaction (e)e0 to be possible e's

established type � and the required type � 0 ! � must be made equal. This

69

may be possible, since � and � 0 may contain type variables which can be made

more speci�c in order to satisfy the equality. This means we must look for

some type substitution T of the free variables in � and in � 0 ! � such that

T� = T (� 0! �). T is called a uni�er, and the procedure for �nding T is called

uni�cation. It boils down to solving a set of equations. For details about how

this procedure is carried out the reader is referred to any standard textbook

on type theory. The point is that a successful uni�cation will end up with a

particular � , the desired type of (e)e0. If uni�cation is not successful, then e

cannot be applied to e0, i.e., the interaction term (e)e0 does not exist.

It is clear now that a type system poses constraints on permissible �-terms.

For example, �x:(x)x is not any longer an element of the universe of objects,

for it has no type. To type the subterm (x)x we would have to �rst assume

the generic type � for x, and then use rule App which requests that x be of

type �! �. But the equation � = �! � is recursive and has no solution (in

this type system).

Recall that we model a chemical reaction by the application of a function:

(�x:E)F . In Let the argument, F , is typed �rst, and then its type is assigned
to the variable x when proceeding in the type synthesis of E. The Let rule
allows for more general interactions than are otherwise permitted byApp. We
use Let to model a reaction.

Finally, the Abs-rule is used like this. If the variable x has a type assigned
in the boundary condition A, � 0 say, then we must use � 0 in the derivation of
the type for the function body e. If e is determined to have type � , then the

whole expression is � 0 ! � . On the other hand, if x has no assignment, then
we are free to temporarily assume one. We assume a generic �, and proceed
to derive the type for e. During this process the assumed type � may need
to be specialized into � 0(< �) to meet type constraints (viz uni�cation). The
resulting type for the overall expression is � 0 ! � , and the boundary condition

A is left unchanged.

The other two rules, Gen and Inst, are used to generalize and to instantiate

(specialize) a type in a particular way. Their explanation is not crucial at this

level of discussion, and we skip it.

C Logic background

C.1 The Curry-Howard isomorphism

The Curry-Howard isomorphism [45] provides a rigorous link between the com-

putational sciences and logic.

70

Recall the two rules for typing abstraction and application in �-calculus (Ap-

pendix B):

Abs
A [fx : � 0g ` e : �

A ` �x:e : � 0! �

App
A ` e : � 0! � A ` e0 : � 0

A ` (e)e0 : �

The notation is understood as a rule which links the two hypotheses (above

the horizontal line) with a conclusion (below the line).

Take for instance the Application rule and consider what remains when ev-

erything but the type information is erased:

� 0 ! � � 0

�

Now read � 0 and � as logical propositions, and interpret the function arrow \
!" to mean logical implication. Then, if we know that � 0 implies � , and if we
know that � 0 actually holds, then we can conclude that � holds. This logical
inference is known as modus ponens. For example, empiricists routinely use

this inference, reasoning that if an event � is known (say, by prior experiment)
to be contingent upon an event � 0, and � 0 is an empirical observation in a
current experiment, then we observe � in the current experiment.

In logic, \to know that a proposition holds" means to prove it, i.e. to stepwise
assemble the proposition with the help of a \sca�old" (the proof). Made of
special building blocks (rules of inference), a proof is a syntactical object just
like a �-term. Let us symbolize the text documenting the proof of a hypothesis

with vertical dots (meaning, \insert the formal steps of proof here"):

�
�
�
�
a proof

� 0! �

�
�
�
�
another proof

� 0

�

Now, this could be seen as a proof of the proposition � by combining a proof
of � 0! � and one of � 0. Indeed, modus ponens is a step in the construction of

proofs. We could use the following scheme to name the steps in the proof:

�
�
�
�
e

� 0! �

�
�
�
�
e0

� 0

�

9>>>=
>>>;
(e)e0 (10)

71

This, however, is precisely the rule for typing an \application" (here, (e)e0) in

�-calculus (App). From this point of view the rule for typing an Abstraction

is interpreted as:

[� 0]
�
�
�
�
e

�

� 0 ! �

9>>>>>=
>>>>>;
�x:e (11)

This is meant to illustrate that a proof of � , using the assumption � 0, is a

proof of � 0! � where � 0 has been removed from the list of assumptions. One

says that � 0 has been discharged10. In typed �-calculus a free (unbound) x is,

therefore, seen to stand for an assumption made (of type � 0). \Abstraction"

- i.e., the binding of x as a variable - discharges that assumption, yielding a

logical implication. Indeed, the object �x:e is a function. The function takes a

(proof of the) proposition � 0 and returns a (proof of the) proposition � ; hence
it proves � 0 ! � .

The two rules (10) and (11) together de�ne what \!" means by stating how
to eliminate and how to introduce it, respectively, from a logical formula. The
implication connective is introduced by shu�ing an assumption from the proof

(the meta-language) into the logical formula (the object-language) which now
keeps track of it11. The implication connective is eliminated by supplying a
proof for the assumption expressed in the implication. Analogous rules of
introduction and elimination exist for disjunction (_), conjunction (^), and
for the existential (9) and universal (8) quanti�ers in the predicate case. This

style of proof-presentation is called \natural deduction". We have introduced it
here not for its direct utility in the chemical metaphor, but because it provides
the simplest and most gentle connection between a logic and the typing of
�-terms.

Proof-normalization

How is the �-calculus reduction process reected in proof-theory? Reduction in
�-calculus is triggered by the application of a �-expression to another: (�x:e)e0

which becomes e[x := e0]. The expression (�x:e)e0 corresponds to a proof where

10This fact, however, must be recorded, for example by wrapping � 0 into square brackets.
This introduces a \non-local" action, i.e., an annotation at a location in the proof tree that
is removed from the horizontal bar in (11) where things are currently happening. This will
be avoided in another syntactical system introduced in Appendix C.2.

11Stated di�erently, if we can prove � from assumption � (i.e. � ` �), then we can prove
� ! � from no assumption (i.e. ` � ! �). This is the \deduction property" of logical
consequence (`).

72

the introduction of an implication (abstraction) is immediately followed by its

elimination (application). Consider the case sketched below.

[� 0]
�
�
�
�
e

�

� 0! �

�
�
�
�
e0

� 0

�

�!

�
�
�
�
e0

� 0
�
�
�
�
e

�

Here a proof is \normalized" by replacing copies of the derivation ending in � 0

(i.e., right branch) for every discharged assumption � 0 in the derivation on the

left branch (i.e., top-most segment of left branch).

C.2 Sequent calculus

Whenever a theory has \objects" as its subject, notation becomes of paramount
importance. The reason is that to a good extent the theory is the notation.

Major perspectives on logic are, therefore, characterized by di�erring nota-
tional systems.

One of them is Gentzen's sequent calculus, introduced here and elsewhere
[32, 19], as a natural bridge between the natural deduction systems/types (dis-
cussed above) and linear logic (a discussion of which follows). The judgements
derived in sequent calculus are not individual formulae like in the previous case,
but rather ensembles of formulae. These judgements are called \sequents", and

are of the form � ` �, where the turnstile indicates \logical consequence" and
� and � are multisets of formulae, i.e. sets where some formula may occur
more than once. The connection between sequent calculus and natural deduc-
tion is direct in the case where the right side of the turnstile contains a single
formula: the proof of the judgement � ` corresponds to the deduction of

under the hypotheses �. The sequent notation is a device to keep track of all
assumptions made and all formulae derived up to any point in the proof tree

(collecting assumptions on the left and conclusions on the right). In contrast

to \natural deduction" (Appendix C.1, footnote 10), this makes the proof tree
construction entirely local; what can be done at any stage depends solely on

the end point of the tree.

The rules of the calculus - which we do not explain in detail here - taken

together de�ne the exact meaning of a sequent. The sequent

�1; : : : ; �n ` 1; : : : ; m

means that the conjunction of the \antecedents" (�1 and �2 and : : : and �n)

implies the disjunction of the \succedents" (1 or 2 or : : : or m), i.e. �1 ^

73

: : :^�n ! 1 _ : : :_ m Stated in terms of a Boolean valuation B the sequent

(12) says that \if all �i are true (under B), then at least one i is true (under

B)".

Sequent calculus makes the symmetries and the algebraic properties of the log-

ical connectives visible. In sequent calculus, like in natural deduction, proofs of

judgements are built inductively by linking together other judgments through

speci�c rules all the way up to assumptions or axioms. To provide the reader

with the avor of the system, we show the rules for implication (!). Cap-

ital letters denote multisets of formulae, lower case letters denote individual

formulae.

left
� ` �;� �0; ` �0

�;�0; �! ` �;�0
right

�; � ` ;�

� ` �! ;�
(12)

For the purpose of an intuitive explanation, let us suppose that each judgement

contains only one succedent, i.e., � = ; and �0 = �. The left rule then
means: (i) we know that under the stated conditions � holds (left branch
above the horizontal bar), and (ii) we know that under the stated conditions
the assumption of gives us � (right branch above the bar). Clearly, if we

can show that � (what we have) implies (what we lack), then � would follow
(under the stated conditions). This is tantamount to saying that we can derive
� from assuming the formula �! in that context, and that is what appears
below the bar.

Conversely, the right rule says that if - in a given context � - we can derive
 by assuming �, then we can derive from the context � alone that � ! .
This transfers the assumption from the meta-language of the proof to the

object-language of the logical formula.

In sequent calculus logical connectives are introduced on the right and the

left side of a judgement corresponding to introduction and elimination rules,
respectively, in natural deduction (see Appendix C.1 and the rules for implica-

tion (12)). Similar symmetric schemes hold for the other logical connectives.

Sequent calculus needs no axioms beyond the rules of proof, since it allows the
use of arbitrary identities at any time:

� ` �

An important feature of the calculus is the existence of three \structural" rules
to manipulate proofs. They do not introduce logical connectives on either side:

74

� ` �

�; � ` �

� ` �

� ` �;�
weakening

�; �; � ` �

�; � ` �

� ` �; �;�

� ` �;�
contraction

The weakening rule \weakens" a proof by introducing antecedents or succe-

dents that are unnecessary. If the weakening of the succedent strikes you as

peculiar, remember that the succedent of a judgement is the disjunction of its

formulae. In �-calculus weakening corresponds to the declaration of a variable

which never occurs in the body of the function, e.g., �x:�y:y. Operationally it

means \discarding an input", since the argument supplied for x evaporates.

The contraction rule means that one can use as many copies of a formula as one

wishes. In other words: there is no resource accounting in classical logic. In

�-calculus this corresponds to \nonlinearity", i.e., to the multiple occurrences

of the same variable within the body of a function, e.g., �x:(x)x.

The third structural rule is the so-called cut-rule:

� ` �;� �0; � ` �0

�;�0 ` �;�0
cut (13)

The cut rule achieves a result in two steps: (i) by using a particular assumption
� (right branch) and by (ii) proving that assumption (left branch). This cor-
responds to a proof which uses \lemma" �. Notice that in the proven sequent
(below the bar) � has been annihilated.

Cut and modus ponens

The cut rule is just another way of stating modus ponens (m.p.) of natural
deduction. The sequent version of modus ponens is:

� ` �! � ` �

� `

In

� ` �!

�;� ` �!

� ` �

�;� ` �
m.p.

�;� `

we have used weakening and m.p. to derive a generalized m.p. (boxed sequents)
with unequal contexts in the assumptions. From this generalized m.p. one
derives cut:

� ` �

�;� `
right !

� ` �!
m.p.

�;� `

75

Cut-elimination

The cut-rule deserves a special place in the order of things, and we explain

why this is so at some length. The cut-rule (9) enables the combination of

two proofs into a single proof, provided they can - metaphorically speaking

- \trade" on a formula �. The necessity to \trade" arises if one proof needs

�? (it books � as an assumption), while the other provides � (it books � as a

conclusion).

The key point about sequent calculus is the famous Hauptsatz of Gentzen,

which says that cut is not needed, meaning that the sequent calculus with cut

can prove as much as the one without it. The main message comes from how

this is achieved. The theorem is proven by exhibiting a procedure through

which the cut-rule can be eliminated from a proof without a�ecting the overall

conclusion. The crucial step consists of replacing the occurrence of a cut by
one or more cuts on formulae with smaller complexity. In this way the cut(s)
bubble toward the leaves of the original proof-structure until they encounter
an identity and disappear, i.e., cutting � ` ;� with ` leaves � ` ;�.

Cut-elimination

As an example consider the following cut on an implication introduced by
the left and right rules (12):

�
�
�
�

�; � ` �;

� ` �; �!

�
�
�
�

� `
; �

�
�
�
�

 ;� ` �

�;�; �! `
;�
cut on �!

�;�;� ` �;
;�
�
�
�
�

In the process of cut-elimination this proof-segment is replaced by:

�
�
�
�

� `
; �

�
�
�
�

�; � ` �;
cut on �

�;� `
;�;

�
�
�
�

 ;� ` �
cut on

�;�;� ` �;
;�
�
�
�
�

The two cuts which replace the previous one occur on less complex formulae,
and since formulae are �nite, this process will bottom out when a cut is �nally

76

made on an identity at the leaf of the proof tree. Similar procedures can be
carried out for all connectives, independently of whether they are introduced
left and right at the same level.

Cut-elimination does something analogous (but not formally identical) to re-

duction in �-calculus. It replaces each occurrence of the assumption � with

a proof of it. Proofs that use cut are much easier to understand, since they

are \modular" in the sense of using generic packages, which can be specialized

\on demand" in di�erent ways; for example, the package � ` � can be spe-

cialized by means of 	 ` � to give 	 ` �, or with
 ` � to give
 ` �, etc.

More speci�cally, a proof may �rst derive the theorem (a+ b)2 = a2+2ab+ b2

and then use it via cut twice, once with a = 5 and once with a = 2. In

the cut-free proof the (a + b)2-theorem would be derived once speci�cally as

(5+b)2 = 25+10 �b+b2 and once speci�cally as (2+b)2 = 4+4 �b+b2 without

exploiting the fact that these are two instances of the same generic structure.

What happens is similar to the application of a function to a particular ar-
gument. In fact, for certain versions of the logic (e.g., if sequents are limited
to only one formula on their right side) cut is exactly analogous to functional
application, and the process of cut-elimination corresponds to the evaluation

of the function, i.e. it represents the computation. In that case a cut-free
proof basically corresponds to a normalized proof in natural deduction; it is a
canonical proof [38].

C.3 Linear logic for tourists

In 1986 Jean-Yves Girard introduced linear logic. The systemmay be regarded
as a theory about the control of the contraction and weakening rules (see
Appendix C.2) of classical logic. In linear logic a formula stands by default

for a single occurrence which must be used exactly once. A formula may be,

nonetheless, explicitly marked as potentially available in any number of copies
(! , read as \of course "). Such a supply, however, may be accessed only by
another modi�er (? , read as \why not "). A naked (not under the scope

of ! or ? modalities) means exactly one copy of the formula . In this spirit

the logical connectives become descriptions of actions in which formulae are
consumed.

To avoid confusion with the classical meanings, linear logic has its own nota-
tion. Linear implication is written as � �, and means that is used up
when giving rise to �. Linear implication is, therefore, a causal relation. The

symbol
 (read: \cross") denotes a linear conjunction, for example,
 in-
dicates the cumulation of two instances of obtained from disjoint resources.

77

The resource sensitivity of linear implication does not permit, for example,

 � (
). This is in marked contrast to the classical case where ! (^)

is a provable formula.

To appreciate the meaning of this discipline, suppose that atomic formulae

stand for real-world tokens. To use a textbook example, consider a vending

machine which distributes soda cans and chocolate bars for one dollar each. We

could use linear logic to characterize its behavior. Actions like dollar � soda

or dollar � chocolate are possible, but not dollar � (soda
chocolate).

However, we surely have (dollar
dollar) � (soda
chocolate). Note that

dollar � soda is - like dollar - an action resource that can be used only once;

it speci�es the conversion of a particular dollar into a particular soda. To

express the idea that this vending machine always converts dollars into sodas

or into chocolates, we write !(dollar � soda) and !(dollar � chocolate).

The control over weakening and contraction has the consequence of requiring

us to distinguish between di�erent avors of the classical connectives according

to the way resources are being used. Classical conjunction, ^, splits into two

linear connectives
 (\cross") and & (\with"). The formal reason is shown in
the detail-box below. The di�erence can be roughly summarized as follows.

acts as an accumulator of resources. In �
 both � and have been obtained
from disjoint resources, then glued together into a pair which we must use as
a unit. In � & both � and arise from the same resource, and, therefore,

we cannot have them both, but must choose one of them. By projecting out �
from � & we lose and vice versa. This di�erence is reected by our vending
machine which doesn't have an action dollar � (soda
chocolate), but does
behave like dollar � (soda & chocolate). Note that choice is in the hands
of the consumer, hence & is also called an \internal choice".

The splitting of classical conjunction [86]

Consider the case of classical conjunction, ^, in sequent calculus. We could
use the following right ^-introduction rule:

R^:
�0 ` �;�0 �1 ` ;�1

�0;�1 ` �^ ;�0;�1

However, we could equally well use:

R�
^:

� ` �;� � ` ;�

� ` � ^ ;�

In fact, by virtue of weakening and contraction both rules are equivalent. We

78

can derive R�
^ from R^:

� ` �;�

� ` ;�
weakening

�;� ` ;�
weakening

�;� ` ;�;�
R^

�;�;� ` � ^ ;�;�;�
==================

� ` � ^ ;�

where the double bar indicates the use of multiple contractions. And we can
derive R^ from R�

^:

�0 ` �;�0

�0;�1 ` �;�0

�0;�1 ` �;�0;�1

�1 ` ;�1

�0;�1 ` ;�1

�0;�1 ` ;�0;�1

R
�
^

�0;�1;�0;�1 ` � ^ ;�0;�1;�0;�1

=============================
�0;�1 ` � ^ ;�0;�1

Similarly, the classical left ^-introduction rule can be written as:

L^:
�; �; ` �

�; � ^ ` �

But equally well one could use:

L1�^ :
�; � ` �

�; �^ ` �
L2�^ :

�; ` �

�; �^ ` �

The classical equivalence of L
f1;2g�
^ with L^ is again easily established. From

L
f1;2g�
^ to L^ by means of contraction:

�; �; ` �

�; �^ ; ` �

�; � ^ ; � ^ ` �

�; � ^ ` �

We skip the other direction, from L^ to L
f1;2g�
^ , where weakening is used.

When contraction and weakening are absent, as in linear logic, the two
sets of left/right introduction rules are no longer equivalent. Consequently,
the connectives they introduce must be distinguished. Let us denote by

(\cross") the conjunctive connective obtained by the previously unstarred L/R
pair:

R
:
�0 ` �;�0 �1 ` ;�1

�0;�1 ` �
 ;�0;�1

L
:
�; �; ` �

�; �
 ` �
(14)

79

As can be seen from the rules,
 is a \context-free" or \multiplicative" version
of conjunction, in the sense that there is no restraint on the contexts for the
R
-rule (�0;�1). With the connective
, the side formulae of each premises
are accumulated in the conclusion. It is in this sense that that
 acts as an
accumulator of resources.

The other conjunctive connective, & (\with"), is de�ned by the previously
starred L�/R� pair:

R&:
� ` �;� � ` ;�

� ` � & ;�
L1
&
:

�; � ` �

�; � & ` �
L2
&
:

�; ` �

�; � & ` �

In contrast to
, the contexts must be the same for the R-rule to be applicable
here. This makes & \contextual" or \additive" in the sense of a superposi-
tion. Said di�erently: the side formulae in each premise coincide with the side
formulae of the conclusion, and, hence, & is not accumulative.

It is worth pointing out that, in the absence of contraction and weakening,
the split between the introduction rules must occur in the way just shown.
There cannot be a conjunction introduced, for example, by the L�/R pair of
rules. Cut-elimination would fail otherwise (see [86]). (In the classical case -
where contraction and weakening ensure equivalence between
 and & - it is,
however, customary to use the L�/R pair of rules to introduce ^.)

Similar arguments hold for classical disjunction, _, which in the absence of

contraction and weakening splits into two linear connectives: P (\par") and
� (\either"). Again, with respect to resources the former is \cumulative"
and the latter expresses \superposition". Like \with", � is a choice, but in
contrast to \with" the choice is external to the action. For example, our
vending machine may be defective at times and swallow your dollar return-

ing nothing. This choice is not under the control of the customer, hence:
dollar � ((soda & chocolate)� nothing).

The connective P in � P expresses a mutual dependency of � and , which

can be stated through linear implication. � P is equivalent to both �? �
or ? � �. The symbol ? denotes \linear negation", and is de�ned by formal
�at. First, one postulates (like in classical logic) equivalence between �?? and
�, i.e.

�??
def
== �

This property is also called \involutivity". Second, negation expresses dualities
between the linear connectives, much like the deMorgan laws in classical logic
(e.g., � _ = :(:� ^ :), where : is classical negation):

(�
)?
def
== �? P ?

(� P)?
def
== �?
 ?

(��)?
def
== �? & ?

(� &)?
def
== �? � ?

80

The involutivity of negation allows to pass from two-sided sequents, � ` �, to

equivalent one-sided sequents, ` �?;�, where �? is the linear negation of all

formulae in �. With respect to logical consequence, `, linear negation behaves

like a matrix transposition in linear algebra.

One-sided sequents

One-sided sequents utlize the dualities expressed by ? to halve the rules
needed for de�ning the linear connectives. For example, take the de�ning rules
for
 (14), and pass to the one-sided version by linearly negating what's on
the left:

R
:
` �;�?0 ;�0 ` ;�?1 ;�1

` �
 ;�?
0
;�?

1
;�0;�1

L
:
` �?; ?;�?;�

` �? P ?;�?;�

Because one-sided sequents are right-sided, nothing much changes with respect
to the right rules. The left rule of
, however, becomes the right rule for P.
A similar situation occurs with the two-sided rules for P, the right one stays,
and the left one turns into the right one of
.

This has a very important consequence. The cut rule becomes symmetric,

in the sense that there is no distinction between a premise and a conclusion
within a sequent:

` �; � ` �?;�

` �;�

The asymmetry between \premise" and \conclusion" is mirrored in the com-
putational arena by the role-asymmetry between function and data, despite

their syntactic indistinguishability. A function sends a premise into a conclu-
sion and the datum supplies the premise. Ultimately this asymmetry reects
the sequential paradigm of a functional calculus. Its removal makes linear logic

one approach to concurrency (Appendix A.3).

Cut can occur between any formula and its dual (negation). The connective
P, for example, is the dual of
, and � P can be cut with �?
 ?. The

situation has an especially elegant \geometric" interpretation in Girard's proof-

net concept [33] (see Appendix C.3.2) which is a sequent-calculus stripped to
its syntactical bare bones.

C.3.1 The rules of the game

For the purpose of reference we conclude with a table of the connectives and

the standard set of rules for the multiplicative and additive fragment of linear

logic (i.e., MALL, this the fragment without ! and ?).

81

The linear connectives

disjunction conjunction resource use

P
 cumulative
� & superposition

 � duality �!

The rules for the linear connectives

(Although we have treated sequents as (multi)sets, i.e. ` �; �; is the same as

` �; ; �, the permutation rule is stated as an explicit reminder that sequents

are modulo permutation.)

Identity and cut

identity
` �; �?

` �; � ` �?;�
cut

` �;�

Permutation

` �
�0 is a permutation of �

` �0

Connectives

` �; � ` ;�
times

` �
 ;�;�

` �; �;
par

` � P ;�

` �; � ` ;�
with

` � & ;�

` �; �
l-plus

` �� ;�

` �;
r-plus

` �� ;�

The system with only the boxed connectives is known as the multiplicative
fragment of linear logic (MLL). We have not formally used the exponential
modalities ! and ? in this appendix or the main text. We therefore skip their

proof-theoretic de�nition. The reader is referred to [37] for details.

82

C.3.2 Proof-nets

Consider a proof of the sequent ` (A
B?)
 C; (A? P B) P (C?
D);D?

using the rules listed in the previous section:

` A;A? ` B;B?

times

` A
B?; A?; B
par

` A
B?; A?
P B ` C;C?

times

` (A
B?)
 C;A?
P B;C? ` D;D?

times

` (A
B?)
C;A?
P B;C?
D;D?

par

` (A
B?)
 C; (A?
P B) P (C?
D);D?

The atoms A;B;C;D and their negations are introduced as identities at the

leaves of the proof. All other occurrences of these atoms derive from their

�rst introduced instance. Writing the connectives as labelled wires between
formulae, and connecting with a straight wire a formulae and its negation (as
they always are introduced together), we can draw a picture of the above proof
where only the essential information is recorded. Every formulae occurs exactly
as many times as it has been introduced through identities. Figure 8 shows the

proof above in this more concise notation; it is called a proof-net [33]. The rules
for building proof-nets within MLL are fairly straightforward. A formulae and
its negation are always connected by a wire. They form the simplest proofnet.
A
 connects two disconnected proof-nets, and a P connects two parts within
the same proofnet.

888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888
888888888888

A⊥ B

D D⊥

&

x&

0000000000
0000000000
0000000000
0000000000
0000000000

x

A B⊥

C C⊥
x

β

α
γ

Figure 8: A proofnet.

The three shaded regions �; �; partition the proof-net in �gure 8 exactly into
the formulae of the conclusion sequent: �

def
== (A
 B?)
 C, �

def
== (A? P

B) P (C?
D) and
def
== D?. The boundaries of each region are always given

by atomic links. The formula represented by the �-region can be cut with its

dual �? (= ((A
 B?)
 C)? = (A? P B) P C) from another proof-net.

83

The elimination of the cut amounts to disconnecting the cut-formulae at their

atomic links and discarding the cut-formulae (but see �gure 7, section 2.3.3).

For an excellent introduction, see the appendix by Y. Lafont in [38].

The proof-net concept can be extended to full linear logic with the exponen-

tials, ! and ?, as well as the additive connectives � and & . The handling of

proof-nets, however, becomes much trickier than in the simple case considered

here.

84

