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THE IMPACTS OF CLIMATE CHANGE, 
C02,  AND SO2 ON AGRICULTURAL 

SUPPLY AND TRADE: 

AN INTEGRATED ASSESSMENT 

G. Fischer a d  C. Rosenzweig 

Abstract 

The analysis of the impacts of alternative future energy paths on the regional supply and trade of 
agricultural commodities is part of an integrated assessment study undertaken at IIASA. For the 
agricultural study, results from the energy models (i.e., 11R and MESSAGE 111) of IIASA's 
Environmentally Compatible Energy Strategies project and from the regional air pollution model 
RAINS developed by IIASA's Transboundary Air Pollution project were compiled to define the 
economic and environmental conditions for a number of simulation experiments with the BLS 
model. 

This paper examines the impacts of climate change and altered concentrations of C02 and SO2 in 
the atlnosphere, on crop yields and regional food supply. Three different emission abatement 
sccnarios are tested, representing a rangc of possible econornic development and regulatory 
pathways. 

Emission abatement, in terms of agricultural and environmental impacts, is a regional issue much 
more than a global one. While there is relatively little difference between outcomes at the global 
levcl, regional results vary greatly between scenarios. 

1. Introduction 

Changes in climate and the atmosphere will alter the agricultural production potential 

in various regions of the world. Rising levels of atmospheric carbon dioxide (C02)  will 

result in increased agricultural productivity and enhance the crop water-use efficiency. 

Global warming will tend to expand the agro-ecological potential polewards and into 

higher altitudes. These positive effects, however, will be constrained by altered 

temperature, precipitation, and evaporation. In addition, other anthropogenic changes in 

the chemical composition of the atmosphere and lithosphere, could further alter or even 

reduce regional agricultural productivity. For instance, the air pollutants most damaging to 

agricultural crops are sulfur dioxide (SO2), the oxides of nitrogen (NOx), and ozone (03). 

This study examines the impacts of climate change and altered concentrations of C 0 2  and 

SO2 in the atmosphere, on crop yields and regional food supply. Three different emission 

abatement scenarios are tested, representing a range of possible economic development 

and regulatory pathways. 



One incontestable fact is the rising concentration of C02 in the Earth's atmosphere. An 

additional certainty is the soundness of the basic greenhouse theory: the composition of the 

gas mix in the atmosphere strongly affects the planet's radiation balance. Based on this 

theory, experiments with coupled general circulation models (GCMs) suggest that the 

range of emission scenarios described by the Intergovern~nental Panel on Climate Change 

(IPCC), the IS92 scenarios (IPCC, 1992), could produce a 1" C to 4.5" C increase in global 

temperature by year 2 100' (IPCC, 1995). 

The complexity of the problem at hand requires an analysis that takes into account the 

relevant physical and economic relationships that govern the world food system. IIASA's 

research has provided a framework for analyzing the world food system, viewing national 

agricultural systems as embedded in national economies which in turn interact with each 

other at the international level. 

Section 2 reviews the body of information on the complex and multifaceted effects of 

increased atmospheric CO2 concentrations and climate change on crop productivity. The 

possible impact of air pollutants. in particular of SO?, on crops and grasses are discussed 

in Section 3. Then, in Section 4, we turn to a brief description of IIASA's global model of 

the world food system, known as the Basic Linked System (BLS), and we explain how the 

macro-economic model 11R (Manne and Richels, 1992) of the world energy system has 

been linked with the BLS. We also discuss how sulfur deposition, obtained with the 

RAINS-Asia model (Amann, 1993), was incorporated into the agricultural analysis. 

Section 5 presents a summary of BLS simulation results based on a coal intensive high 

emission unabated energy scenario (HER) and derived from two emission abatement 

scenarios (MOM and MIS energy model runs). Finally, in Section 6 we present some 

conclusions that can be drawn from this integrated analysis. 

2. Effects of increased C02  concentrations and climate change on crops2 

Temperature, solar radiation, water and level of C 0 2  concentration are the main 

climate and atmospheric variables important for agriculture. Detailed understanding of 

plant response is important for better prediction of climate change impacts on agriculture. 

Responses of plants to climate change on the micro-level, e.g., the individual leaf, does 

require translation to macro scales, such as the field level for an entire cropping season. 

I When incorporating the possible effects of future changes of anthropogenic aerosol concentrations implied 
by the IS92 scenarios the best estimate for year 2100 is a temperature increase in the range of 1" to 3.5" C, 
somewhat lower than earlier projections reported by IPCC. 
Summarized and adapted from draft report of IPCC, WGII Subgroup D, Agriculture 1I.B (August 1994), 
and C02 and Biosphere (Rozema et r t l .  (eds.), 1993). 



Climate change will most likely result in new combinations of soil, climate, 

atmospheric constituents, solar radiation, and pests, diseases and weeds. First observations 

of the physiological effects of CO;! on plant growth date back to the beginning of the 19th 

century (e.g., see Kimball et al., 1993). However, most systematic experimental analyses 

of the interactions of temperature, moisture availability and increased CO;! on plant growth 

have been undertaken during the last three decades. 

In the process of photosynthesis, carbon dioxide and water are combined in plant 

leaves utilizing sunlight to produce carbohydrates and oxygen. Plants differ in what kind 

of intermediate steps and compounds are produced in the photosynthetic process. One 

major group of plants is referred to as C3 plants because one of the first intermediate 

compounds has three carbon atoms (phosphoglyceric acid). Most agricultural crops, 

notably wheat, rice, barley, soybeans and potatoes, belong to the C3 group. Similarly, a 

second group of plants, termed C4 plants, produces a compound with four carbon atoms 

(oxaloacetic acid). C4 plants of economic importance include maize, sorghum, millet, and 

sugarcane. 

Plant species vary in their response to CO;! in part because of these differing 

photosynthetic mechanisms. C3 plants use up some of the solar energy they absorb in a 

process known as photorespiration. In this process, which occurs only in the light, a 

considerable fraction of the carbon initially reduced from C 0 2  and fixed into 

carbohydrates is re-oxidized to C02 ,  reducing the net amount of carbohydrates being 

accumulated. C3 species tend to respond readily to increased CO;! levels because 

photorespiration is suppressed in these conditions. In C4 plants, on the other hand, C 0 2  is 

trapped inside the leaf and then concentrated in the cells which carry on photosynthesis. 

These plants are photosynthetically more efficient than C3 plants under present CO;! levels, 

but have been found to be less responsive to CO;! enrichment. 

Another important physiological effect of CO;! enrichment is the closure of stomates, 

the small openings in leaf surfaces through which C 0 2  is absorbed and water vapor re- 

leased. Accordingly, a rise in atmospheric CO;! may reduce transpiration even while pro- 

moting photosynthesis. This dual effect may improve water-use efficiency. Thus, by itself, 

increased C 0 2  can increase yield and reduce water use per unit of biomass. 

Some of the interactions of temperature, moisture availability and increased CO;! on 

plant growth have been investigated for a range of environmental conditions through crop 

response models. These models have been widely used to assess yield response to climate 

change at many different sites around the world and have produced valuable insights into 

these interactions. The crop models used in this study account for the physiological effects 



of increased atmospheric C 0 2  concentrations on crop growth and water use (Peart et ul., 

1989). Ratios were calculated between rates of daily photosynthesis and evapotranspiration 

measured for a canopy exposed to high C 0 2  doses compared to current levels, based on 

published results (Allen et ctl . ,  1987; Cure and Acock, 1986; and Kimball, 1983), and the 

ratios were applied to the appropriate variable in the crop models on a daily basis'. 

The promising picture of improved food production under higher atmospheric C 0 2  is 

modified by other factors and by uncertainty about the validity of extrapolations. First, 

most of our understanding of the positive effects on crops relies on short-term and 

controlled studies at the individual plant level. Extrapolations and generalizations to large- 

scale field conditions or to long-term global food production are still uncertain. Also, since 

crop responses to climate change are site-specific and species-dependent, the knowledge of 

one kind of grouping or plants may have little relevance to other species or groupings. 

Second, under conditions of limited soil nutrients or solar radiation (e.g.. through 

enhanced cloud cover), higher CO2 does little to improve yields; in much of the world 

such stress conditions are the rule rather than the exception (FAO, 1994). 

As simulated by crop models, the direct effects of C 0 2  may bias yield changes in a 

positive direction, since there is uncertainty regarding whether experimental results will be 

observed in the open field under conditions likely to be operative when farmers are 

managing crops. Plants growing in experimental settings are often subject to fewer 

environmental stresses and less competition from weeds and pests than are likely to be 

encountered in farmers' fields. Still, recent field free-air release studies have found overall 

positive C 0 2  effects under current climate conditions (Hendrey et ul., 1993). 

2.1 Effects of increased CO2 levels 

Generally there is agreement that increase of C 0 2  levels leads to an improvement in 

plant productivity. C3 plants, when exposed to atmospheric C 0 2  concentrations of twice 

the current level under good water and nutrient supply, show an increased productivity of 

about 30-40%. Response, however, depends on crop species and also on nutritional and 

fertility conditions. C4 plants produce a much less pronounced response than the C3 crops, 

on the average in the order of 5-10%. In general, higher CO2 concentrations lead to 

improved water-use efficiency of both C3 and C4 plants. 

' 'The photosynthesis ratios (555 ppmv C02/330 ppmv C02) for soybean, wheat, rice, and maize were 1.2 1 ,  
1.17, 1.17, and 1.06, respect~vely. Changes in stomata1 resistance were set at 49.7134.4 slm for C3 crops 
and at 87.4155.8 slrn for C4 crops, based on experimental results by Rogers er a/.  ( I  983). 



Established trends of plant responses to increased CO2 concentrations on the basis of 

experiments, in terms of plant growth, plant water-use efficiency and quantity and quality 

of harvested produce are summarized below: 

2.1.1 Plant growth 
The rate of photosynthesis increases immediately following exposure to increased C02  
concentrations. 
An initial strong response to increased C02 concentrations is often reduced under 
long-term exposure to higher C02 levels. 

Increased leaf area production induced by higher C02 levels, leading to an earlier and 
more complete light interception, stimulates biomass increases. 

Higher biomass requires higher energy supply for maintenance, expressed in higher 
total respiration, partly compensated by lower relative respiration. 

Leaf turn-over rate increases due to self-shading and decrease of specific leaf surface. 
Both these effects tend to reduce photosynthesis per leaf. 

C3 plants (temperate and boreal) show a pronounced response to increased C02 
concentrations. 

C4 plants (warm tropical) show only limited response to increased C02  
concentrations. 

C3 plants with nitrogen fixing symbionts tend to benefit more from enhanced C02  
supplies than other C3 plants. 

2.1.2 W~iter use efii'cienc-y 

Increased C02 levels reduce stomata1 conductance and transpiration rate. Note, 
however, that water consumption on a ground area basis is much less effected. 

Many studies report an increase in crop water use efficiency in terms of dry matter 
produced per uni t  of water transpired. 

As a consequence of the reduced transpiration, leaf temperature will rise and may lead 
to enhanced plant development and considerable increase in leaf area development, 
especially in the early crop growth stages. 

Reduced transpiration and resulting higher leaf temperature leads to an accelerated 
aging of the leaf tissue. 

Overall effects of a leaf temperature rise will depend upon whether or not optimum 
temperatures for photosynthesis are approached. 

2.1.3 Hur-vest index uncl qual ih  o f  produce 

Biomass and yield increased in almost all experiments under controlled conditions. 

Dry matter allocation patterns change differently for C3 an C4 crops and root/shoot 
ratios increase. 

The content of non-structural carbohydrates generally increases under higher C02 
while the concentration of mineral nutrients is reduced. Food quality of leaf tissue 
declines which may lead to an increased requirement of biomass by herbivores. 



Weeds compete with crops for resources essential for growth. Unless controlled, 
weeds always reduce potential crop yields i n  agro-ecosystems. Differences in response 
of C3 and C4 plants to increases in atmospheric C 0 2  are of importance to weed-crop 
competition. In fact, most of the important food crops are C3 plants, while most weeds 
are C4 plants. 

2.2 Effects of climate change 

Trends of plant responses to changes of temperature, precipitation, humidity and 

(potential) evapotranspiration are summarized below. Climatic variability with regard to 

specific climatic conditions cannot be predicted with any certainty, and discussion of such 

eventual effects on crop production is therefore rather speculative at this stage (and was 

omitted here). 

2.2.1 Tetrzperature effects 

There is a clear temperature effect on the level of CO2 fertilization, especially for C3 
plants. Temperature rise has been found to enhance the physiological effects of 
increasing C02. 

Higher mean temperatures during the cold season allow earlier planting, and cause 
earlier ripening of annual crops. Reduced growth duration diminishes annual crop 
yields. The reduced growth cycle duration of crops in some cases might lead to more 
crops per year and extension of the growing season for perennials and grasses. 

Temperature influences the rate of growth and partitioning of dry matter. 

For annual crops, shortening of the growing season is not fully compensated by a 
changed ontogenetic development and by enhanced growth vigor at a higher 
temperature. Therefore, ceteris paribus, a net yield loss will occur. The duration of the 
vegetative growth and the light interception during the reproductive stages largely 
defines the occurrence of net yield losses. 

Higher temperatures in mountainous areas will provide more plant growth at high 
altitudes. 

Higher temperatures might affect phenological development of crops or induce 
temperature stresses (e.g., risk of reversed vernalization in wheat, or the risk of 
increase of spikelett sterility in rice). 

Climate is a major factor in determining habitats available to insect communities thus 
affecting insect survival rates. Changes in habitat generally leads to increased mortality 
but may also lead to higher reproduction rates, changes in diapause, migration, or even 
to genetic adaptation. 

Crop diseases are primarily related to climate and soil conditions. Their incidence and 
vigor may increase under warmer and wetter conditions. 

2.2.2 Precipitation, Hunziditv and Evaporation 

Climate change projections point to an intensification of the hydrological cycle: higher 
evaporation, humidity and precipitation. 



Under equal temperature conditions and increased C 0 2  levels, rates of potential 
evapotranspiration might decrease due to reduced crop transpiration; actual rates are 
partly compensated by an increase in leaf area index. 

Higher precipitation and humidity might improve moisture balances in semi-arid and 
sub-humid areas in favor of natural vegetation and crop yields. In humid and per- 
humid areas increased precipitation and humidity might lead to extending of periods 
with excess moisture and indirectly to hampered field operations, increased incidence 
of pests and diseases, all of which may depress crop yields. 

3. Effects of increased SO2 concentrations4 

Airborne chemicals have multiple effects on human society. Cowling (1985) lists eight 

types of effects: 

Human health effects due to inhalation of airborne chemicals; 
Human health effects due to ingestation of airborne or soilborne chemicals via 
drinking water, fish, or other food products, caused by atmospheric deposition or 
leaching; 
Acidification of lakes, streams, ground waters, and soils; 
Fumigation of crops and forests near point sources of pollutants; 
Regional change in the health and productivity of forests; 
Damage to engineering materials, monuments, and other cultural resources; 
Increased haze in the atmosphere; 
Fertlization of crops, forests, and surface waters. 

Cowling (1991) notes that all of these effects, except to some degree the last item, are 

detrimental to the interests of society. SO2 emissions are involved in all eight effects. In 

the scenarios discussed later on in this paper, only the direct effects of sulfur dioxide on 

agricultural crops have been taken into account. It is important, therefore, to note that only 

a partial valuation of the possible damages from increasing regional SO2 concentration 

levels is included in the high emission energy scenario (HER). 

'The air pollutants that are most damaging to agriculture are sulfur dioxide (SO2) and 

the oxides of nitrogen (NO,), which can be categorized as acid pollutants, and ozone (03) 

together with other photochemical oxidants. Air pollution can cause serious losses to crop 

and animal husbandry, although the levels of loss under different circumstances are 

difficult to assess experimentally. Especially in crop experiments, there have been 

problems of ensuring comparability of environmental conditions, and of separating out the 

interactions with soil and climatic factors. 

J Summarized and adapted from Fitter and Hay (1987), Conway and Pretty (1991), and Ashniore and 
Wilson (eds.) (1992). 



'The nature and amount of damage caused to plants by air pollutants depends on three 

key factors - the inherent toxicity of the particular pollutant gas, the proportion that is 

taken up by the plants and their physiological reaction. These, in turn, are affected by the 

environment in which the crop is growing, including the presence of other pollutants. 

Sulfur dioxide and nitrogen oxides are prime causes of acid pollution. These have been 

prevalent in industrialized countries, particularly in parts of Europe and northeastern USA, 

primarily as a result of the burning of fossil fuels. While such emissions have been 

declining in developed regions, the highest rates of increase of SO2 emissions in recent 

years have occurred in countries that are rapidly industrializing, notably in China 

(Chameides et al., 1994). When dissolved in water, these gases produce acid. From the air 

they are deposited onto farmers' fields, directly as dry deposition, or in the form of rain or 

snow as wet deposition, or are taken up by plants from fog or clouds, as occult deposition. 

Apart from these chemical interactions, SO2 aerosols may also affect the radiation and 

temperature environment in which crops grow through scattering of incoming solar 

radiation. 

3.1 Dry deposition 

Early research was mainly concerned with acute injury of plants. Conditions under 

which visible damage of plant foliage occurs have been studied for almost one hundred 

years. Such visible injury is closely correlated with yield losses and can occur when SO2 

levels exceed 500 ppbv5 for a few hours. However, with the adoption of efficient 

dispersion mechanisms (i.e., tall smokestacks for heavy polluters) such conditions are 

hardly observable nowadays, and acute injury of agricultural crops from dry deposition is 

unlikely. 

In the last decades the research focus has shifted towards the effects of low to moderate 

concentrations of pollutants on arable crops and grasses (Figure 1). Experiments and field 

studies have shown that most reductions in yield occur without signs of visible injury. 

Impacts at doses comparable to levels typically observed in rural areas in Europe and USA 

5 Concentrations of gaseous pollutants are usually expressed either on a volume to volume basis, such as 
3 parts per billion (ppbv), or on a mass to volume basis, such as micrograms per cubic meter (ygm~- ) .  

Conversion between measures depends on pressure, temperature and molecular weight of the gas. At a 
temperature of 20" C and a pressure of I atmosphere, the respective conversion factor for sulfur dioxide is: 
1 ppbv ~ 2 . 6 7  ygrn-j. 



have been found to be highly variable and results were sometimes even conflicting. 

Nevertheless, a few general conclusions have been formulated (see, e.g., Ashmore and 

Wilson, 1993). There is now good evidence that SO2 -induced chronic injury is greatly 

enhanced when plants are growing slowly, such as in higher altitudes or during winter 

months. Low light intensity, short days and low temperature produce slow growth which 

makes plants more vulnerable to SO2. 

Figure 1 Effects of long-term exposure (20-200 days) to SO2 on the grass Lolium perenne 

Source: Roberts, T.M., "Long-term effects of sulphur dioxide on crops: an analysis of dose-response 
relations", Phil. Trans. R. Soc. Lond. B 305 (1984) pp. 299-316. 

Evidence from filtration and low concentration fumigation experiments indicates that 

critical levels for SO2 might be lower in the presence of nitrous oxide or ozone. On the 

other hand, reduction in stomata1 conductance by enhanced atmospheric C02 could 

potentially reduce the effects of SO2 and ozone (Allen, 1990). The experimental results 



are, however, complicated and sometimes even conflicting, making i t  impossible to predict 

what type of interaction will happen when a crop is subjected to a given combination of 

pollutants. Mixtures of toxic gases are most harmful to plants under stress, and may reduce 

their ability to withstand such environmental stress, for instance, their ability to tolerate 

freezing. Plants with the C3 photosynthetic pathway tend to be more susceptible to air 

pollution than C4 plants. There is some evidence to suggest that soil type does not have a 

major influence on the response of crops to pollutants when grown in adequately fertilized 

soils (Sanders, 1993). In the studies of critical loads of pollutants in Europe (see Bell, 

1993), i t  is noted that in the case of agricultural and horticultural crops adverse effects are 

not observed for annual mean SO2 concentration levels below 30 pgm-3. The overall dose 

or average concentration of pollutant gases appears to be the primary factor controlling 

effects, rather than intermittent peaks in exposure levels. 

3.1 Wet deposition 

Most investigations into the effects of wet deposition, commonly termed acid rain, 

have focused on damages to forests and water bodies. Studies on crops indicate that the 

usual ambient concentrations of acids in rainfall are insufficient to produce acute injury 

except i n  the immediate vicinity of intense sources of emissions. Plant damages have been 

reported for pH values below 3.5, a concentration of acids i n  rainfall rarely achieved even 

in highly polluted areas. Some general findings are that broadleaf plants are more 

susceptible than grasses, and root and leafy vegetables are more susceptible than forage, 

grain and fruit crops. Overall, the effects of wet deposition of pollutants on plants are even 

less well understood than those of gaseous pollutants (Fitter and Hay, 1987). 

Much attention has also been given to studying indirect effects of sulfur deposition, for 

instance on the dynamics of soil and surface water acidification. Reduction in pH, below a 

pH level of 4.2, eventually leads to an increase in toxic aluminum concentration in the soil 

enhancing the potential for damage to vegetation and affecting soil fertility and vegetation 

structure. This has been a major concern with regard to less intensively managed 

ecosystems, such as forests, but seems of less importance for agro-ecosystems where 

mitigating management practices, e.g., liming of agricultural land, can neutralize even high 

rates of acidic deposition, albeit at increased costs of agricultural production. 



4. Linking the BLS with 11R, MESSAGE and RAINS 

The analysis described in this report is part of an integrated assessment study involving 

several models developed by different IIASA projects. To achieve consistency among the 

various research groups, the assessment models have been harmonized through an 

approach that we term soft-linking. A first critical step i n  this process is linking the results 

of the macro-economic energy model 11R (Manne and Richels, 1992) and IIASA's model 

of the world food and agriculture system, the BLS (Fischer, et al., 1988). Second, the 

climate change yield component of the BLS is parameterized according to emissions 

projected by the energy model MESSAGE III (Messner and Strubegger, 1995) and global 

temperature changes derived from MAGICC (Wigley and Raper, 1992; Hulme et al., 

1995). Third, results from RAINS (Regional Acidification INformation and Simulation 

model; Amann, 1993; Amann et al., 1995; Cofala and Dorfner, 1995) have been utilized to 

derive regional yield damage functions in the BLS to account for the effects of increasing 

SO2 emissions and deposition in the high emission energy scenario (HER) used in this 

study. 

4.1 The world agriculture model system BLS 

The Basic Linked System of National Agricultural Policy Models (BLS) is a world 

level general equilibrium model system developed by the Food and Agriculture Program of 

the International Institute for Applied Systems Analysis. It consists of some thirty-five 

national and/or regional models: eighteen national models, two models for regions with 

close economic cooperation (EC-9 and Eastern Europe & former Soviet union6), fourteen 

aggregate models of country groupings, and a small component that accounts for statistical 

discrepancies and imbalances during the historical period. The individual models are 

linked together by means of a world market module. A detailed description of the entire 

system is provided in Fischer et al. (1988). Earlier results obtained with the system are dis- 

cussed in Parikh et al. (1 988) and in Fischer et al. (1 990, 1994, 1996). 

The general equilibrium approach upon which the BLS is constructed necessitates that 

all economic activities are represented in the model. Financial flows as well as commodity 

6 The political changes as well as changes in national boundaries of the recent past are not captured in the 
BLS, although the model formulation has been adjusted, away from centrally planned economies to more 
market oriented behavior. 



flows within a country and at the international level are consistent in the sense that they 

balance. Whatever is produced will be demanded, either for human consumption, feed or 

intermediate input; it might be traded or put into storage. Consistency of financial flows is 

imposed at the level of the economic agents in the model (individual income groups, gov- 

ernments, etc.), at the national as well as the international level. This implies that total ex- 

penditures cannot exceed total income from economic activities and from abroad, in the 

form of financial transfers, minus savings. On a global scale, not more can be spent than 

what is earned. 

The country models are linked through trade, world market prices and financial flows. 

The system is solved in annual increments, simultaneously for all countries. It is assumed 

that supply does not adjust instantaneously to new economic conditions. Only supply that 

will be marketed in the following year is affected by possible changes in the economic 

environment. A first round of exports from all the countries is calculated for an initial set 

of world prices, and international market clearance is checked for each commodity. World 

prices are then revised, using an optimizing algorithm, and again transmitted to the na- 

tional models. Next, these generate new domestic equilibria and adjust net exports. This 

process is repeated until the world markets are cleared i n  all commodities. Since these 

steps are taken on a year-by-year basis, a recursive dynamic simulation results. 

Although the BLS contains different types of models, all adhere to some common 

specifications. The models contain two main sectors: agriculture and non-agriculture. Ag- 

riculture produces nine aggregated commodities. All non-agricultural activities are com- 

bined into one single aggregate sector. Production is critically dependent on the avail- 

ability of the modeled primary production factors, i.e., of land, labor and capital. The for- 

mer is used only in the agricultural sector, while the latter two are determinants of output 

in both the agricultural and the non-agricultural sectors. 

For agricultural commodities, acreage or animal numbers and yield are determined 

separately. Yield is represented as a function of fertilizer application (crops) or feeding in- 

tensity (livestock). Technological development is assumed to be largely determined by 

exogenous factors. Technical progress is included in the models as biological technical 

progress i n  the yield functions of both crops and livestock. Rates of technical progress 

were estimated from historical data and, in general, show a decline over time. Mechanical 



technical progress is part of the function determining the level of harvested crop area and 

livestock husbandry. 

Several factors cause consumers and producers to adjust their behavior over time to 

political changes, altered economic and technological conditions. For consumers, it is 

mainly the formation of taste and habit, and changing prices and incomes that alter their 

responses. Producers are most affected by their past investment decisions, by technological 

innovations, or - as in this study - changes in productivity due to climate change, 

increased atmospheric concentrations of C02, and sulfur deposition. 

Information generated by simulating with the BLS contains a variety of variables. At 

the world market level these include prices, net exports, global production and consump- 

tion. At the country level the information generated varies between different models, in- 

cluding generally the following variables: producer and retail prices, level of production, 

use of primary production factors (land, labor and capital), intermediate input use (feed, 

fertilizer, and other chemicals), level of human consumption, stocks and net trade, gross 

domestic product and investment by sector, population number and labor force, welfare 

measures such as equivalent income, and the level of policy measures as determined by the 

government (e.g., taxes, tariffs). 

4.2 Linkiitg BLS with 11R aizd MESSAGE III 

1 1 R is an eleven world region adaptation of the Global 2100 model (Manne and 

Richels, 1992). This model, in several variants, has been widely used for economic studies 

of the global implications of C 0 2  reductions. 1 IR is a dynamic nonlinear macroeconomic 

optimization model used for the analysis of long-term C02-energy-economy interactions. 

Its objective function is the total discounted utility of a single representative producer- 

consumer. The maximization of this utility function determines trajectories of optimal 

savings, investment, and consumption decisions. Savings and investment drive the 

accumulation of capital stocks. Available labor, dependent on demographic change, and 

energy inputs determine the total output of the economy according to a nested constant 

elasticity of substitution (CES) production function. 

1 1R generates internally consistent projections of global and regional gross domestic 

product (GDP), as well as trajectories of regional investment, labor, and primary energy 



consumption. A high degree of correspondence with the BLS in key variables for modeling 

the economy makes it feasible to harmonize the scenario analysis undertaken with the 11R 

and BLS models. One possible approach would have been to directly impose projections 

of GDP, labor. investment and technological progress as exogenous inputs to the BLS. 

This alternative was dropped, however, as i t  would have constrained the BLS in a very 

rigid manner, in effect by-passing its representation of the interdependencies between the 

agriculture and non-agriculture sectors. 

To keep these interdependencies intact, the approach chosen for linking was to 

harmonize rates of economic growth generated in the BLS with those projected by 11R 

through adjustment of production factors and of assumed technical progress. Growth rates 

i n  the national models of the BLS are endogenously determined based on three elements: 

(a) capital accumulation through investment and depreciation, related to a savings function 

that depends on lagged GDP levels as well as balance of trade and financial aid flows; (b) 

dynamics of the labor force as a result of demographic changes; and (c) (exogenous) 

technical progress. The thirty-four model components of the BLS were aggregated into 

eleven world regions as closely matching the regionalization of 11R as possible. Then, the 

harmonization of production factors and GDP for the period 1990 to 2050 was carried out 

on a region by region basis. 

Regional GDP and investment generated by 11R are shown in Tables 3 and 4, 

respectively. Economic growth is highest - between 4 to 6 percent average annual growth - 

i n  the three developing Asian regions. Developed regions grow by a little less than 2 

percent. This model calibration resulted in a BLS reference scenario (BLSlREF3) 

specifically designed to derive projections of the world food system which are consistent 

with the basic economic assumptions used in 11R. As a benchmark run against which to 

compare alternative energy scenarios, reference scenario BLSlREF3 assumes current 

climate, and current levels of atmospheric CO2 and SO2 concentrations. 

Another cornerstone of the integrated assessment exercise is MESSAGE III, a dynamic 

systems engineering optimization model used for medium to long-term energy system 

planning and energy policy analysis. MESSAGE 111 uses a bottom-up approach to describe 

the full range of technological aspects of energy use, from resource extraction, conversion, 



transport and distribution, to the provision of energy end-use services. The model keeps a 

detailed account of pollutant emissions such as of C 0 2  and SO2. 

The emissions projections arrived at by iteration over 11R and MESSAGE 111 scenario 

runs are input to MAGICC (a Model for the Assessment of Greenhouse-gas Impacts and 

Climate Change; Hulme et al., 1995) that has been widely used for assessments reported 

by the IPCC. MAGICC accounts for the climate feedback due to C02 fertilization, and for 

negative radiative forcing due to sulphate aerosols and stratospheric ozone depletion. 

Emissions are converted to atmospheric concentrations by gas models, and the 

concentrations are converted to radiative forcing potentials for each gas. The net radiative 

forcing is then computed and input into a simple upwelling-diffusion energy-balance 

climate model. This produces global7 estimates of mean annual temperature (see Carter et 

ul., 1994). The global climate and emission characteristics of three scenarios used in this 

study are shown in Table 10. The analyses compare the results of a high emission energy 

scenario (HER) with the outputs from two alternative emission abatement scenarios. These 

are the MIS (Mitigation Including Single-purpose options) and the MOM (Mitigation Only 

with Multi-purpose strategies) abatement scenarios. 

4.3 Temperature and C 0 2  yield impacts 

A projection of global temperature change only, as calculated by MAGICC, provides 

insufficient information to assess the impact of climate change on agriculture. 'Therefore, 

we employed geographically detailed information generated within earlier climate impact 

studies to estimate crop yield changes from the three scenarios (see Rosenzweig and Parry, 

1994; Rosenzweig and Iglesias (eds.), 1994; Fischer et al., 1994, 1996; ASA, 1995; Smith 

and Strzepek (eds.), 1995). 

The original yield change estimates referred to well defined conditions of climate and 

C 0 2  concentrations according to the results of doubled C 0 2  simulations of three general 

circulation models (GCMs). The GCMs used were those from (see Table 11 for GCM run 

characteristics): 

GISS: Goddar-d Institute for Space Studies (Hansen rt ctl., 1983), 

7 MAGICC estimates temperature change separately for the northern and southern hemispheres. 



GFDL: Geophysical Fluid Dynamics Laboratory (Manabe and Wetherald, 1987), and 

UKM0:United Kingdom Meteorological Office (Wilson and Mitchell, 1987). 

'The simulated temperature changes of these GCM scenarios (+4" to +5.2OC) are near 

the upper end or above the range (+I0 to +4S°C) projected for doubled C02 warming by 

the IPCC (IPCC, 1995). The temperature changes generated in the GCM experiments are 

well above the temperature changes projected by MAGICC using the emission scenarios of 

the current study. 

For the crop modeling part of the original study (Rosenzweig and Parry, 1994), climate 

changes from doubled C02 GCM simulations are utilized with an associated level of 555 

ppmv C02,  somewhat higher than the CO2 levels occurring in the HER energy scenario 

(i.e., 538 ppmv in year 2050). 

For the specification of yield impact scenarios we use the yield impact as estimated for 

different GCM climate scenarios. Let AT,, denote the temperature change associated 

with any particular GCM experiment. The level of CO2 concentrations in the atmosphere, 

of the control run (i.e., approximately current levels) and for an effective doubling of 

0 greenhouse gases, is indicated by and c,,, , respectively. Furthermore, let Ay& 

denote the yield changes in region j of the BLS, and Ay;;, is a vector of respective yield 

changes from C02 fertilization at CO2 level c:Fh,. These vectors of yield impacts can be 

derived from the agronomic results produced in the crop modeling study (Rosenzweig and 

Iglesias, 1994) as follows: (i) the vectors AY;:~, of climate change induced yield effects 

are captured in  the climate-change-otz experiments, and (ii) vectors Ay;;, can be 

calculated as the difference between climate impacts with phjviologiccrl efJects of elevated 

C02 and climate-change-only scenarios. For global climate conditions resulting from any 

particular energy scenario s, i.e., a combination of projected temperature change and 

increase of C02  concentration (At,, Ac,) , the effective yield impact is calculated by linear 

interpolation: 

The respective changes in global temperature and the level of CO2 concentrations for 

the high emission energy run (HER scenario) and two alternative abatement scenarios 



(MOM and MIS scenarios) are shown in Table 10. Temperature changes were applied 

separately for the northern and southern hemispheres as calculated in MAGICC. 

This approach, which mixes equilibrium climate and transient CO;! projections, is the 

best that can be done given the lack of availability of GCM transient climate change 

simulations consistent with the assumed emission scenarios. 

4.4 SO2 yield impacts 

RAINS is a modular simulation system originally designed for integrated assessment 

of alternative strategies to reduce acid deposition in Europe (Alcamo et al., 1990). The 

model quantifies sulfur emissions from given activity levels in the energy sector, both 

production and end-uses, traces the fate of these emissions using atmospheric transport and 

chemical transformation models, calculates the amount of sulfur deposition and estimates 

their impacts on soils and ecosystems. RAINS generates results in a geographically 

explicit manner on a grid of 1x1 degree along latitude and longitude. To parameterize the 

yield damage caused by dry deposition of SO2, the gridded estimates of sulfur deposition 

and SO;! concentrations for south and east Asia projected by RAINS-Asia were evaluated, 

using a linear damage function: 

A?;: '(x) = - max 0.01) 

where 

x geographic location (i.e., pixel of 1x1 degree along latitude and longitude); 
e(x> mean annual SO;! concentration in ygrn-' at location x; 

Ay;.'(x) yield change caused by SO;! at mean annual concentration of e(x). 

From the discussion in Section 3 it is obvious that the quantification of SO;! impacts on 

crops is difficult and controversial. Nevertheless, it was decided to attempt quantifying 

possible damages from sulfur deposition in the BLS runs, because omitting these effects 

would have created an unacceptable bias in the assessment. However, there is great 

uncertainty as to the magnitude of the possible SO;! damage. In equation (3), we use an 

SO;! concentration threshold of 30 ygrn-%s established for Europe (see Ashmore and 

Wilson, 1993). In accordance with experiments cited in Fitter and Hay (1987) and Conway 

and Pretty (1991), we have adopted the assumption that crop yield damage increases 

linearly when SO;! concentration levels exceed the threshold such that yield is reduced by 



10 percent for each 10 ppbv (i.e., each 10 ppbv r 26.7 pgm-3) increase of mean annual 

sulfur dioxide concentrations beyond the critical level. 'The estimates of crop damage by 

grid-box were then aggregated for the main agricultural areas of major countries in the 

study region of RAINS-Asia (e.g., China, India, Pakistan, etc.). In addition to South and 

East Asia (CPA, PAS and SAS regions8), estimates of crop damage from SO2 deposition 

were also included for the former Soviet Union (FSU) and North America (NAM) using 

the regional trajectories of sulfur emissions calculated by MESSAGE IIl in the HER 

energy scenario. Consequently, the yield impact equation (1) discussed above was 

amended to also include a term accounting for SO2 damage. 

At\ A?'&, (At,, Ac,, e ,  ) = A~LLM .- + Ay;;';., . + A . Y ~ ' ( P , )  
ATGCM CGCM - C~~~ 

The individual yield impact components of climate, CO2 fertilization and SO2 damage, 

and the resulting net impact for each energy scenario variant at global and broad regional 

level are listed in Table 12. 

4.5 Scenario analysis with the BLS 

The evaluation of the potential impacts of alternative energy futures on production and 

trade of agricultural commodities, in particular on food staples, is carried out by comparing 

the results of corresponding climate change scenarios to a reference projection, scenario 

BLSlREF3, that represents a future when current climate and atmospheric conditions 

would prevail. 

Data on crop yield changes were estimated for different scenarios of climate change 

and increases of atmospheric CO2 and SO2 concentrations, based on the emissions 

resulting from three alternative energy runs. Data were compiled for each of the thirty-four 

components representing the world in the BLS. Most models included in the BLS 

distinguish yield and acreage functions. Yield variations caused by climate change and 

sulfur deposition were introduced into the yield response functions of the BLS country 

models by means of a multiplicative factor impacting upon the relevant parameters in the 

mathematical representation. This implies that both average and marginal fertilizer 

productivity are affected by the imposed yield changes. Therefore, changes of yield 

' The mapping from BLS components to agreggate world regions is given in the Appendix. 
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obtained in simulations with the BLS that include economic adaptation will deviate 

somewhat from productivity changes derived from crop modeling results since input levels 

adjust accordingly. 

There is uncertainty to what extent the positive physiological effects of C 0 2  observed 

in crop experiments will materialize in farmers' fields (e.g., see FAO, 1994), and to what 

extent negative impacts from climate change can be mitigated by farmers' adaptation to 

changing conditions. For this reason, two scenario variants, labeled V1 and V2, where 

simulated. 

Finally, we accounted for the consequences of increased investment requirements in 

the abatement runs. Additional investment required for emission abatement is determined 

by MESSAGE III. The results, calculated by world region, were input to the BLS as 

percentage of GDP used for additional energy investment (and thus not available for other 

purposes). This defined another set of scenario experiments including the runs NIISb, 

MIS.Vlb, MIS.V2b, MOMb, MOM.Vlb and MOM.V2b. The underlying idea is that 

additional investment requirements for energy emission abatement will also affect capital 

accumulation in other sectors, including agriculture. Averaging over decades, the global 

investment required in scenarios MOM and MIS is about 0.5 percent of GDP. The 

investment requirements differ significantly between developed and developing regions. 

The following investment coefficients, i.e., percent of GDP required for investing in 

abatement, were used in the respective BLS simulation runs: 0.1% (NAM), 0.05% 

(WEU&ODE), 0.10% (PAO), 1.2% (AFR), 0.6% (LAM), 0.6% (WAS), 0.8% (SAS), 

1.0% (CPA), and 0.85% (PAS). 

A description of the acronyms of sixteen scenarios, which were specifically designed 

and simulated for this study, is given in Table 9. 

4.6 Static yield impacts 

Before assessing the impacts of introducing a set of climate change and C02-induced 

yield modifications through simulation with the BLS, i t  is useful to ask what distortion 

such an exogenous change in agricultural productivity would imply for the world food 

system. We refer to this measure of distortion as static climate change yield impact as it 

describes a hypothetical effect without taking into account adjustments of the economic 

system. To obtain for any particular year z an estimate of the static climate change yield 



impact, say A,(z), for scenario s, we apply the above estimated crop-wise yield changes, 
A1(s,z) = A Y & ~ ( A ~ , ~  (z),c,, (7)) to the yield and production levels as observed in a BLS 

reference projection in year z. For cereals these impacts can be added up without 

weighting. To arrive at static impact estimates for other groups of crops and the entire 

sector, world market prices of year z as simulated in the respective reference projection are 

used. In mathematical notation, 

where 

A;(T) static climate change yield impact of scenario s on region R in year z. 

A:(s, 2 )  climate change yield impact of scenario s, for crop i, in country j ,  in year z. 

fY world market price of commodity i in year z of BLSlREF3 projection. 

Q,: production of commodity i, in country j, in year z of BLSlREF3 projection. 

Table 12 shows static impacts on cereals and total crop production estimated for the 

global and regional level. The effects are indicated for the three basic energy runs (HER, 

MOM and MIS scenarios) and two sets of sensitivity scenarios. In sensitivity variant 1 ,  

i.e., scenarios HER.VI, MOM.VI and MIS.Vl, we assume that the effect on farmers' 

fields will be only two-thirds of the beneficial impacts of increased C 0 2  levels derived 

from crop experiments. Scenario variant 2 (HER.V2, MOM.V2 and MIS.V2) assumes that 

only two-thirds of both climate and CO2 effects materialize under open field conditions. 

The aggregate yield impacts in high emission scenario variants shown in Table 12 include 

estimates of damages from increased sulfur deposition. These were derived utilizing 

results from the RAINS model. 

5. The agriculture sector in the BLS/REF3 reference scenario 

The reference scenario BLSlREF3 is a long-term projection of agricultural supply, 

demand and trade that serves as a neutral point of departure for studying potential impacts 

of alternative energy scenarios on productivity changes in agriculture. The reference 

scenario adopts the economic growth patterns calculated by the energy model 11R 

according to the assumptions in the high emission (unabated) energy run, scenario HER. 

We discuss here the characteristics of the reference scenario BLSlREF3 for comparison 

with the impacts assessed later on. It represents a future when current climate conditions 

would prevail. 



Effective demand for food grows substantially owing to higher incomes and larger 

populations. This increase in demand is met at somewhat decreasing world market prices 

for agricultural products, consistent with historical trends. Table 5 shows global 

production of agricultural commodities in the BLSlREF3 scenario. Average annual growth 

rates of production during the period 1980 to 2050 (and hence effective demand) for 

agricultural commodities range from 1.0 to 1.4 percent per annum implying a two- to 

three-fold increase compared to 1980 levels. Gross agricultural production9 increases on 

average 1.3 percent per annum, i.e., by year 2050 it reaches about 2.5 times the 1980 level. 

This compares favorably to the projected average population increase of less than 1.2 

percent annually during this 70 year period from 1980 to 2050. 

Global trade in the reference scenario increases somewhat faster than global agricultu- 

ral production. For cereals, the share of net exports in global production is estimated to in- 

crease from just above 12 percent i n  1980 to almost 15 percent i n  2050. Wheat exports 

show a 2.4-fold increase, and coarse grains and rice reach a threefold increase i n  trade 

levels. In general, the share of global trade in global production of commodity aggregates 

increases gradually over time indicating a growing specialization in production. Increasing 

demand in developing countries, due to rising incomes and growing populations, leads to a 

deterioration in the level of agricultural self-sufficiency for this group of countries, which 

changes from a net surplus of about 3 percent in 1979181 into a 1 percent deficit by the 

year 2050 caused by increasing net imports of cereals and dairy products. 

Global cereal production i n  1979181 is estimated to amount to 1.5 billion tons (note 

that rice is included in milled form). Production is projected to increase to about 2.1 billion 

tons by the year 2000 and some 3.4 billion tons by year 2050, implying an average annual 

increase of 1.2 percent per annum over a period of 70 years (Table 7). This matches 

approximately the projected population growth. The share of developed countries in global 

production of cereals is projected to decline steadily between 1980 to 2050, from 55 

percent to 42 percent by the end of the simulation period. Over the same period the share 

of developed countries in the global demand of cereals declines from 52 percent in 1980 to 

33 percent in 2050, resulting in an increased net flow of cereals into developing countries, 

mainly in Africa (AFR), Western Asia (WAS), and China (included in the CPA region) 

9 Gross agricultural production, labeled Agriculture in Table 5 is calculated at constant 1970 world market 



(Tables 6 and 8). North America remains the principal bread basket of the world in 

scenario BLSlREF3, producing about 20 percent of the global cereal harvest, twice its 

projected demand. 

6. Scenario results 

Table 10 shows the effects of the three energy scenarios on climate, C 0 2  

concentrations and SO2 emissions. Although the carbon dioxide concentration is highest in 

the HER scenario, the projected temperature increase is less than in the abatement runs, 

MOM and MIS, due to lower radiative forcing caused by the high amount of aerosols. 

Since increased temperature, at least at an aggregate regional level, leads to negative yield 

impacts, and increased CO2 to sizable positive yield impacts, the HER scenario would 

clearly be the best option for agriculture if one were to ignore possible damage from SO2. 

The magnitude of the different factors contributing to changes in crop productivity and the 

net effects estimated for year 2050 are shown in Table 12, calculated on the basis of crop 

experiments derived according to patterns of climate change in GISS 2x C 0 2  GCM 

experiments. Effects were also quantified for GFDL and UKMO GCM results. 

Even when taking SO2 damage to crops into account, estimates of aggregate global 

crop productivity i n  the HER scenario are comparable to the estimates for the abatement 

cases. When assuming that the beneficial physiological effects of C02 in the open fields 

will on average be only two-thirds of the magnitude determined in crop experiments, due 

to various constraints pointed out by researchers that would limit the C02 effects, the 

abatement scenarios become superior for agriculture (scenario variants MOM.Vl and 

MIS.Vl). This conclusion is further strengthened in scenario variant V2 where we assume 

that the climate effect will also be limited to two-thirds of the level determined in the crop 

experiments (an estimate of adaptation measures by farmers). 

Table 13 shows BLS simulation results by world region (see Appendix 1 for 

information on aggregation of BLS countrylregion models to world regions) for year 2050, 

of the dynamic impacts on cereal production based on the three energy-climate runs. The 

results take into account economic adjustments triggered by the changes in  crop 

productivity. Table 14 presents aggregate impacts calculated for all crops. Outcomes are 

prices. 



clearly inore beneficial for developed regions than for developing countries. However, for 

both groups, the magnitude of the impacts falls into a fairly broad range, with the most 

positive results for the regions including the former Soviet Union (EEU&FSU), Pacific 

OECD (PAO) and Western Europe (WEU&ODE). The highest losses occur in Latin 

America (LAM) and Africa (AFR). 

When the response impact of C02 on crop yields is reduced to two-thirds of the 

response measured in crop experiments (scenario variant Vl) ,  the global impact on crop 

production becomes almost negligible. The regional impacts vary between -6 percent to 

+12 percent (Table 15). When both the C02 effect and the climate impact are reduced to 

two-thirds of the magnitude derived from crop modeling experiments (scenario variant 

V2), the situation changes somewhat, producing a net benefit i n  the order of +1 percent 

(see Table 17). 

The dynamic impacts on crops for V1 and V2 scenarios, respectively, are shown in 

Table 16 and in Table 18, referring to scenarios variant V lb  and V2b. There is, of course, 

no difference in results for the coal-intensive energy scenario HER between Table i5 and 

Table.. 16, since no additional investment is required. Earmarking additional energy 

investment requirements for abatement causes a reduction of crop output and GDP of 

agriculture by about 0.3-0.4 percent. The percent change in GDP of agriculture relative to 

the reference case BLSlREF3 for all scenario variants is shown in Table 19. The results 

demonstrate that abatement to avoid damage from SO2 pollution clearly matters to 

regional output of agriculture. 

The impact on world prices is fairly moderate in all BLS scenarios presented here. As a 

consequence of a modest increase in crop productivity relative to the reference scenario 

BLSlREF3, mainly due to the physiological effects of C02 on plants, prices of agricultural 

commodities are generally lower when considering changes in climate and the atmosphere. 

7. Discussion and Conclusions 

World population is expected to almost double between 1990 and 2050 from 5 to 

about 10 billion. This will require major increases in the level of economic activities, in 

energy consumption and food production. The analysis presented starts from economic 

projections that stipulate a more than tenfold increase of GDP in developing regions 



between 1990 to the middle of next century. Undoubtedly, such dramatic demographic and 

economic changes will put heavy demands on resources and will require the application of 

more efficient and environmentally benign technologies. 

The analysis of the impacts of alternative future energy paths on the regional supply 

and trade of agricultural commodities is part of an integrated assessment study undertaken 

at IIASA. For the agricultural study, results from the energy models (i.e., 11R and 

MESSAGE III) of IIASA's Environmentally Compatible Energy Strategies project and 

from the regional air pollution model RAINS developed by IIASA's Transboundary Air 

Pollution project were compiled to define the economic and environmental conditions for 

a number of simulation experiments with the BLS model. 

The choice of future energy sources and technology will greatly impact on the level of 

greenhouse gases and aerosols in the atmosphere and is expected to alter the prospects for 

crop cultivation through changes in climate as well as in levels of C02  concentrations and 

airborne pollutants. The projected increase i n  global temperature by year 2050 is lowest - 

about 1 . 1 "  C - in the carbon intensive high emission energy scenario (HER), compared to 

1.3" C and 1.4" C warming, respectively, under alternative abatement scenarios (MOM 

and MIS). Despite having the highest level of C02 concentration (in year 2050, estimates 

are: 538 ppmv C02 in HER, 474 ppmv and 488 ppmv in MOM and MIS scenarios, 

respectively), the total radiative forcing is lower in the HER scenario because of the 

cooling effect due to much higher levels of aerosols. 

Crop experiments and studies of the impact of climate change on crop productivity 

have resulted in the understanding that global warming (i.e., the climate effect only), on a 

broad regional level, will have negative impacts on agriculture. This effect is mitigated and 

will often be more than compensated by beneficial effects on plants of increasing C 0 2  

levels, through enhancing photosynthesis and water use efficiency. For a number of 

reasons, agriculture in temperate zones is expected to fare better under climate change than 

tropical agriculture. 

When looking only at the projected climate and C02 effects of the three alternative 

energy and emission scenarios, conditions in the HER scenario are more beneficial to 

agriculture than the abatement scenarios. This perhaps counterintuitive finding derives 

from the projected conditions, namely that the HER scenario produces the highest C 0 2  



level (a positive effect) and causes the least warming (a negative impact) of the three cases 

analyzed. 

However, the high emission of pollutants in the HER scenario, notably of SO2, poses a 

number of environmental risks not included in this analysis. The detrimental impacts of 

airborne chemicals include human health effects, acidification of soils and water bodies, 

fumigation of crops and forests, and damage to buildings and engineering materials. While 

the cost of abatement measures is determined by rather well-specified investment 

requirements, the damage caused by SO2 and related pollutants is complex, of multiple 

forms, and widespread. 

The projected differences in energy investments between abatement scenarios (both 

MOM and MIS) and the coal intensive HER scenario amount to about '/z percent of global 

GDP, and more than 1 percent of GDP in east Asia (CPA region). It is justified, therefore, 

to carefully analyze the regional and global consequences of a failure to implement 

emission abatement in the energy sector. 

Unlike in the debate on climate change impacts where the regions mainly responsible 

for the increase in atmospheric C 0 2  concentration may be different from those most 

affected by it, the damage caused by air pollution stays more closely with the region of 

origin, at least when analyzing the effects in terms of broader world regions. 

The simulation experiments with the BLS, computed to analyze the impacts of 

alternative energy futures on agriculture, suggest a few general conclusions: 

- Overall effects are small due to moderate climate sensitivity and negative radiation 

forcing by sulfate aerosols. 

- Productivity in agriculture at the aggregate global level increases in simulations for all 

three energy scenarios, compared to present climate and C 0 2  concentration levels 

mainly because of the positive physiological effects of increased C 0 2  levels on crop 

performance. 

- The aggregate impact for the group of developed countries is clearly positive in all 

simulated cases. The aggregate impact on developing countries is likely to be negative. 



- Emission abatement, in terms of agricultural and environmental impacts, is a regional 

issue much more than a global one. While there is relatively little difference between 

outcomes at the global level, regional results vary greatly between scenarios. 

- Global impacts on agriculture alone, and on the basis of the single pollutant taken into 

account here (i.e., SO2), do not seem to provide sufficient economic justification for 

abatement. Yet, regional impacts on agriculture of a coal-intensive high emission 

scenario (HER) could be substantial, especially in regions where agricultural 

production is located near industrial areas as in China and India. Hence, from a 

regional perspective, abatement appears to be foremost in the interest of the polluters 

themselves. 
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Appendix: Aggregation of BLS country modules to world regions 

10 For details of country grouping i n  the BLS see Fischer et  al. (1988) 
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Economic group 

DEVELOPED 

DEVELOPING 

Region 

NAM 

WEU+ODE 

EEU+FSU 

P A 0  

AFR 

LAM 

WAS 

SAS 

CPA 

PAS 

BLS ~ o m ~ o n e n t "  

Canada, United States 

Austria, EC-9, Rest of the world (9 16) 

Eastern Europe & USSR 

Australia, Japan, New Zealand 

Kenya, Nigeria, 
Africa Oil Exporters (901), 
Africa medium income/calorie exporters (902), 
Africa medium income/calorie importers (903), 
Africa low income/calorie exporters (904), 
Africa low income/calorie exporters (905) 

Argentina, Brazil, Mexico, 
Latin America high income/calorie exporters (906), 
Latin America high income/calorie importers (907), 
Latin America medium income (908) 

Egypt, Turkey, 
Near East Asia oil exporters (9 12), 
Near East Asia medium-low Income (9 13). 

India, Pakistan, 
Asia low income (91 1 )  

China, 
Far East Asia high-medium income/calorie importers 
(9 10) 

Indonesia, Thailand, 
Far East Asia high-medium income/calorie exporters 
(909) 



Table 1 :  Population in BLSlREF3 reference scenario 

Population (billions) 
1980 2000 2030 2050 

Table 2: Regional population share in BLSlREF3 reference scenario (percent) 

Growth rate (% p.a.) 
1980 1980 2000 

-2050 -2000 -2050 

WORLD 
DEVELOPED 
DEVELOPING 

Table 3: Economic growth in  1 1R coal intensive high emission energy scenario (HER) 

4.4 6.1 8.7 9.9 
1.2 1.3 1.5 1.5 
3.2 4.8 7.2 8.4 

DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
SAS 
CPA 
PAS 

1.2 1.7 1.0 
0.3 0.6 0.2 
1.4 2.0 1.1 

1980 2000 2030 2050 

27.1 21.9 17.1 14.9 
72.9 78.1 82.9 85.1 

5.7 4.8 3.8 3.3 
9.8 7.7 5.9 5.1 
8.6 6.9 5.6 5 .O 
3.1 2.5 1.8 1.5 
9.4 12.4 17.7 20.6 
8.0 8.5 8.9 8.7 
4.3 5.3 6.5 7.3 

20.5 22.8 24.2 24.6 
24.8 23.2 20.0 18.4 

5.9 6.0 5.7 5.6 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
LAM 
WEU 
EEU 
FSU 
MEA 
AFR 
CPA 
SAS 
PAS 
PA0 

GDP (billion US $ of 1990) 
1990 2000 2030 2050 

20870 27 168 59346 97532 
18390 22887 41121 58210 
3420 5482 19848 41451 

6070 7794 14253 19070 
1080 1498 363 1 6889 
7010 8995 15876 21 199 

300 239 920 2249 
790 597 1896 5447 
570 839 245 9 5077 
260 350 1001 2540 
470 1085 6240 13592 
3 80 533 1558 4288 
660 1177 4959 9065 

3280 406 1 6553 8116 

Growth rate (% p.a.) 
1990 1990 1990 

-2010 -2030 -2050 

2.65 2.65 2.60 
2.14 2.03 1.94 
4.62 4.49 4.25 

2.38 2.16 1.93 
3.13 3.08 3.14 
2.32 2.06 1.86 
0.37 2.84 3.41 

-0.44 2.2 1 3.27 
3.69 3.72 3.7 1 
2.94 3.43 3.87 
7.44 6.68 5.77 
3.33 3.59 4.12 
5.93 5.17 4.46 
2.00 1.75 1.52 



Table 4: Investment in 1 1R coal intensive high emission energy scenario (HER) 

Investment (billion US $ of 1990) 
1990 2000 2030 2050 

Growth rate (% p.a.) 
1990 1990 

-2010 -2030 -2050 1990 1 
WORLD 
DEVELOPED 
DEVELOPING 

NAM 
LAM 
WEU 
EEU 
FS U 
MEA 
AFR 
CPA 
SAS 
PAS 
PA0 

Table 5: Global agriculture production in BLSlREF3 reference scenario' ' 

I I Units of measurement: wheat, rice, coarse grains in million tons; bovine + ovine meat in million 
tons carcass weight; dairy products in million tons whole milk equivalent; other animal products, protein 
feed in million tons protein equivalent; other food, non-food in billion US dollars of 1970. 

WHEAT 
RICE, MILLED 
COARSE GRAINS 
BOV.&OVINE MEAT 
DAIRY PRODUCTS 
OTHER MEAT 
PROTEIN FEEDS 
OTHER FOOD 
NON-FOOD 

AGRICULTURE 

Production level in  year 
1980 2000 2030 2050 

455 660 897 1037 
272 4.16 605 706 
759 1067 1476 1685 

65 84 117 133 
47 1 6 17 830 959 

17 25 3 8 46 
3 6 5 2 7 2 8 2 

224 327 494 594 
26 3 4 45 5 1 

312 449 659 784 

Growth (% p.a.) 
1980 2000 1980 

-2000 -2050 -2050 

1.9 0.9 1.2 
2.1 1.1 1.4 
1.7 0.9 1.1 
1.3 0.9 1.0 
1.4 0.9 1.0 
2.0 1.2 1.4 
1.8 0.9 1.2 
1.9 1.2 1.4 
1.3 0.8 1.0 

1.8 1.1 1.3 



Table 6: Cereal demand in BLSlREF3 reference scenario 

Table 7: Cereal production in BLSREF3 reference scenario 

Demand per capita (kglcap) 
1980 2000 2030 2050 

340 350 344 348 
648 701 73 1 767 
226 252 264 274 

880 1001 1009 1054 
437 501 549 573 
856 859 857 900 
308 302 334 355 
168 173 180 183 
258 274 296 307 
356 358 37 1 373 
173 183 189 199 
274 344 394 432 
165 194 222 243 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
SAS 
CPA 
PAS 

Total demand (mill ion tons) 
1980 2000 2030 2050 

1491 2143 2977 3425 
768 938 1079 1129 
722 1205 1899 2296 

220 292 336 342 
187 236 279 289 
320 364 4.12 445 
4 1 46 5 1 52 
69 131 275 370 
9 1 143 228 261 
67 1 16 208 267 

155 255 396 481 
298 489 681 783 
43 7 1 110 133 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
S AS 
CPA 
PAS 

Total production (mill. tons) 
1980 2000 2030 2050 

1487 2143 2977 3428 
822 1070 1327 1448 
665 1074 1650 1979 

317 467 623 693 
197 227 253 268 
275 334 394 427 

32 4 1 56 6 1 
52 9 1 188 255 
84 136 234 271 
52 7 1 118 144 

147 256 390 487 
287 449 604 690 
43 70 117 132 

Production per capita (kglcap) 
1980 2000 2030 2050 

340 350 344 348 
693 799 899 984 
208 224 230 236 

1272 1600 1872 2133 
46 1 482 499 531 
735 789 820 863 
238 269 361 413 
127 12 1 123 126 
240 260 304 318 
277 219 210 202 
164 183 186 201 
265 317 349 381 
165 191 236 241 



Table 8: Regional cereal net exports and self-sufficiency in BLSREF3 reference scenario 

Self-sufficiency (percent) 
1980 2000 2030 2050 

107 114 123 128 
9 2 8 9 8 7 8 6 

144 160 185 202 
106 96 9 1 9 3 
86 92 9 6 96 
77 8 9 108 117 
7 6 70 6 8 69 
93 95 103 1 04 
7 8 6 1 56 54 
9 5 100 9 9 10 1 
97 92 8 9 88 

100 99 106 99 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
S AS 
CPA 
PAS 

Net exports (million tons) 
1980 2000 2030 2050 

183 28 1 438 510 
5 4 131 248 319 

-56 -13 1 -248 -317 

9 8 175 287 350 
10 -9 -26 -22 

-45 -30 -18 -18 
-9 - 5 4 9 

- 17 -39 -87 -116 
- 6 -7 6 9 

- 15 -45 -91 -122 
- 8 1 - 5 6 

- 10 -40 -77 -93 
0 - 1 7 - 1 



Table 9: BLS scenarios analyzed in the study 

Scenario 

REF3 

HER 

MOM 

MIS 

MOMb 

MISb 

HER.VI 

MOM.Vl 

NI1S.v 1 

MOM.Vlb 

M1S.V 1 b 

HER.V2 

MOM.V2 

MIS.V2 

MOM,V2b 

MIS.V2b 

Scenario characteristics 
Reference scenario: UN 1992 medium growth population scenario; economic growth by 
region calibrated through adjustment of production factor dynamics to approximately 
match growth characteristics of 11R results in high emission energy scenario; agricultural 
protection is reduced between 1990 and 2020 by 50 percent; climate and levels of C 0 2  
and SO2 concentrations remain at base year level. 

High emission scenario: basic assumptions as in REF3; yield changes parameterized 
according to temperature changes and increases in C 0 2  and SO2 levels (see Table 10) 
derived from emissions in high emission energy scenario, using MAGICC and RAINS- 
Asia and scaling yield impacts calculated in EPA climate impact study; spatial pattern of 
climate change derived from doubled C 0 2  GCM experiments using results published for 
GISS, GFDL and UKMO general circulation models. 

Abatement variant I: basic assumptions as in REF3; yield changes parameterized 
according to temperature changes and increases in COz levels (see Table 10) derived from 
emissions in an energy scenario that implements mitigation through abatement measures 
according to multi-purpose strategies, using MAGICC and scaling yield impacts 
calculated in EPA climate impact study; spatial pattern of climate change derived from 
doubled COz GCM experiments using results published for GISS. GFDL and UKMO 
general circulation models. 

Abatement variant 2: basic assumptions as in REF3; yield changes parameterized 
according to temperature changes and increases in C 0 2  levels (see Table 10) derived from 
emissions in an energy scenario that implements mitigation through abatement measures 
according to single-purpose (i.e., SOz mitigation) options, using MAGICC and scaling 
yield impacts calculated in EPA climate impact study; spatial pattern of climate change 
derived from doubled COz GCM experiments using results published for GISS, GFDL 
and UKMO general circulation models. Mitigation Including Single-purpose options. 

as MOM, but in addition assuming that investment for abatement measures affects capital 
accumulation. 

as MIS, but in addition assuming that investment for abale~iient measures affects capital 
accumulation. 

as HER, but assuming that C 0 2  fertilization effects in farmers' fields is limited to two 
thirds of experimental results. 

as MOM, but assuming that C 0 2  fertilization effects in farmers' fields is limited to two 
thirds of experimental results. 

as MIS, but assuming that C 0 2  fertilization effects in farmers' fields is limited to two 
thirds of experimental results. 

as MOM.Vl,  but in addition assuming that investment for abatement measures affects 
capital accumulation. 

as MIS.Vl, but in addition assuming that investment for abatement measures affects 
capital accumulation. 

as HER, but assuming that both the climate and C 0 2  fertilization effects in farmers' fields 
are limited to two thirds of experimental results. 

as MOM, but assuming that both the climate and C 0 2  fertilization effects in farmers' 
fields are limited to two thirds of experimental results. 

as MIS, but assuming that both the climate and C 0 2  fertilization effects in farmers' fields 
are limited to two thirds of experimental results. 

as MOM.V2, but in addition assuming that invesl~nent for abatement measures affects 
capital accumulal~on. 

as MIS.V2, but in addition assuming that investment for abatement measures affects 
capital accumulation. 



Table 10: Climate and emission characteristics of three energy scenarios 

HER 1990 20 10 2030 2050 2100 

dT north "C 0 0.23 0.48 0.83 1.87 
dT south "C 0 0.34 0.75 1.24 2.60 
dT global "C 0 0.30 0.65 1.07 2.34 
C 0 2  concentr. ppmv 355 398 458 538 810 
SO;! emissions ~ t y - '  142 198 272 348 498 

MOM 1990 2010 2030 2050 2 100 

dT north "C 0 0.54 1 .OO I .50 2.7 1 
dT south "C 0 0.4 1 0.82 I .28 2.47 
dT global "C 0 0.43 0.85 1.30 2.50 
C 0 2  concentr. ppmv 355 39 1 425 474 622 
SO2 emissions ~ t y - '  142 100 8 0 72 7 6 

MIS 1990 2010 2030 205 0 2100 

dT north "C 0 0.59 1 . 1  1 1.60 2.88 
dT south "C 0 0.44 0.89 1.37 2.64 
dT global "C 0 0.47 0.93 1.39 2.67 
C 0 2  concentr. ppmv 355 395 434 488 656 
SO2 emissions ~ t ~ . '  142 92 68 72 7 6 

Table 1 1: GCM climate change scenarios 

" when calculated 

GCM 

GISS 
GFDL 
UKMO 

Resolution 
latxlong 

7.83"x10° 
4.4Ox7.5" 
5.0°x7.5" 

year12 

1982 
1988 
1986 

co2 
PPmv 
630 
600 
640 

Change in average global 
temp. "C 

4.2 
4.0 
5.2 

precip. % 

1 1  
8 
15 



Table 12: Static impact on crop productivity (percent), year 2050 

GISS 

HER 

MOM 

MIS 

HER.V 1 

M0M.V 1 

MIS.Vl 

HER.V2 

MOM.V2 

MIS.V2 

Cereals 
WORLD DVLPD DVLPG 

-5.8 -3.0 -7.9 
13.8 13.3 14.2 
-6.7 -7.2 -6.4 
1.3 3.2 -0.1 

-7.4 -5.2 -9.1 
9.0 8.7 9.2 
0.0 0.0 0.0 
1.6 3.5 0.1 

-7.9 -5.5 -9.7 
10.0 9.7 10.3 
0.0 0.0 0.0 
2.1 4.2 0.6 

-5.8 -3.0 -7.9 
9.2 8.9 9.5 

-6.7 -7.2 -6.4 
-3.3 -1.3 -4.8 

-7.4 -5.2 -9.1 
6.0 5.8 6.2 
0.0 0.0 0.0 

-1.4 0.6 -2.9 

-7.9 -5.5 -9.7 
6.7 6.5 6.8 
0.0 0.0 0.0 

-1.2 0.9 -2.9 

-3.9 -2.0 -5.2 
9.2 8.9 9.4 

-6.7 -7.2 -6.4 
-1.4 -0.3 -2.2 

-4.9 -3.5 -6.0 
6.0 5.8 6.1 
0.0 0.0 0.0 
1 .O 2.3 0.1 

-5.3 -3.7 -6.5 
6.7 6.5 6.8 
0.0 0.0 0.0 
1.4 2.8 0.4 

Impactof 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
SO2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Climate 
co2 
so2 
Net total 

Crops 
WORLD DVLPD DVLPG 

-6.4 -2.2 -7.8 
18.1 17.0 18.5 
-5.5 -6.8 -5.0 
6.3 8 .O 5.7 

-7.5 -3.8 -8.7 
11.8 11.0 12.0 
0.0 0.0 0.0 
4.3 7.3 3.3 

-8.0 -4.1 -9.3 
13.2 12.4 13.4 
0.0 0.0 0.0 
5.2 8.3 4.1 

-6.4 -2.2 -7.8 
12.1 11.3 12.4 
-5.5 -6.8 -5.0 
0.3 2.3 -0.4 

-7.5 -3.8 -8.7 
7.9 7.4 8.0 
0.0 0.0 0.0 
0.4 3.6 -0.7 

-8.0 -4.1 -9.3 
8.8 8.2 9.0 
0.0 0.0 0.0 
0.8 4.2 -0.3 

-4.2 -1.5 -5.2 
12.1 11.3 12.3 
-5.5 -6.8 -5.0 
2.4 3 .O 2.1 

-5 .O -2.5 -5.8 
7.8 7.4 8.0 
0.0 0.0 0.0 
2.9 4.8 2.2 

-5.3 -2.7 -6.2 
8.8 8.2 9.0 
0.0 0.0 0.0 
3.5 5.5 2.8 



Table 13: Dynamic impact on cereal production under alternative GCM variants (% change), year 2050 

Scenario 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
P A 0  
AFR 
LAM 
WAS 
SAS 
CPA 

. I -;:: 2.0 
PAS 1 -4.6 0.4 -1.4 -1.4 2.5 2.8 1 -0.2 -0.6 -0.6 0.2 0.3 2.5 1 

UKMO 
HER MOM MIS 

1.2 1.5 1.7 
4.9 4.8 5.4 

-1.5 -1.0 -1.0 

-2.7 -0.5 -0.6 
9.1 3.3 3.6 

13.8 14.9 17.0 
10.0 1.1 -0.1 
-0.1 -3.8 -3.9 
-7.0 -1 1 .1  -12.2 
7.4 -0.1 -0.4 
1.4 0.3 0.5 

-4.1 2.8 

GISS 
HER MOM MIS 

0.8 0.9 1.2 
5.2 4.9 5.5 

-2.3 -2.0 -2.0 

-2.1 -0.1 -0.2 
9.3 3.5 3.8 

13.2 13.9 15.9 
12.7 5.0 4.4 
-1.4 -5.5 -5.8 
-8.2 -1 1.7 -12.7 
6.5 -1.5 -1.3 
0.2 -0.8 -0.6 

1.9 

AVERAGE 
HER MOM MIS 

0.8 0.9 1.1 
4.5 4.1 4.6 

-1.9 -1.5 -1.4 

-1.5 0.2 0.2 
8.7 2.9 3.2 

10.3 10.7 12.4 
13.2 5.3 4.7 
-1.2 -5.0 -5.2 
-6.5 -9.9 -10.9 
7.0 -1.2 -1.2 
0.3 -0.3 -0.2 

GFDL 

HER MOM MIS 

0.3 0.3 0.5 
3.5 2.5 2.9 

-2.0 -1.4 -1.3 

0.3 1.2 1.3 
7.8 2.0 2.3 
4.0 3.3 4.3 

17.0 9.7 9.9 
-2.2 -5.8 -6.0 
-4.4 -7.0 -7.8 
7.0 -2.0 -1.8 

-0.6 -0.5 -0.4 
1.3 



Table 14: Dynamic impact on crop production under alternative GCM variants (% change), year 2050 

Scenario 

DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
P A 0  
AFR 
LAM 
WAS 
SAS 
CPA 
PAS 

GISS 
HER MOM MIS 

GFDL 

HER MOM MIS 

UKMO AVERAGE 
HER MOM MIS 1 HER MOM MIS 



Table 15: Dynamic impact on crop production in GISS.Vl runs (% change), year 2050 

Table 16: Dynamic impact on crop production in GISS.Vlb runs (% change), year 2050 

Crops 
HER MOM MIS 

0.0 0.1 0.3 
3.7 5.2 5.7 

-1.3 -1.6 -1.5 

-1.5 0.8 0.8 
8.6 3.4 3.7 
4.6 10.4 11.7 

12.2 6.2 6.2 
3.7 -0.7 -0.7 
1.4 -3.8 -4.1 
3.6 -2.5 -2.5 

-1.9 -1.5 -1.4 
-6.2 0.2 0.4 
-5.2 -4.1 -4.2 

Scenario 

GISS.Vl 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
S AS 
CP A 
PAS 

Cereals 
HER MOM MIS 

-0.9 -0.2 -0.1 
3.1 3.6 4.0 

-3.9 -3.0 -3.2 

-0.8 0.6 0.7 
7.9 2.6 2.8 
4.2 8.3 9.4 

18.2 8.5 8.8 
-1.7 -5.7 -6.3 
-4.1 -8.9 -9.8 
3.7 -3.8 -3.9 

-2.3 -2.4 -2.5 
-7.8 -0.1 0.1 
-1.1 -2.2 -2.3 

Crops 
HER MOM MIS 

0.0 -0.2 -0.1 
3.7 5 .O 5.6 

-1.3 -2.0 -2.0 

-1.5 0.9 0.9 
8.6 3.6 3.9 
4.6 9.7 11.0 

12.2 6.3 6.3 
3.7 -1.6 -1.7 
1.4 -4.2 -4.5 
3.6 -2.9 -2.9 

-1.9 -1.8 -1.7 
-6.2 0.1 0.3 
-5.2 -4.7 -4.7 

Scenario 
G1SS.V 1 b 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
SAS 
CPA 
PAS 

Cereals 
HER MOM MIS 

-0.9 -0.5 -0.4 
3.1 3.3 3.8 

-3.9 -3.3 -3.5 

-0.8 0.5 0.7 
7.9 2.6 2.8 
4.2 7.6 8.7 

18.2 8.4 8.7 
-1.7 -6.5 -7.3 
-4.1 -9.2 -10.1 
3.7 -4.2 -4.1 

-2.3 -2.9 -2.9 
-7.8 -0.2 0.0 
-1.1 -2.5 -2.5 



Table 17: Dynamic impact on crop production in GISS.V2 runs (9% change), year 2050 

Table 18: Dynamic impact in on crop production in GISS.V2b runs (% change), year 2050 

Scenario 
GISS.V2 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
SAS 
CP A 
PAS 

Cereals 
HER MOM MIS 

-0.3 0.6 0.7 
2.5 3.3 3.7 

-2.3 - 1.4 -1.4 

-1.7 0.0 0.0 
7.6 2.5 2.6 
4.5 9.1 10.4 

14.6 3.5 3.2 
0.2 -3.9 -4.1 

-2.4 -8.0 -8.9 
5.8 -0.9 -0.8 

-0.2 -0.6 -0.4 
-7.0 1.3 1.6 
0.7 -0.9 -0.9 

Scenario 
GISS.V2b 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
S AS 
CPA 
PAS 

Crops 
HER MOM MIS 

0.8 1 . 1  1.3 
2.7 4.4 4.9 
0.2 -0.1 0.1 

-2.9 -0.4 -0.5 
7.6 2.8 3 .O 
4.5 10.5 11.8 
8.3 1.3 0.8 
4.5 0.0 0.1 
2.5 -3.0 -3.3 
5.0 -0.4 -0.3 
0.5 0.8 I .1 

-5.5 1.6 1.9 
-2.3 -1.5 -1.4 

Cereals 

HER MOM MIS 

-0.3 0.3 0.4 
2.5 3.1 3.4 

-2.3 -1.7 -1.7 

-1.7 0.0 -0.1 
7.6 2.4 2.6 
4.5 8.4 9.7 

14.6 3.5 3.0 
0.2 -4.7 -4.8 

-2.4 -8.3 -9.2 
5.8 -1.2 -1.1 

-0.2 -1 .O -0.9 
-7.0 1.2 1.5 
0.7 -1.1 -1.2 

Crops 
HER MOM MIS 

0.8 0.7 0.9 
2.7 4.3 4.7 
0.2 -0.5 -0.4 

-2.9 -0.3 -0.4 
7.6 3.0 3.2 
4.5 9.8 11.1 
8.3 1.5 1 .O 
4.5 -1.0 -1.0 
2.5 -3.3 -3.5 
5.0 -0.8 -0.7 
0.5 0.4 0.7 

-5.5 1.4 1.7 
-2.3 -2.0 -2.0 



Table 19: Dynamic impact on agriculture sector GDP ('76 change), year 2050 

Table 20: Dynamic impact on world market prices (% change), year 2050 

GDPA % change 
com~aredtoREF3 

WORLD 
DEVELOPED 
DEVELOPING 

NAM 
WEU+ODE 
EEU+FSU 
PA0 
AFR 
LAM 
WAS 
S AS 
CPA 
PAS 

l 3  For an explanation of acronyms and scenario variants refer to Table 9. 

HER MOM MIS MOMb MISb 

I .9 1.3 1.6 0.9 1.2 
4.6 5.3 5.8 5.2 5.7 
1 .O 0.0 0.2 -0.5 -0.4 

-3.7 -0.8 - 1 . 1  -0.7 - 1  .O 
7.5 3.7 4.1 3.9 4.4 

11.0 13.8 15.4 13.1 14.8 
1.8 0.8 0.7 I .  I 1 .O 
4.3 0.1 0.4 -0.8 -0.8 
0.1 -3.6 -3.9 -4.0 -4.3 
5.4 -0.1 0.1 -0.8 -0.6 
1.8 I .O 1.3 0.6 0.9 

-2.5 1.8 2.1 1.6 1.9 
-1.8 -1.9 -1.8 -2.6 -2.4 

Variant VI" 

HER MOM MIS MOMb MISb 
0.0 0.1 0.2 -0.3 -0.1 
2.6 3.9 4.4 3.8 4.3 

-0.9 -1.2 -1.2 -1.7 -1.7 

-1.9 0.5 0.5 0.6 0.6 
5.9 2.6 2.9 2.8 3.2 
3.8 9.0 10.1 8.4 9.5 
3.1 1.6 1.7 1.8 2.0 
3.4 -0.3 -0.2 -1.2 -1.3 
1 . I  -2.9 -3.1 -3.4 -3.6 
3.0 -1.8 -1.8 -2.4 -2.4 

-1.7 -1.3 -1.2 -1.6 -1.6 
-5.0 0.2 0.3 0.0 0.1 
-5.0 -3.9 -3.9 -4.5 -4.6 

Var~anl V2 

HER MOM MIS MOMh MISb 

0.7 0.9 1 . 1  0.5 0.7 
2.0 3.5 3.9 3.4 3.8 
0.2 0.0 0.1 -0.5 -0.4 

-3.1 -0.5 -0.7 -0.4 -0.6 
5.5 2.5 2.8 2.8 3.0 
3.7 9.1 10.3 8.5 9.6 
2.3 0.6 0.5 0.9 0.8 
4.0 0.3 0.4 -0.8 -0.9 
1.9 -2.5 -2.7 -2.8 -3.1 
4.1 -0.1 0.0 -0.7 -0.6 
0.2 0.6 0.9 0.3 0.5 

-4.3 1.2 1.5 1 .O 1.3 
-2.4 -1.3 -1.3 -1.9 -1.9 

% price change 
compared to REF3 

Cereals 
Other crops 
All crops 

Agriculture 

HER MOM MIS MOMb MISb 

-15 -10 -12 -10 -12 
-24 -15 -17 -15 -17 
-21 -13 -15 -13 -15 

-15 -9 -11 -9 -11 

Variant V 1 

HER MOM MIS MOMb MISb 

5 4 3 4 3 
-9 - 3 -5 -3 -5 
-4 - 1 -2 -0 -2 

-3 -0 - 1 0 - 1 

Variant V2 

HER MOM MIS MOMb MISb 

-4 - 7 -9 -6 - 8 
-15 -1 1 -12 -10 -12 
-I I -9 - 1 1  -9 -11 

- 8 -7 -8 -6 -7 


