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Abstract

A body of empirical evidence has shown that many managers would welcome new
ways of highlighting catastrophic consequences, as well as means to evaluating decision
situations involving high risks. When events occur frequently and their consequences
are not severe, it is relatively simple to calculate the risk exposure of an organisation, as
well as a reasonable premium when an insurance transaction is made. The usual
methods rely on variations of the principle of maximising the expected utility (PMEU).
When, on the other hand, the frequency of damages is low, the situation is considerably
more difficult, especially if catastrophic events occur. When the quality of estimates is
poor, e.g., when evaluating low-probability/high-consequence risks, the customary use
of quantitative rules together with overprecise data could be harmful as well as
misleading.

This work extends the risk evaluation process by the integration of procedures for
handling vague and numerically imprecise probabilities and utilities. The shortcomings
of PMEU, and of utility theory in general, can in part be compensated for by the
introduction of risk constraints. We point out some problematic features of the
evaluations performed using utility theory. We also criticise the demand for precise data
in situations where none is available. As an alternative to traditional models, we suggest
a method for the evaluation of risks when the information at hand is numerically
imprecise. The method includes procedures that allow for interval statements and
comparisons, and thereby it does not require the use of numerically precise statements
of probability, cost, or utility in a general sense. In order to attain a reasonable level of
security, and because it has been shown that managers tend to focus on large negative
losses, it is argued that a risk constraint should be imposed on the analysis. The
strategies are evaluated relative to a set of such constraints considering how risky the
strategies are.



iv

Acknowledgments

Love Ekenberg’s work was supported by the Swedish Foundation for International
Cooperation in Research and Higher Education (STINT). The authors also gratefully
acknowledge the support by the Swedish Council for Planning and Coordination of
Research (FRN), Stockholm.

The authors would also like to thank Johan Thorbiörnson, Mid Sweden University, for
his valuable comments.



v

About the Authors

Love Ekenberg and Magnus Boman are from the Department of Computer and Systems
Sciences, Stockholm University, Electrum 230, S-164 40 Kista, Sweden. Love
Ekenberg was a Guest Research Scholar at IIASA from October 1996 until June 1997.
Magnus Boman is also affiliated with The Royal Institute of Technology.

Joanne Linnerooth-Bayer is Co-leader of the Risk, Modeling and Policy Project at
IIASA.



1

Catastrophic Risk Evaluation

Love Ekenberg, Magnus Boman, Joanne Linnerooth-Bayer.

1. Motivation
A variety of methods have been developed for estimating losses and risks (cf.,
e.g.,[Ekenberg, et al., 1995]). When events occur frequently and when they are not very
severe, it is relatively simple to calculate the risk exposure of an organisation, as well as
a reasonable premium when, for instance, an insurance transaction is made. Commonly
used methods rely on variations of the principle of maximising the expected utility
(PMEU). When, on the other hand, the frequency of damages is low, the situation is
considerably more difficult; in particular, if catastrophic events can occur. When the
quality of the estimates is poor, e.g., when evaluating low-probability/high-consequence
events, the customary use of quantitative rules together with overprecise data could be
harmful as well as misleading. Nevertheless, PMEU is the basis of many evaluation
models, even if the “[...] historical records of catastrophes does not always provide an
adequate number of events to estimate reliably the value of some key variables [...]”
([ISO, 1996], p. 36).

Even if the evaluation of a strategy results in an acceptable expected utility, its
consequences might be so serious that it should nevertheless be avoided, even if the
probability of catastrophic events is low. Therefore, it seems necessary to supplement
PMEU by other criteria. Furthermore, since the information of low-probability/high-
consequence events is necessarily very uncertain, an important objective is to extend the
risk evaluation process by the integration of procedures for handling vague and
numerically imprecise information.

In this paper, we scrutinise some problematical features of using utility theory. We
also point out some problems with demanding precise data in situations where none is
available. As an alternative to traditional models, we suggest a method for the
evaluation of risks when the information at hand is numerically imprecise. We begin, in
Section 2, with an overview of utility theory and point out some problems with the use
of PMEU. Section 3 describes how utility theory can be extended by procedures for
evaluating imprecise information, and critically reviews some earlier proposals. Section
4 describes the idea of risk constraints as a means to eliminating alternatives that may
lead to catastrophic events.
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2. Utility Theory
The utility model has been used for various purposes. Economists use it primarily as a
predictive tool [Friedman, 1953], and secondarily as a descriptive tool [Bettman, 1979].
From the predictive viewpoint, the logical basis of the theory is not important. What
matters is its ability to predict the behaviour of decision makers. Descriptive studies
focus on how well a theory is able to model real-life decision processes. Another
perspective is the normative or prescriptive one, reflecting how a rational decision
maker should behave. For normative decision models, the logical foundations and the
validity of the model are important. Proponents often argue by presenting what they
regard as reasonable axioms, from which they deduce criteria for ranking the
alternatives. Naturally, this does not persuade everyone. To show the problems
connected with the diversity of axiomatisations, [Fischhoff, et al., 1983] investigate
some central questions concerning whether people accept the axioms upon which the
model is based.

To be more precise, the meaning of an agent accepting the utility principle and PMEU
can be formulated in the following way: Given a structured decision situation containing
a finite set of alternatives {Ai}, suppose that each alternative Ai in this set can be
represented by a set of consequences and a set of numbers ({cij},{pij}), in which {cij}, is
the set of consequences of Ai, and pij is the probability that cij occurs given that Ai is
performed.1

Definitions: If Ai is ({cij},{pij}), and V is a real-valued function on {cij}, then Ai
has a value equal to ΣpijV(cij), sometimes denoted EV(Ai).

2

An agent accepts the utility principle iff it assigns the value ΣpijV(cij)
to Ai, given that it has assigned the value V(cij) to cij.

Given the alternatives Ai and Aj, an ordering « of the alternatives is
compatible to PMEU iff A i « Aj implies EV(Ai) ≤ EV(Aj).

An agent accepts PMEU iff its ordering(s) of the values of the
alternatives is compatible to that principle.

Until the late 1930’s, utility theory was not a well-founded subject. This changed
with the works of Ramsey, von Neumann and Morgenstern [Neumann and
Morgenstern, 1947], and [Ramsey, 1978]. They structured decision analysis by
proposing reasonable principles governing decisions, and by constructing a theory out
of them. In other words, they (and later many others) formulated sets of axioms meant

                                                
1 Note that in some formulations the concept of state is used, and that probabilities are assigned to
different states instead. However, the two models can be straightforwardly transformed into each other
when the number of states and consequences is finite cf., e.g., [Jeffrey, 1983].
2 A survey of different interpretations of the utility principle and PMEU and a more general
characterisation of the class of expected utility models is given in [Schoemaker, 1982], p.530 ff. An
expected utility model is one which predicts or prescribes that people maximise the expression
ΣΦ(p)U(x), where x is an outcome vector. The models differ in (i) how utility is measured, (ii) what kind
of concept of probability Φ(p) is allowed, and (iii) how the outcomes are measured. Schoemaker then
examines some frequently used variants of models, according to this structure.
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to justify their particular attitude towards the utility principle.3 Such axiomatic systems
usually consist of primitives (such as «, states, sets of states, etc.) and axioms
constructed from the primitives. The axioms (ordering axioms, independence axioms,
continuity axioms, etc.) imply a numerical representation of preferences and
probabilities. Typically implied by the axioms are existence theorems stating that a
probability distribution and a utility function exist, and a uniqueness theorem stating
that two utility functions, relative to a given preference ranking, are always linear
transformations of each other.

It is generally agreed that a large number of axiomatic theories provide justification
of PMEU.4 A common counter argument to this is that the independence axioms of
utility theory are fallacious. For instance, [Allais, 1953] has shown that people do not
act in accordance with certain independence axioms in the system of [Savage, 1972].
An even more serious problem with the formal justifications of the principle is that even
if the axioms in the various axiomatic systems are accepted, the principle does not
follow, i.e. the proposed systems are too weak to imply the utility principle and PMEU.
Thus, it is highly doubtful whether utility theory can be justified on purely formal
grounds. For instance, [Malmnäs, 1994a] demonstrates the weakness in this respect for
the systems in [Hernstein and Milnor, 1953], [Oddie and Milne, 1990], and [Savage,
1972]. A fuller account of a wide variety of systems is provided in [Malmnäs, 1990a],
which argues that it is implausible that these systems could be extended in any
reasonable way to imply the principle. Thus, the logical foundations of utility theory
seems to be fundamentally insufficient.

Furthermore, a troubling dilemma with PMEU is that low-probability/high-
consequence events, for example, the risks of air travel, will be valued no differently
from the same risks generated by independent trials, for example, automobile travel.
Indeed, valuing the former more than the latter may even be considered immoral to the
extent that one values lives lost collectively more than those same lives lost
individually. However, [Linnerooth-Bayer, 1996] argues that this conclusion is
misconstrued to the extent that it depends on a strict interpretation of PMEU which does
not allow for individual preference on how the odds are generated, independently or
collectively.

Another line of criticism is that utility theory is insufficient for modelling risk
attitudes adequately. Proponents of utility theory usually present the following argument
to show that the concept of utility captures different risk attitudes. Suppose, for
example, that all consequence values are monetary. Then associate two expectations
with each alternative: its expected monetary value and its expected utility. To each
expected utility, there corresponds a certainty monetary equivalent xce. The decision
maker is indifferent to having this monetary value for certain, as compared to the
alternative action, i.e., u(xce)  =  Σ piju(xij), where u(xij) is the utility of receiving the
monetary value xij. The risk premium p of an act can be defined as the demand that a

                                                
3 See, e.g., [Savage, 1972], [Hernstein and Milnor, 1953], [Suppes, 1956], [Luce and Krantz,
1971], and [Jeffrey, 1983]. Surveys over a wide variety of axiomatic systems are given in [Fishburn,
1981] and [Malmnäs, 1990a].
4 Recently, several researchers in the area of autonomous agents have equated rationality with the
use of PMEU as a prescriptive decision rule (see, e.g., [Gmytrasiewicz and Durfee, 1993]). However,
there are many reasons to not identify these (cf. [Boman, 1995, Boman and Ekenberg, 1995]).
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decision maker has for carrying out the action, instead of having the monetary
equivalent xce for certain, i.e., p  =  Σ pixi – xce. Decision makers can be divided into
three classes with respect to the risk premium p: a decision maker is risk averse if p is
positive; risk prone if p is negative; and finally risk neutral if p  =  0. From this
description, it is easy to see how a utility function can be regarded as modelling a
decision maker’s attitude towards risk. Assume that a decision maker needs a certain
amount of money, and a lesser amount would not be very useful to her. The decision
maker would normally risk only a certain part of her wealth, but it is not difficult to
imagine extreme situations where this does not hold true, for instance when she is
desperately in need of money for a medical treatment of a disease that, if not cured, will
result in death. Faced with a choice of buying a ticket or not with her last funds that will
yield a chance of winning an amount sufficient for paying for the treatment, most
rational people would gamble. The risk premium p in such a situation is probably a
negative number.

However, the use of a utility function to formalise the decision process with all
possible risk attitudes is not possible. The critics point out that most mathematical
models of decision analysis are oversimplified and disregard important factors (cf., e.g.,
[Schoemaker, 1982]). Moreover, individuals tend to avoid the use of precise probability
estimates. It also seems that the value of the outcome defines risk for managers, rather
than the weighted average of probabilities and utilities [Kunreuther, et al., 1978],
[Shapira, 1995]. This is partly a function of the reluctance to take explicit responsibility
for losses [Kahneman and Lovallo, 1993].

Thus, it seems reasonable that a normative decision theory should be very sensitive to
different risk attitudes, should give the decision maker the means to express her risk
attitudes in a variety of ways, and should provide procedures for handling qualitative
aspects as well as quantitative ones. Some researchers have tried to modify the
behaviour of PMEU by bringing regret or disappointment into the evaluation to cover
cases where numerically equal results are appreciated differently depending on what
was once in someone’s possession [Loomes and Sudgen, 1982]. Several researchers,
among them [Quiggin, 1982], try to resolve the problems mentioned above by requiring
functions to modify both the probabilities and the values. However, [Malmnäs, 1996]
shows that for these and other proposals, their performance, at best, almost equals that
of the expected value and, at worst, is much worse, for example, not being consistent
with first order stochastic dominance.

3. Indeterminacy in Decision Situations
The question also arises whether people are capable of providing the inputs which
utility theory requires (cf., e.g., [Fischhoff, et al., 1983]). For instance, most people
cannot distinguish between probabilities ranging roughly from 0.3 to 0.7 [Shapira,
1995]. Furthermore, even if a decision maker is able to discriminate between different
probabilities, very often adequate and precise information is missing. Consequently,
there seems to be significant reasons to discriminate between measurable and
immeasurable uncertainty. Measurable uncertainty is often referred to as risk and can be
represented by precise probabilities. By contrast, immeasurable uncertainty occurs
frequently in high consequence situations since there is often a lack of statistical data,
and thereby the axioms of Savage and others are not satisfied. [Ellsberg, 1961] proposes
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a class of choice situations involving immeasurable uncertainty, in which many people
do not satisfy the variety of axiomatic systems suggested. Ellsberg is not averse to the
use of PMEU, but he suggests that the underlying axiomatic systems should not be
applied in situations where the information is numerically imprecise. An alternative is to
handle impreciseness using only qualitative data.5 However, in many cases this seems to
be too restrictive, in which case numerical estimates should still play a role. There have
been many attempts to express probabilities in terms of intervals.6 Although a complete
discussion goes beyond the scope of this discussion, it might be enlightening to see a
few examples of how the strong requirements of utility theory can be relaxed. Before
giving the basics of our own approach, we briefly present the approaches of [Gärdenfors
and Sahlin, 1982] and [Levi, 1974].

[Gärdenfors and Sahlin, 1982], p.362 state that “[…] the amount and quality of
information which the decision maker has concerning the possible states and outcomes
of the decision situation in many cases is an important factor when making the decision.
[…] the information available concerning the possible states and outcomes of a decision
situation has different degrees of epistemic reliability.” The authors assume that the
beliefs about the states of nature can be represented by a set P of probability measures,
which is supposed to contain all epistemically possible probability measures over the
states, i.e., they associate with each state a set of probability values Pi(s), where each
Pi ∈ P. The set of all epistemically possible probability measures is then restricted by an
epistemic reliability measure ρ, intended to represent the different degrees of reliability
of the different probability distributions. The decision problem is then divided into two
steps. First, the decision maker has to recognise a set of probability measures, which she
has to restrict to a set with a satisfactory degree of epistemic reliability. When this is
done, Gärdenfors and Sahlin propose that the agent should obey the maximin criterion
for expected utilities. This means that the minimal expected utility of an alternative is
computed by taking each probability measure in the set of probability measures with a
satisfying degree of epistemic reliability, and then calculating the expected utility in the
usual way. The option with the least expected utility is chosen. An agent then obeys the
maximin criterion for expected utilities by choosing the alternative with the largest
minimal expected utility. They also show that both the classical maximin rule and the
PMEU are special cases of their criterion. A problem, however, with this approach is
that the minimal expected utility of an alternative is assumed to be on the boundary of
the respective probability intervals, where they seem to be least reliable. One could
argue that the intention behind the choice of the acceptable set is that its measures are
equivalent with respect to ρ. But the properties of ρ are not clear enough to give any
hint on how this could be established.

Isaac Levi uses a similar approach, giving three conditions that a set of probability
measures B must satisfy.7 These imply (among other things) that the probability
distributions in B for a given state of nature form an interval. He notices that some
authors have presupposed such an interval in their theories, but concludes that his own

                                                
5 For instance, this topic has recently been addressed at a recent AAAI Spring Symposium [Doyle
et al., 1997].
6 For instance, [Choquet, 1953/54], [Kyburg, 1961] [Smith, 1961], [Good, 1962], [Dempster,
1967], [Huber, 1973], [Huber and Strassen, 1973], [Shafer, 1976], [Nilsson, 1986].
7 [Levi, 1974], pp.393–402.
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theory “[…] recognizes credal states as different even though they generate the identical valued

function–provided they are different convex sets of Q-functions.”
8 The significance is emphasised

as Levi compares the different alternatives in decision situations. He gives an example
when two similar decision situations with different sets of probability measures yield
results different from his theory, even if the generated intervals are the same.9

Levi also relaxes the Bayesian requirement on representing the utilities of the
consequences. He introduces a set G of permissible utility functions, which do not obey
the classic Bayesian requirement that all elements in G are linear transformations of
each other. He then stipulates the following definitions:

Definition: An alternative A is E-admissible iff there is a probability distribution p
in B and a utility function u in G, such that E(A), defined relative to p
and u, is optimal among all alternatives.

Definition: An alternative A is S-admissible iff it is E-admissible and there is a
function u in G such that the minimum u-value assigned to some
possible consequence is at least as great as the u-values assigned to the
consequences of any other of the remaining alternatives.10

These definitions seem reasonable, but they have some counter-intuitive
implications. They clearly violate the reasonable condition of independence of
irrelevant alternatives, i.e. the ordering between the alternatives is not affected by the
addition of a new alternative.11 The theory is also problematic in some respects when
confronted with some empirical results, e.g. a situation described in [Ellsberg, 1961],
often referred to as Ellsberg’s paradox.12

 [Danielson and Ekenberg, 1997] take another approach. Imprecise probabilities as
well as imprecise utilities are handled by modelling a decision situation with
numerically imprecise sentences such as “the probability of consequence c11 is greater
than 5%” and comparative sentences such as “consequence c11 is preferred to
consequence c12”. More generally, imprecise information is represented by vague
sentences, interval sentences, and comparative sentences. Examples of vague sentences
are: “The consequence cij is probable” or “The event cij or cik is possible”. Such
sentences may be represented by suitable intervals according to the decision maker.
Suppose, for example, that a decision maker stipulates that for cij to be called probable,
the probability for it to occur must be greater than 5% but less than 60%. In this case,
the translation will be pij ∈ [0.05,0.60]. This is represented by the two linear inequalities
pij ≥ 0.05 and 0.60 ≥ pij. Similar translations apply when representing other vague
sentences. Interval sentences are of the form: “The probability of cij lies between the
numbers ak and bk” and are translated to pij ∈ [ak,bk]. Finally, comparative sentences
are of the form: “The probability of cij is greater than the probability of ckl”. Such a
sentence is translated into an inequality pij > pkl. Each statement is thus represented by

                                                
8 ibid. p.408. The Q-functions are Levi’s probability measures.
9 ibid. pp. 416, 417.
10 We deviate from Levi in that he also uses the concept P-admissible. However, this concept is not
defined and we omit it from this presentation.
11 For further details, see [Gärdenfors and Sahlin, 1982], p.379.
12 In [Malmnäs, 1990b] and [Gärdenfors and Sahlin, 1982].
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one or more constraints. The conjunction of constraints of the four types above, together
with Σ pij  =  1 for each strategy Ai involved, is called the probability base (P). The
value base (V) consists of similar translations of vague and numerically imprecise value
estimates. The collection of probability and value statements constitutes the information
frame.

Definition: An information frame is a structure 〈{C1,…,Cm},P,V〉, where each Ci is
a finite set of consequences {ci1,…,cihi

}. P is a finite list of linear
constraints in the probability variables and V is a finite list of linear
constraints in the value variables.

For instance, the expected value of an action with respect to an information frame can
be expressed by the following definition.

Definition: Given an information frame 〈{C1,…,Cm},P,V〉, the expected value of
an action Ai can be expressed as E(Ai) = pi1·vi1 +…+ pin·vin, where vij
denotes the value of the consequence cij, and pij denotes the probability
of cij occurring given that action Ai is taken.

If the expected value in the definition above seems to be very similar to the expected
value as defined in Section 2, it is important to bear in mind that this is evaluated with
respect to the solution sets of the information frames rather than to precise numbers.
The expected value is now a range of possible values. A quite uncontroversial strategy
of evaluation is “never to eliminate or disqualify an action that might be the best one”.
However, the only option becomes then “never to eliminate any strategy”. Needless to
say, this is a very weak decision strategy.

One less careful attempt to discriminate between different actions is to introduce the
concept of admissibility [Lehmann, 1959]. Intuitively, an action can be discarded if it is
always worse than all other actions, i.e., an admissible alternative is in some sense a
non-dominated alternative.13 This is (informally) described by the following:

Definitions: Given an information frame 〈{C1,…,Cm},P,V〉, Ai is at least as good as
Aj iff E(Ai) – E(Aj) ≥ 0, for all instances of the probability and utility
variables that are solutions to P and V.

Ai is better than Aj iff A i is at least as t-good as Aj, and  E(Ai) – E(Aj)
> 0, for some instances of the probability and utility variables that are
solutions to P and V.

Ai is an admissible alternative iff no other alternative is better.

However, the concept of admissibility is based on PMEU, and thus the approach of
considering only admissible actions cannot be entirely uncontroversial. Since the idea to
dismiss a clearly inferior action seems to be reasonable, we have to be careful about
how we measure this inferiority.

Furthermore, the imprecision represented in the information frames often, viz. in
most non-trivial situations, results in the ranges of the expected value of some actions
being overlapping. Thus, the set of candidates will often be far too large. Consequently,
even if we adhere to PMEU, we still have weak guidance on how to choose. Thus, we

                                                
13 For instance, Levi argues ([Levi, 1992], §4) that to choose rationally is to restrict the choice to
an admissible option.
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need further discrimination principles. One way to proceed is to determine the stability
of the relation between the actions under consideration. Values near the boundaries of
the intervals are probably less reliable than more central values due to interval
statements being deliberately imprecise. This can be taken into account by measuring
the dominated regions indirectly with the use of the concept of contraction, which is
motivated by the difficulties of performing sensitivity analyses in several dimensions
simultaneously [Ekenberg, et al., 1996], [Danielson, 1997], [Danielson and Ekenberg,
1997]. It can be difficult to gain a real understanding of the solutions to large decision
problems using only one-dimensional analyses, since different combinations of
dimensions can be critical to the evaluation results. Investigating all possible
combinations would lead to a computationally demanding procedure. Using
contractions, this difficulty is circumvented. The idea behind the principle is to
investigate how much the different intervals can be decreased before an expression such
as E(Ai) – E(Aj) > 0 ceases to be consistent. At the same time, we must avoid the
complexity inherent in combinatorial analyses, but still be able to study the stability of a
result by gaining a better understanding of how important the interval boundary points
are.

4. Risk Constraints
A key observation in this paper is that there is no perfect evaluation rule, although
PMEU is at least as good as many of its contenders. To improve that rule (or any other
numeric rule), we might extend it with supplementary rules rather than engaging in
further modifications of replacement rules in pursuit of the perfect rule. Thus, there is
no reason to completely reject the use of PMEU, but a reasonable method should
provide possibilities to evaluate decision situations in several respects, and the purpose
of this section is to propose how this can be done by a class of decision rules called risk
constraints.

For instance, a risk constraint can provide thresholds beyond which a strategy is
undesirable. If a decision maker can work with numerically precise information only,
such exclusions can be dealt with by specifying constraints using two thresholds—one
for the probability and one for the value. Then a strategy would be undesirable if it
violates both of these thresholds. For instance, a strategy could be considered
undesirable if a consequence with a probability above 0.15 also has a value below
0.10.14

When the information is numerically imprecise, the meaning of such thresholds is not
obvious. In [Ekenberg, et al., 1997] it is suggested that the interval limits together with
stability analyses should be considered in such cases. For example, assume that a
company desires to decrease its exposure to risk by installing more (but quite
expensive) protective equipment. Furthermore, suppose that the management of the
company has stipulated that a strategy Ai is undesirable if the consequence cij belongs to
Ai. There is a possibility that the value of cij is less than 0.45, and that the probability of
cij is greater than 0.65. Now, assume that the strategy “Install protective equipment” has
a consequence “reduction of mean time between failure by less than 12 hours”. The
management estimates that the value of this consequence is in the interval [0.40, 0.60],

                                                
14 This kind of risk constraint is very similar to the concept of acceptable level of risk.
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and that the probability is in the interval [0.20, 0.70]. Then this strategy is below the
threshold, and thus undesirable. To further refine the analysis, it could be investigated
where the risk constraints are violated. In this way, the stability of the result can be
studied. For instance, it can be seen that the strategy ceases to be undesirable when the
left end-point of the value interval is increased by 0.05. Thus, exclusions of this kind
can be dealt with by specifying a risk constraint using a number of thresholds, including
one for the probability and one for the value. A strategy is considered undesirable if it
violates these thresholds.15

However, this is still insufficient. In many situations there are trade-offs between the
value of a possibly disastrous event and the probability with which it can occur. This is
particularly true in situations where all strategies are undesirable, but we nevertheless
have to choose. For instance, a strategy with a low-valued consequence that may occur
might be perceived as better than a strategy with a slightly better but considerably more
probable consequence. Furthermore, as [Linnerooth-Bayer, 1996], pp.135–138, points
out, there is sometimes a need to take the distribution of risk into account, i.e.; it may
appear unfair that a few people are exposed to the full risk. Consider the following
situation. From a group of 1000 people, two people are exposed to an extremely high
probability of dying, and the others face no risk at all. Given reasonable conditions of
the utility function, this would have the same expected utility as a situation when there
is a 1/1000 chance of a disastrous event taking the lives of all 1000 people. Nevertheless
it may be perceived that the first situation is unfair, in particular if the benefits are
equally distributed.

Below, the concept of a risk constraint is generalised. We also show how this concept
can be used for handling a number of different types of constraints that can be imposed
on a decision situation.

First, the concept of a cube is defined. Intuitively, a cube is nothing more than a unity
cube with the same dimension as the number of consequences in a given decision
situation.

Definition: Given an information frame F = 〈{{cij} j = 1,...,hi
} i = 1,...m,P,V〉, a cube

with respect to F is the set of equations {0≤pij≤1}j = 1,..., hi
, i = 1,...m

or {0≤vij≤1}j = 1,..., hi
, i = 1,...m. Such a cube will be denoted B =

(b1,…,bk) below.16

Just for completeness, a definition of the solution set to a set of linear constraints L is
included. A solution set for L consists of vectors consistent with L.

Definitions: Given a cube B = (b1,…,bk) and a set L of linear constraints of B. A
list of numbers [n1,…,nk] is a solution vector to L if the substitution of
ni for bi, for all 1≤i≤k, in L does not yield a contradiction.17 The set of
solution vectors to L constitutes the solution set for L and will be
denoted s(L) below.

                                                
15 [Malmnäs, 1994b] supplements PMEU by some qualitative evaluations. An example is the
qualitative sorting function, further developed in [Ekenberg, et al., 1997].
16 We will omit the reference to the frame below, since the frame will be clear from the contexts.
17 To be precise, a list of numbers is a solution vector to L with respect to B. However, for the
same reason as in the previous footnote, we will use the more compact notation above.
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Next, the concept of a risk constraint as well as what is meant by an information
frame violating a risk constraint are defined. Intuitively, a risk constraint is a function
that states a set of constraints that must be fulfilled for an information frame to be
acceptable. The definition is general and the examples below show how it can be used
to state a variety of decision rules.

Definition: Given an information frame F = 〈C,P,V〉, let {p1,...,pk} and {v1,...,vk}
be the sets of variables in P and V, respectively.
Let P’ = (p1,...,pk) and V’ = (v1,...,vk) be two bases. A risk constraint
with respect to F is a function S from 2s(V’) into 2s(P’).

Definition: Given an information frame F = 〈C,P,V〉, and a risk constraint S with
respect to F, F violates S iff
there is an element (α,β) of S, such that not s(V) ⊆ α and not s(P) ⊆ β.

Since the operations on the different bases are independent of each other, determining
whether an information frame violates a risk constraint is simple.

In the following examples, we will use the following notation: Given a (probability
or utility) base B and a constraint e, s({e}) denotes the set s({e} ∪ B). We will also use
notations from first-order logic for notational convenience. These have their usual set-
theoretic counterparts. Thus, for example, given a base B and two constraints e and d,
s({e & d}) denotes the set {α : α ∈ s({e} ∪ B) ∩ s({d} ∪ B)}. Analogously, s({¬e})
denotes the set {α : α ∈ s({B}) - s({e} ∪ B))}.

Furthermore, given an information frame F = 〈{{cij} j = 1,...,hi
} i = 1,...m,P,V〉, then

S(s({f(vij)})) = s({g(pij)}) is used to denote S(s({f(v11)})) = s({g(p11)}),…,
S(s({f(vmhm

)})) = s({g(pmhm
)}).

In the following example, the risk constraint states that the value of consequence c11
must not possibly be less than 0.1, and at the same time possibly occurring with a
probability greater than 30%.

Example: Given the information frame F = 〈{{c11,c12,c13}, {c 21,c22}}, {p 11≥0.1,
p11≤0.5, p12≥0.5}, {v11≤0.2, v12≥0.1}〉.
Define a risk constraint with respect to F, S(s({v11≥0.1})) = s({p11≤0.3}).18 Now, F
clearly violates S, since, for example, v11 = 0 is a possible substitution in the value base,
and p11 = 0.4 is a possible substitution in the probability base. Both these are outside the
elements in the risk constraint.

Naturally, the restriction to c11 is not necessary. A more natural restriction is that no
consequence with these attributes may occur. This is easily stated as in the following
example.

                                                
18 Since P is an probability base, the constraints Σpij=1, for each consequence set, and ∀pij(pij≥0) is
implicitly included in the information frame: Similarly, ∀vij(vij≥0) and ∀vij(vij≤1) are included.
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Example: Given the information frame F = 〈{{c11,c12,c13}, {c21,c22}}, {p11≥0.1,
p11≤0.5, p12≥0.5}, {v11≤0.2, v12≥0.1}〉.
Define a risk constraint with respect to F, S(s({vij≥0.1})) = s({pij≤0.3}). According to
the notation introduced above, the latter is the same as S(s({v11≥0.1})) = s({p11≤0.3}),
S(s({v12≥0.1})) = s({p12≤0.3}), S(s({v13≥0.1})) = s({p13≤0.3}), S(s({v21≥0.1})) =
s({p21≤0.3}), S(s({v22≥0.1})) = s({p22≤0.3}).

More generally, we also take into account how subsets of consequences, i.e. events,
can make a strategy undesirable. This means that if several consequences of a strategy
are too dire (with respect to a certain value threshold), their total probability should be
considered even if their individual probability is too low to make the strategy
undesirable. The intuition is that all subsets of consequences {cij1,…,cijk} of a strategy
Ai are taken into account. Each subset is checked for consistency with the expressions
in the information frame in order to see if the value of each element in the subset is less
than a certain value threshold. If this is the case, the probability of this subset is
checked, i.e. if the sum of the probabilities for all elements is greater than a certain
probability threshold.19

Example: Given the information frame F = 〈{{c11,c12,c13}, {c 23}}, {p 11≥0.1, p11≤0.7,
p12≥0.3}, {v11≤0.2}〉.
Define a risk constraint with respect to F by S(s({v11≥0.1 & v12≥0.1})) =
s({p11+p12≤0.6}). Now, F violates S since, for example, v11 = 0, v12 = 0 is a possible
substitution in the value base, and p11 = 0.6, p12 = 0.4 is a possible substitution in the
probability base.

Similarly, a functional relationship can be defined between the value and the
probability bases. This can be used to take account of situations where there are a
relation between the probability of a possibly disastrous event and the probability with
which it can occur.

Example: Given the information frame F = 〈{{c11,c12,c13}, {c 23}}, {p 11≥0.1, p11≤0.7,
p12≥0.3} {v 11≤0.2}〉. Let g: [0,0.7]→[0.3,1], such that g(x) = x+0.3.
Define a risk constraint with respect to F by S(s({v11>x})) = s({p11<g(x)}). Now, F
violates S, since for example x = 0.1 is a possible substitution, v11 = 0 is a possible
substitution in the value base, and p11 = 0.5 is a possible substitution in the probability
base.

It could also be the case that an alternative with a negative consequence is acceptable
since there might be consequences that are very positive.

Example: Given the information frame F = 〈{{c11,c12}, {c 23}}, {p 11≥0.1, p11≤0.7,
p12≥0.3}, {v11≤0.2, v12≥0.9}〉.
Define a risk constraint with respect to F by S(s({¬(v11≤0.1 & v12≤0.8)})) = φ. Now, F
does not violate S, since v12 is always greater than 0.8.

Similarly, a decision maker could require that a consequence must possible be more
probable than a worse consequence of the same alternative.

                                                
19 This seems to be very demanding computationally, but it is sufficient to check the largest subset.
All sets of consequences that have a possible value below the threshold are subsets of this set.



12

Example: Given the information frame F = 〈{{c11,c12}, {c23}}, {p11≥0.1, p11≤0.3,
p12≥0.7}, {v11≥0.2, v12≤0.1}〉.
Define a risk constraint with respect to F by S(s({vij≤vik})) = s({pij≤pik}). Now, F
violates S, since c11 is a better consequence occurring with lower probability than c12.

Also the risk distribution can be handled by imposing risk constraints. As mentioned
above, in certain decision situations it seems unfair that a few people would endure the
full risk.

Example: Reconsider the situations from [Linnerooth-Bayer, 1996] described at the
beginning of this section. By modifying the value range to a range from [0,1000]20, the
situations can be modelled in a information frame F = 〈{{c11, c12},{c21,c22}}{p11>0.9,
p21=1/1000} {v11=2, v21=1000}〉.21

If a decision maker, for instance, requires that no less than 100 persons should share the
risk, she might define a risk constraint with respect to F by S(s({vij≥100})) =
s({pij≤0.9}). Now, F violates S.

As argued above, quantitative methods are applicable only at information frames that
do not violate the risk constraint. Thus, the first step is to eliminate consequence sets
that cause the violation. The meaning of a consequence set violating a risk constraint
can be stated as the following definition.

Definition: Given an information frame F = 〈C,P,V〉, and a risk constraint S with
respect to F, F violates S iff there is an element (α,β) of S, such that
not s(V) ⊆ α and not s(P) ⊆ β.

Definition: Given an information frame F = 〈{{cij}j = 1,...,hi
}i = 1,...m,P,V〉, and a risk

constraint S with respect to F, Ci violates S iff
there is an element (α,β) of S, such that not PVi(s(V)) ⊆ PVi(α) and not
PPi(s(P)) ⊆ PPi(β). PVi(x) is the natural projection of x on {vij}j = 1,...,hi

,
and PPi(x) is the natural projection of x on {pij}j = 1,...,hi

.

By using this definition it is possible to check whether there are consequence sets that
do not violate the risk constraint.

Example: Given the information frame F = 〈{{c11,c12,c13}, {c21,c22}}, {p11≥0.1,
p11≤0.5, p12≥0.5} {v11≤0.2, v12≥0.1, v21≥v22, v22≥0.1}〉.
Define a risk constraint with respect to F, S(s({vij≥0.1})) = s({pij≤0.3}). Now, F violates
S, but the consequence set {c21,c22} does not, since the value base includes the
constraints v21≥v22. Thus, v21≥v22≥0.1, which assures that the values of consequences
c21 and c22 both are above the threshold 0.1.

5. Conclusions and Further Research
We have extended the risk evaluation process by the integration of procedures for
handling vague and numerically imprecise probabilities and utilities. The shortcomings
of PMEU, and of utility theory in general, can in part be compensated for by the

                                                
20 Naturally, we could instead have used a linear mapping from this interval on the [0,1] interval.
21 For simplicity c12 and c22 denote all other possible consequences in the situations.
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introduction of risk constraints. A body of empirical evidence has shown that many
managers would welcome new ways of highlighting catastrophic consequences, as well
as means to evaluating decision situations involving high risks. For example, the
possibility to state threshold values, which are then used directly in the evaluation, may
be appreciated. We have given a theoretical motivation for the methodology required
for such evaluations involving vague and numerically imprecise data. The main
contribution of this paper lies in its analysis of the concept of risk constraint violation.

To refine the analysis, contractions could also be introduced in the model. These
indicate how much the different intervals in the information frame or the risk constraint
can be reduced before consequence sets in the information frame cease to violate the
risk constraint. In this way, it is possible to investigate critical variables and the stability
of the evaluations. The inclusion of contractions in this context is a straightforward
generalisation of the results in [Danielson, 1997], [Danielson and Ekenberg, 1997], and
[Ekenberg, et al., 1997].

The notions discussed above will be included in DELTA [Danielson, 1997], a tool for
evaluation that may use a number of different decision criteria. DELTA has been tested
in several real-life applications, and we are currently preparing a case study involving
catastrophic risks, and hence risk constraints.
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