
iCillASA
International Institute for Applied Systems Analysis • A-2361 Laxenburg • Austria
Tel: +432236807 • Fax: +43223671313 • E-mail: info@iiasa.ac.at • Web: www.iiasa.ac.at

INTERIM REPORT IR-98-090/0ctober

Technical Description of the Financial
"Toy-Room"

Mariele Berte (mberte@sda.uni-bocconi.it)

Approved by
Giovanni Dosi (dosi@iiasa.ac.at)
Leader, TED Project

Interim Reports on work of the International Institute for Applied Systems Analysis receive only
limited review. Views or opinions expressed herein do not necessarily represent those of the
Institute, its National Member Organizations, or other organizations supporting the work.

Contents

1 Model Implementation 1

1.1 Root 3

1.2 Market Structure 4

1.3 Traders 11

1.4 External Returns 20

2 A Behavioral Framework 21

2.1 Implementation of the Framework 25

2.2 Equations 27

APPENDIX A: Pseudo-Simultaneous Procedure for Completing Transactions 33

Appendix B: Saving Options 41

References 42

Abstract

This paper contains the description of the code developed for the implementation of
Financial ''Toy-Room'' (a micro-founded simulation model of decentralized trade in a
homogeneous financial asset). The model has been created using the LSD platform. The
paper describes how the various elements of the model have been organized and the
main functions governing their evolution. After the illustration of the generic version, a
specification of the of the behavioral repertoires is considered.

Acknowledgments

The author wishes to thank Yuri Kaniovski and Francesca Chiaromonte for their
valuable comments.

About the Author

M. Berte is from the University of Bocconi in Milano, Italy.

Technical Description of theFinancial
"Toy-Room"

Marie/e Berte

Introduction

This paper describes the code developed to implement Financial "Toy-Room", which is a
micro-founded simulation model of decentralized trade in a homogeneous financial asset. A
detailed description of the overall model is given in F.Chiaromonte, G.Dosi (1998), and
therefore will not be repeated here. Some preliminary experiments have been realized with
Financial "Toy-Room", specifying trader's behavioral repertoires. The code used for this
specification is described here, while details on experiments and results can be found in
F.Chiaromonte, M.Berte (1998(

Financial "Toy-Room" has been implemented using the LSD platform. This choice has been
made due to the facilitation in creating simulation models with LSD. Moreover, we tested
LSD's potential using it to code a model quite different form the ones for which it was used in
the pase.

1 Model Implementation
Following the philosophy of Financial "Toy-Room", the implementation of the model has
been organized to be self-contained and modular, in a way that makes it easy to change certain
features without influencing the rest of the model, or to run "sub-models". The structure of the
model, which in LSD is defined in terms of objects and relations among them with a tree
hierarchical structure, is represented in the following figure:

I A model in a similar spirit can be found in M. Berte (1997).

2 A complete description of the LSD platform is given in M. Valente, Laboratory for Simulation
Development User Manual, IIASA Interim Report IR-97-020/May.

2

Trader(s)

Watch

NOlepad(s) 0_ _0

(Root)

Stat
Office

-_ ~r,

Sigma Alpha(s)

Transaction(s)

Figure 1

There are some differences between the conceptual model and the LSD implementation, due to
the great exchange and repetition of information embodied in the former. The exchange of
information among traders was implemented in LSD through the dynamic construction of
objects containing it (objects NOTEPAD). The repetition of information regarding transactions3

has been avoided by dynamically creating a sort of database for transactions (objects
TRANSACTIONS), to which each trader has limited access. A statistical office has been
conceptually included in the model, even though, loosely, statistical variables have been
positioned in the objects hosting variables used in their calculation. Statistical variables concern
demographics and attitudes of the traders, and transaction prices.

The model embodies three different timings that govern different features; the transaction
round, the transaction (N) and the minute (H). The LSD time step t has been associated with the
round; this was judged the most convenient choice (being the round the most basic timing, no
information is lost). Every step of the simulation consists therefore of:

(i) Updating of demographic statistical variables and of trader's decision functions (when
necessary),

(ii) New transaction round (with exchange of notepads),

(iii) Conclusion of a new transaction (if any),

(iv) Updating of statistical variables related to prices (when necessary), updating of the
board and completion of transactions.

3 In the conceptual model, each trader keeps a record of all the transactions he has been involved in, and
the board has a tape with all the past prices.

3

Variables depending on other timings are updated only when necessary (the timing is shown on
the tables: N = updated after every new transaction, H = updated after every minute). Since the
values of these variables are of interest only upon updating, the user has the possibility of
choosing the timing of the variables to be saved by fixing a parameter contained in the object
ROOT (see appendix B). When ambiguous, the optimal timing for saving will be given for
statistical variables, together with their description.

The following sections detail how the model was translated in LSD objects and their contents.
The material has been divided in four parts, which correspond to the main blocks of the model;
root, market structure, traders and external returns. The role of each LSD object is briefly
described, and a table is given illustrating its contents in terms of variables and parameters.

Parameters, indicated with "(P)", keep the constant value assigned by the user (or
automatically) at the beginning of the simulation throughout the run, unless their value is
changed by the equation for a variable. Variables, indicated with their lag "(lag)"4, are listed
with a formal illustration of the equations used to calculate them at each time step. The most
important equations are illustrated using a clear pseudo-code. This matches the code
implemented in LSD, as can be found in the fun_*.cpp file (where equations are grouped by
objects), except for a more "colloquial" style employed to facilitate the reading.

Some parameters, and the equations relative to some variables, are experimental: they have to
be specified depending on the simulation experiment the user intends to perform (in the figures,
experimental entities are marked by a parenthetical "exp"). Some of the experimental equations
have been left as "random updatings" in the generic implementation, but for most we introduced
a list of "reasonable possibilities" from which the user can choose through a parameter. There
also are some purely technical parameters and equations; these govern the mechanics of the
model, and are not subject to experimental specification (in the figures, technical entities are
given in square brackets). Last, some variables have a lag for technical reasons (not because
their initial value is relevant for experimental specification)s. The following tables emphasize
what variables and parameters must be specified by the user before running a simulation.

1.1 Root
This object contains parameters that are not directly related to the conceptual model, for fixing
saving options and termination conditions.

ROOT

sv_opt(P) Parameter which enables to change timing in saving variables:

l=saving occurs every time step t (trading round)

4 Regarding the lag system, x[O] hosts the current value of x, x[I] the one in the last time step, x[2] the
one two time steps back, etc. x(lag) on the left hand side of a table means that the current value and all the
lagged ones up to "lag" are available under those "names". The equation described on the right hand side
of a table always refers to x[O].

S A variable specified with a lag equal to n has to be assigned n initial values by the user, corresponding to
its values in the n past time steps. Even if the initial values are not relevant for experimental specification
a lag might be needed to keep track of past values during the simulation.

4

2=saving occurs every time a transaction is concluded (N[O]=N[1]+1)

3=saving occurs every time the minute changes (I-{[O]=H[O]+ 1)

4=saving occurs during the first step of a new minute (H[l]:;t:1-{[2])

end_sim(P) Parameter used to fix the number of unsuccessfu16 rounds after which a simulation
is ended (experimental: the simulation is ended if the number of unsuccessful
rounds is greater than end_sim·(num_tr[O]/k[P])).

1.2 Market Structure
By market structure we mean the architectural characteristics of the room in which traders
interact As in the conceptual model, the room contains a board which conveys public
information that is made up of the objects SIGMA (caller), ALPHA (caller) and CLOCK
(which contains the transaction and minute counters). The object CLOCK nests objects that
keep track of the concluded transactions (objects TRANSACTION), through which the price
tape can be retrieved7.The disclosure sheet, which is also an element of the board in the
conceptual model, is embodied in the objects TRADERS (as will be described later).

Board (public inf<IIl1lllicn)
[g",_olpha] (""P)

Clock (events timing)
N
V(""P)
sum V
distr::V(""P)
PARAM_I(""P)
PARAM_2(""P)
roonds
H

Eron Slats:
tnm>_H(in min, V)
price_N
BV...Price (in min)
st_dev...Price (in min)
num_lxnus_H (in min)

Transactlon (reard)
Wyer_id
sdllr_id
price
time (min)
dhl (cash)
dh2(_)
cl (cash)

c2 ("'set)

Figure 2: Market Structure

6 An unsuccessful trading round is one in which no transaction is concluded.

7 This has a purely technical reason, as the minute H on the clock advances following transaction
conclusions (registered by the transaction counter N). This is also why statistics on transaction prices are
contained in the clock. See later.

5

The object ROOM contains a series of experimental system parameters, which are fixed by the
user at the beginning of the simulation. Here and in the following, italic symbols refer to the
notation used for the conceptual model in F.Chiaromonte, G.Dosi (1998).

ROOM

lambda(P) The acceptor's pricing power E [0, I], used to calculate the transaction price as
p[o]=p[T]+(1-)p[T'].

Q(P) Threshold of asset level over which a trader's identity, and his current asset level,
are posted in the disclosure sheet on the display.

k(P) Number of acceptors involved in each round.

max_lag(P) Maximum permitted lag between conclusion of transactions and completion flows
(deliveries and payments).

max_B(P) Maximum permitted number of "bonus minutes" for traders8
•

The object BOARD nests objects defining elements of the board (CLOCK, SIGMA and
ALPHA I and a technical variable corresponding to the equation that selects available acceptors
for the current round9

•

BOARD

Lights up the
caller for the
acceptors.

The selection of the k[P] acceptors is presently implemented at
random, as if any seeker, because of time constraints and/or
distance, was only capable of screening at random k[P] among
the available acceptors. Other criteria for choosing the
acceptors could eventually be introduced.

During the first round, the equation creates the k[P] objects
ALPHA. In each following round, it assigns new values to the
parameters a[P] contained in them, with the following
procedure:

l.The number of available acceptors n=avail[O]1O is registered
(the equation avail[O] has also sorted the traders putting the
available acceptors first).

2. For each object ALPHA:

• A global value has to be fixed in order to eliminate old enough transactions (see later in description of
objects).

9 This is a technical expedient to concentrate the whole procedure in one location, and thus improve speed
and modularization: Instead of having the identity of the acceptor as a variable within each object
ALPHA (with an equation associated to it), we set these identities as parameters (a[P] in ALPHA), which
are over-written one by one when the variable gen_alpha[O] in BOARD is updated.

10 See description of the object GROUP later on.

6

• if na random integerXE{O,l. .. ,na -l}is generated. The

object TRADER with position x in the tree is selected as an
acceptor if his id[P]:;t:sig[O], otherwise a new random integer
is generated and a new TRADER is selected. The selected
trader's identity number is written in the a[P] of ALPHA.

Else (na[P] is set to -1

• the selected trader's acceptor[O] is set to 0

• the objects TRADERS are sorted again, putting the
remaining acceptors (traders with acceptor[O]=l) first

• n n and the procedure is restarted from point 2 for the
following ALPHA.

(traders are sorted by increasing identity number)

The object CLOCK contains three different groups of variables and parameters:

1. Variables and parameters which control events timing

2. Variables of the statistical office concerning the economic statistics

3. Variables which control the pseudo-simultaneous transaction completion procedure.

The object CLOCK also nests an object TRANSACTION for each transaction that has been
concluded.

CLOCK, Events timing:

N(l) Transaction counter. The equation completes a trading round which may
(N[O]=N[I]+I) or may not (N[O]=N[I]) produce
conclusion of a transaction.

Conclusion is attempted between the trader with the
identity equal to sig[O] (current seeker) and the trader
with identity equal to the seeker's select[O] (the current
acceptor selected by the current seeker):

I. Flags and reference prices of the seeker are
checked.

2. If Cseek_b[O] =1 (the seeker is willing to buy) and
b_ocs[O]=O (the seeker has chosen to buy):

• the lag intervals of seeker and acceptor are checked
to find an intersection

• if Cacc_s[O]=1 (the acceptor is willing to sell),
p_seek_b[O]~p_acc_s[O] (the reference prices of
seeker and acceptor are compatible), and there is an
intersection between the two lag intervals, a
transaction is concluded with price N[O] =

7

lambda·p_seek_b[O] + (I-lambda) p_acc_s[O]

• lags are generated randomly within the intersection

• a new object TRANSACTION is created and all the
information concerning the transaction is written in
it

• cash and asset levels of the two traders involved are
updated if the transaction is spot on one or both
sides

• if a transaction was concluded, N[O]=N[I]+l.

3. If Cseek_s[O]=1 (the seeker is willing to sell),

and b_ocs[O]=O (the seeker has chosen to sell), the
same steps of point 2 are performed.

V(1) (experimental) Value of the This variable is updated by the equation for H[O].
current element in the
system-level converting
sequence, v.

sum_V(l) Sum of the elements in the This variable is updated by the equation for H[O].
system-level converting
sequence, up to the current
one.

rounds(1) Unsuccessful round counter •
(counts rounds occurred since
the last update of the·
transaction counter).

if N[O]=N[I], then rounds[O]=rounds[I]+1

if rounds[O]>end_sim·(num_tr[O]/kD, then end the
simulation

This equation was constructed to give the user the
possibility of ending a simulation after a large enough
number of unsuccessful rounds. The threshold can be
seen as an experimental entity. The one specified here
is justified in F.Chiaromonte, M.Berte (1998), where
failure in transaction conclusion occurs when the
traders' reference prices are too close to each other to
permit trade.

if distcV[P]=2, then V[O]=nearest integer of a draw
from a lognormal distribution with mean
PARAM I [P] and standard deviation

The corresponding equation updates the current minute if
H[l]

LVj s N.
j=l

• if distcV[P]=I, then V[O]=draw from a Poisson
distribution with mean PARAM_l [P] + 1 (to avoid
positive probability on 0)

Current minute. The lag of
2 is due to the dynamics of
the model. When changing,
the current minute is
updated at the end of the
last step/round which is
considered part of the If sum_V[O]sN[O]:
preceding minute. Thus,
everything taking place
during the round occurs
during minute H[l], and
H[2] represents the timing •
of the preceding round.

H(2)

8

PARAM_2[Pt.

• if distcV[P]=3, then V[O]=draw from a binomial
distribution with parameters PARAM_I [P]
(probability for each trial) and PARAM_2[P] (number
of trials).

• if distr_V[P]=4 then V[O] is always equal to the value
fixed by the user at the beginning of the simulation
(PARAM_I [P])

• sum_V[O]=sum_V[l]+V[O]

• H[O]=H[l]+ 1.

distcV(P) Experimental parameter which enables to specify the distribution generating the
elements of the system-level converting sequence:

1 = Poisson distribution

2 = Lognormal distribution

3 = Binomial distribution

4 = Constant value (V[O]=PARAM_1 [P]).

PARAM_I(P) First parameter of the distribution for V (experimental).

PARAM_2(P) Second parameter of the distribution for V (experimental, if anyl\

CLOCK, Economic statistics variables:

trans_H(l) (=V,) Number of The updating is given by
transactions within a

if HI l]:;t:H[2], restart the count (a new minute hasminute (sv_opt =3) •
started)

• if N[O]:;t:N[1] (a transaction has occurred), then
trans_H[O]=trans_H[l]+l (or 1 ifH[l] :;t:H[2]).

price_N(l) Price of the last This variable is updated by the equation for N[O].
concluded transaction.

av_price(1) Average price of The average (and standard deviation) are calculated
transactions within the iteratively:
last minute

if H[1]:;t:H[2], then restart the count•
(sv_opt=3).

if H[O]:;t:H[l] (the minute has finished), then•

II The draw from a lognormal distribution is calculated by taking the exponential of a draw from a normal

. . (PARAM_2[P]2)
distribution with standard devlatlono- = In e 2ln(PARAM_l[P]) + 1 and mean

12 AU the distributions in the pre-defined collection above are identified by one, or at most two,
parameters.

9

. av_ price[I] + price_ N[O]
av pnce[O] = H[O]- trans

st_dev-IJrice[O] =

(st dev-IJrice[l]+ price N[0]2) . [0]2
- - -aV-IJflce

~ trans_H[O]

• else (H[O]=H[1D, if N[O]>N[1] (a transaction
has occurred), then

av_price[O]=av_price[l]+price_N[O]

sCdev_price[0] =s t_dev_pricer 1]+price_N[Ot

• else (N[0]=N[1], meaning no transaction has
occurred and thus H[O]=H[l D

av_price[O]=av_priceD]

st_dev_price[O]=sCdev_price[1]

(during each minute, the two variables store,
respectively, the cumulated sums of prices and
squared prices; at the end of each minute, they are
transformed into the actual average and standard
deviation by the formulas above).

sCdev_price(1) Standard deviation of This variable is updated by the equation for
the price within the last av_price[0] .
minute

num_bonus_H(l) Total number of used This variable is updated by the equations for
bonus-minutes within pseudo_sim_a[O] and pseudo_sim_c[O].
the last minute,
calculated at the end of
each minute

CLOCK, Pseudo-simultaneous completion procedure:

pseudo_sim_a(O) Activates completion procedure on the asset side. See Appendix A.

pseudo_sim_c(O) Activates completion procedure on the cash side. Idem

The objects TRANSACTION act as a record of all the information concerning concluded
transactions. Each object refers to one single transaction and is created dynamically when the
transaction is concluded. Traders have only partial access to this data base: A trader has
complete access to the objects TRANSACTION in which he is/has been a party as buyer or
seller (in the conceptual model, this information is replicated in both the buyer's and the seller's
notepads). Moreover, each trader has access to the price in each object TRANSACTION (in the
conceptual model, this is public information and is found in the price tape on the board).

10

This formulation has a two-fold advantage in terms of running time. First, it reduces the size of
the model by avoiding replication of information; this is important as the model is quite large.
Second, from a technical point of view, it puts the objects TRANSACTION in the optimal
position: Since they are generated by the equation for N, they are easy to include as descendants
of the object containing N (CLOCK). Moreover, the completion procedure, itself located in
CLOCK, needs information contained in the object TRANSACTION; retrieval is facilitated if
they are nested in CLOCK.

In the current version of the model, all the transactions occurred since the beginning of the
simulation are kept in the database. Even if all the elements of the objects TRANSACTION are
parameters and therefore need no updating, the number of these objects may become very large
and cause running time problems (especially due to the completion procedure, which needs to
search all the objects). A solution to this could be to eliminate all the transactions with
time[P]sI-{[O]-max_Iag-max_B[P]. This has not been included in the current versjon to leave is
as general as possible.

TRANSACTION

buyeCid(P) Buyer's identity b[o].

sellecid(P) Seller's identity s[o].

price(P) Price of the transaction p[0].

time(P) Minute in which the transaction was concluded h[o].

dhl(P) Lag for cash flow (payment) in minutes dh,[o].

dh2(P) Lag for asset flow (delivery) in minutes dh2[0].

tran_num(P) Technical parameter used for the completion procedure. It represents the position of
the transaction in the matrix used in the algorithm.

cl(P) Completion flag c1[0], indicating whether the transaction has been completed on the
cash side (Le. the payment has occurred): O=not completed, 1=completed.

c2(P) Completion flag cJo], indicating whether the transaction has been completed on the
asset side (Le. the delivery has occurred).

The object SIGMA is a static object that represents the seeker caller.

SIGMA

sig(O) Identity of the current seeker, The equation selects a seeker for the round:

• the objects TRADER are sorted putting available
seekers first (traders with seeker[O] =1).

• the number of available seekers n is registered

• if na random integer x E {O,l...,n.,. -I} is

generated, and the object TRADER with position

11

x in the tree is selected as seeker for the round

• sig[O] = identity of this trader

• the traders are sorted again by increasing identity
number.

The objects ALPHA are k (k[P]), and are created dynamically during the first time step of a
simulation.

ALPHA

Identity of one of the current acceptors, j'

1.3 Traders

The second block of the model represents all the elements concerning the traders, following the
description in F. Chiaromonte, G.Dosi (1998), with the exception of some information already
included elsewhere in the model.

12

av_buyers (in min)
av_sellers (in min)
av_disc (in min)
sl_devJ:uyers(in min)
sl_dev_sellers (in min)
st_dev_disc (in min)

Note-Pad (individual information)
Records on other traders:
000 enc_time (min)
tf seek b tf_seek_s
tp_seek_b tp_seek_s
[tdhla_seek_b, tdhlb_seek_b]
[tdh2a_seek_b, tdh2b_seek_b]
[tdhla_seek_s, tdhlb_seek_s]
[tdh2a_seek_s, tdh2b_seek_s]
tf_ace_b tf_acc_s
tp_ace_b tp_acc_s
[tdhla_acc_b, tdhlb_ace_b]
[tdh2a_acc_ b, tdh2b_ace_b]
[tdhla_acc_s,tdhlb_ace_~

[tdh2a_acc_S, tdh2b_acc_s]

Econ Stats:
b.Jyers N
sellers N
disc N

Group
Demog Stats:

numJJirths
num_deaths
num_tr
tot_tr

left_over (asset)
[avail] (for gen_alpha)

Acceptor sheet:
Cacc_b Cacc_s
p_3Cc_b p_acc_s
(intervals, min's)
[dhla_acc_b, dhlb_acc_b]
[dh2a_acc_b, dh2b_acc_b]
[dhla_ace_s, dhlb_3Cc_s]
[dh2a_ace__s, dh2b_acc_s]

o

B
ass disc
acceptor
seeker
trad num

Trader
id
e
cash
assets

Manual (behavioral repertoire)
select (selection algorithm; exp)
b_or_s (selection algorithm;

O 0 exp)
'"" (other algorithms: functions for

'W-a-tch-(-in-te-rn-al-e-v-en-ts-t-ilTIl-'-ng-)-'-Sh-ee-t-(tr-adi-'n-g-doc-um-e-n-ts....;)~"' variableselseOOere; exp)

v (exp) Seeker sheet: I'" [notes] [reCnotes]

sum v Cseek_b f seek s
distr_v(exp) p_seek_b p_seek_s
param_l (exp) (intervals, min's)
param_2 (exp) [dhla_seek_b, dhlb_seek_b]

,_h --J, [dh2a_seek_b, dh2b_seek_b]
[dhla_seek_s, dhlb_seek_s]
[dh2a_seek_s, dh2b_seek_s]

(Records on transactions; elseOOere)

Figure 3: Traders

The objects TRADER are nested in an object GROUP, which contains mostly statistical
variables, for both demographic and economic analysis, concerning the traders,

GROUP, Demographic statistics:

num_births(O) Number of births at the This equation is divided in two parts:
beginning of a new minute

L During the first step of the simulation, the
(sv_opt=4). objects TRADER are created. In the generic

version all the traders are identical to the
one initialized by the user13

• The user can
modify this part to assign parameters
differently. An instance in which traders are
divided in subgroups is described in Section

l3 One object TRADER has been allocated when specifying the structure of the model. Most of the
variables contained in this object must be initialized by the user and are used as a reference when, dUring
the first time step, the other objects TRADER are generated.

13

2.

2. New objects TRADER are created during
the simulation, using an experimental
equation that can be modified by the userl4

•

The generic version goes as follows:

• one or two traders enter the market every
ten minutes

• a new trader enters with a cash level equal
to that of an existing trader selected at
random, and an asset level equal to 0,
unless there are some left over assets
(lefcover:;t:O) from some expelled traders.
In this case these assets are evenly
redistributed among the new entrants 15

•

num_deaths(O) Number of deaths at the end of • all traders are checked to see if there is at
the last minute (sv_opt=4) least one with e[O]=l

• if so, all trader's notepads are refreshed (all
the information on the expelled traders is
deleted with the equation for reCnotes[O])

• expelled traders are removed 16 •

toCtr(l)

Number of traders currently in num_tr[O]=num_tr[l]+num_births[O]
the market. In the generic num_deaths[O]
version, the initial number of
traders has to be assigned by the
user. If the traders are divided in
subgroups (see Section 2), the
user is required to define only
the number of members in each
subgroup (and not the total).

Total number of traders who tot_tr[O]=toCtr[l]+num_births[O]
have been in the market (this is
a technical variable used to
assign id numbers to new traders
entering the market).

GROUP, Economic statistics:

14 See discussion in F. Chiaromonte, G. Dosi (1998).

lS The user will also have to initialize new traders' behavioral repertoires (the manuals in the conceptual
model). See the discussion in F. Chiaromonte, G. Dosi (1998) for further details. We do not specify this
initialization here, as the conceptual model's manuals are "empty". In terms of the behavioral framework
we will describe in Section 2, initialization would correspond to assigning the behavioral parameters in
the objects MANUAL.

16 To perform the last two operations, a new function of the LSD class "object" (clean()) has been defined
at the end of the fun_*.cpp file. This has been done because of the difficulty in handling operations
involVing the deletion of objects.

14

buyers_NCO) Number of traders ready to buy in Iterated on all traders:
the current round

ifCseek_b[O]=l or Cacc_b[O]=l,

then buyers_N[O]=buyers_N[O]+1

av_buyers(1) Average number of traders ready to See av_price[O] in CLOCK.
buy within the last minute
(sv_opt=3).

st_dev_buyers(l) Standard deviation of the number of This variable is updated by the equation
traders ready to buy within the last for av_buyers [0].
minute (sv opt=3)

sellers_NCO) Number of traders ready to sell in the Idem on Cseek_s[O]=l, or
current round. Cacc_s[O]=1.

av_sellers(1) Average, as above. Idem.

sCdev_sellers(l) Standard deviation, as above. Idem.

disc_N(l) Number of traders listed on the Idem, on ass_disc[O]>O.
disclosure sheet.

av_disc(l) Average, as above Idem.

sCdev_disc(l) Standard deviation, as above Idem.

GROUP, technical:

Number of agents available as •
acceptors for each round.

avail(O) the objects TRADER are sorted putting the
available acceptors first (traders with
acceptor[O]=l). This is necessary for the
functioning of the acceptor caller, which is
managed by the equation for gen_alpha[O]

• the available acceptors are counted

• if there are no available acceptors the traders are
sorted again by increasing identity number

lefCover(P) Assets left over by exiting traders (to be assigned to new entrants). This parameter is
updated by the equation associated with e[l] (in objects TRADER; it handles the
bankruptcy procedure) and by the equation associated with num_births[O] (when the
leftover assets are assigned to the new traders).

The objects TRADER are created dynamically during the first time step by the equation
associated with num_births(O). Each represents a single trader, and has descendants representing
the trader's watch (WATCH), the trader's sheets (SHEET) and the trader's manual
(MANUAL).

TRADER

e(1)

cash(2)

assets(2)

B(1)

15

Termination flag:

o= the trader remains in the room

I = the trader is irreversibly removed
from the room, Le. the object is removed
with all its descendants, after the
bankruptcy procedure has been
completed.

Current level of cash m[T].

Current level of assets q[T].

Number of bonus-minutes still available
(B [T]). This value is initialized
automatically at the beginning of the
simulation, and does not have to be
specified by the user.

This equation handles the bankruptcy
procedure, described in detail in
F.Chiaromonte, G.Dosi (1998).

Updated by the equations for
num_births[O] (at the beginning of the
simulation), N[O] (when a concluded
transaction is spot on the cash side),
pseudo_sim_c[O] (when a transaction is
completed on the cash side) and e[O]
(when a bankruptcy procedure is
started, if the exiting trader still has
some cash and some cash debits).

Updated by the equations for
num_births[O] (at the beginning of the
simulation), N[O] (when a concluded
transaction is spot on the asset side),
pseudo_sim_c[O] (when a transaction is
completed on the asset side) and e[O]
(when a bankruptcy procedure is
started, if the exiting trader still has
some assets and some asset debits).

Updated by equations for
num_births[O] (at the beginning of the
simulation), pseudo_sim_a[O] and
pseudo_sim_c[O] (when traders fails to
complete transactions).

Variable for the asset disclosure sheet:

o = the trader is not on the disclosure
sheet.

>0 = the trader is on the disclosure sheet
with assets[O]=asseCdisc[O].

The asset disclosure sheet is not explicitly
on the board. The trader has access to the
variable ass_disc[O] of every other trader:
when such variable is strictly positive, it
represents the size in assets of the latter.

• if assets[O]>Q[P],
ass_disc[O]=assets [0]

• else, ass_disc[O]=O

then

acceptor(O) Technical flag used by the acceptors •
caller:

o= the trader is not available as acceptor, •
or has already been chosen by the

if Cacc_s[O]=1 or Cacc_b[O]=I ,
then acceptor[O] =I

else, acceptor[O]=O

16

acceptors caller. Moreover, in the equation for

1 = the trader is available as acceptor.
gen_alpha[O], when a trader is chosen
by the acceptor caller, his acceptor[O]
is set to O.

seeker(O) Technical flag used by the seeker caller. • if Cseek_s[O]=1 or Cseek_b[O]=I,

o= the trader is not available as see then seeker[O]=1

+ker • else, seeker[O]=O

I = the trader is available as seeker.

id(P) Trader's identity (technical parameter; an integer).

rep) Behavioral state. This parameter is experimental and is not used in the generic
version. For an instance of its use, see Section 2. One could also imagine r[] as a
variable, when modeling traders who change their behavioral state during the
simulation17.

trad_num(P) Technical parameter used for the completion procedure. It represents the trader's
position in the matrix used in the algorithm.

The object WATCH contains all the elements relative to the internal events timing, which are
very similar in structure to the elements of CLOCK and are therefore not described in detail.

WATCH

v(1) (experimental) Value of the current element in the trader's converting sequence,
v[T].

sum_vel) Sum of the sequence up to the current element.

h(2) Minute on the trader's watch H[T].

distr_v(P) Experimental parameter which enables to specify the distribution generating the
YilT] :

I = Poisson distribution

2 = Lognormal distribution

3 = Binomial distribution

4 = The trader's watch works with the market's clock (v[O]=V[OD

5 = Constant value (v[O]=param_1 [PJ).

param_I(P) First parameter of the distribution for v (experimental).

param_2(P) Second parameter of the distribution for v (experimental, if any).

The object SHEET contains the trader's trading documents, Le. the information about the
trader's current position and targets. This is also the information that is exchanged between two
agents when they meet as seeker and acceptor, and then stored in the notepads. All the elements

17 For example, when trading is non-spot one could specify a regular and a red-alert state for traders, the
latter being connected with transaction completion. See F. Chiaramonte, G.Dasi (1998).

17

of this object are variables: the equations to generate their values, conceptually belonging to the
first chapter of the manual (algorithms constituting the behavioral repertoire of a trader), have
been included here for simplicity. All these equations are experimental, and are left as random
updatings in the generic version of the model. The user must define them according to his or her
specific needs. An instance is given in Section 2. It is important to remark that this
representation is sufficiently flexible and reasonable to permit a wide variety of experiments.

SHEET, Seeker sheet:

Cseek_b(l) Flag Ibu[T]: 1 =the trader is seeking transactions as a buyer

Cseek_s(1) Flag Isu [T]: 1 =the trader is seeking transactions as a seller

p_seek_b(1) Reference price p: [T] : highest price at which the trader is willing to buy as a

seeker.

p_seek_s(1) Reference price p;[T]: lowest price at which the trader is willing to sell as a

seeker.

[dhla_seek_b(1), Completion scheduling options D: [T] ; range of lags (in minutes) with which
dhl b_seek_b(1)]

the trader is willing to give cash as a seeker on the buying side.

[dh2a_seek_b(1), Completion scheduling options D: [T] : range of lags (in minutes) with which
dh2b_seek_b(1)]

the trader is willing to receive asset as a seeker on the buying side.

[dhla_seek_s(l), Completion scheduling options D;[T]: range of lags (in minutes) with which
dhl b_seek_s(1)]

the trader is willing to receive cash as a seeker on the selling side.

[dh2a_seek_s(1), Completion scheduling options D; [T]: range of lags (in minutes) with which
dh2b_seek_s(1)]

the trader is willing to give asset as a seeker on the selling side.

SHEET, Acceptor sheet:

Cacc_b(l) Flag Iba[T]; I =the trader is accepting transactions as a buyer

Cacc_s(1) Flag Isa[T]: I =the trader is accepting transactions as a seller

p_acc_b(1) Reference price p: [T] : as above (as acceptor).

p_acc_s(1) Reference price p: [T] ; as above (as acceptor).

[dhla_acc_b(1), Completion scheduling options Dba [T] : as above (as acceptor).
dhlb_acc_b(l)]

[dh2a_acc_b(1), Completion scheduling options D: [T] : as above (as acceptor).
dh2b_acc_b(1)]

[dhla_acc_s(l), Completion scheduling option D: [T] : as above (as acceptor).
dhl b_acc_s(l)]

[dh2a_acc_s(l), Completion scheduling option D: [T]: as above (as acceptor).

18

The last object descending from the object TRADER is the object MANUAL. Conceptually, the
manual contains the whole behavioral repertoire, but in the implementation it handles only the
second chapter, Le. the selection algorithm (the equations are experimental and once again left
as random updatings). This object can also be a container for behavioral parameters, as we will
see in Section 2. The trader's NOTEPAD has been considered a descendant of MANUAL
because the individual information contained in it is used only by the behavioral algorithms.

MANUAL

select(O) Acceptor to transact with in case This equation is experimental and has to be
the trader is the current seeker. defined by the user.

Selects the "side" to take with the This equation is experimental and has to be
chosen acceptor (if both the defined by the user.
acceptor's flags are set to 1):

o= buy , 1 = sell

• update the object NOTEPAD containing
data concerning this trader, if it exists

collect the other trader's information

Iterated on all objects ALPHA:

if the trader's icl.[P] = a[P] (of
object ALPHA)or id=sig[O]

notes(O) Technical variable. Its equation
updates the trader's notepad every
time his identity number appears on
the callers. The value of the
variable corresponds to the identity •
of the last entry in the notepad.

the current

• create a new object NOTEPAD to contain
this information if this trader has never
been encountered before.

reCnotes(O) Technical variable. Refreshes the If the equation is called from num_deaths[O]
notepads when a trader is expelled (at least one trader has been expelled), it scans
from the room: all traders:

from

reCnotes=-1 if the notepads have • when one with e[O]=1 is found, the object
not been refreshed NOTEPAD concerning him is removed

(with clean(id»reCnotes = identity of the last
trader eliminated from the notepads • reCnotes[O]=expelled agent's id[P]
otherwise.

Else (the equation is not called
num_deaths[O]) reCnotes[O]=-l.

Each object NOTEPAD contains a record on another trader that has been encountered. Every
time a trader meets another he goes through his records; if there already is an object referring to
the agent he just met, the information is updated. If not, a new object is created and the agent's
current seeker and acceptor sheets are registered. Records for each concluded transaction are
implicitly contained in the transaction database (in the conceptual model they belonged to the
notepad).

19

NOTEPAD, General

enc_time(P) Minute in which the trader was last encountered.

who(P) Trader's identity.

NOTEPAD, Trader's seeker sheet (upon meeting):

tCseek_b(P) Trader's flag Iba[T].

tCseek_s(P) Trader's flag I s
a[T].

tp_seek_b(P) Trader's reference price p;[T].

tp_seek_s(P) Trader's reference price p;[T].

[tdh Ia_seek_b(P), Trader's completion scheduling options D; [T] for cash.
tdhl b_seek_b(P)]

[tdh2a_seek_b(P), Trader's completion scheduling options D; [T] for asset.
tdh2b_seek_b(P)]

[tdhl a_seek_s(P), Trader's completion scheduling options D: [T] for cash.
tdhl b_seek_s(P)]

[tdh2a_seek_s(P), Trader's completion scheduling options D: [T] for asset.
tdh2b_seek_s(P)]

NOTEPAD, Trader's acceptor sheet (upon meeting):

tCacc_b(P) Trader's flag Iba[T].

tCacc_s(P) Trader's flag Isa[T].

tp_acc_b(P) Trader's reference price p: [T] .

tp_acc_s(P) Trader's reference price p: [T] .

[tdh Ia_acc_b(P), Trader's completion scheduling options D:[T] for cash.
tdhl b_acc_b(P)]

[tdh2a_acc_b(P), Trader's completion scheduling options D: [T] for asset.
tdh2b_acc_b(P)]

[tdhla_acc_s(P), Trader's completion scheduling options D;[T] for cash.
tdh Ib_acc_s(P)]

[tdh2a_acc_s(P), Trader's completion scheduling options D; [T] for asset.
tdh2b_acc_s(P)]

20

1.4 External Returns

l~istOry I

Z(H-l)

External Return of asset
pres_val
z
z sd

Z(H-9)

Figure 4: External Returns

This part of the model deals with the value of the asset, as would be determined independently
of the trading process (e.g. dividends); that is, outside the room. It is necessary if fundamentalist
traders are present in the room (see Section 2). The object EXTERNAL_RET contains the
current value of the asset; the descendants HISTORY (which in this version are 9 but can be
easily increased by the user18

) contain the values the asset had in the preceding minutes (starting
from the most recent). At the beginning of a new minute, the current value is updated, the old
value is assigned to the parameter Z in a new object HISTORY placed in front of the others, and
the last object HISTORY is deleted.

The equation for the current value is experimental. In the generic version, we have implemented
it as the sum between a systematic component (or underlying value) and a noise which is drawn
from a normal distribution with mean 0 and a given standard deviationl9

•

pres_val(l) Current asset value (experimental): pres_val[O] =z[P]+N(O,z_sd[PD (updated at the
beginning of every new minute).

z(P) Experimental parameter expressing the systematic component.

z_sd(P) Experimental parameter expressing the noise standard deviation.

18 Notice that there is an issue concerning the relative time scales of trading process and evolution of the
external value: if a trader cannot access the present value, the series relative to the last "n" minutes is
what he will be able to use to extrapolate it.

19 Obviously the noise can be eliminated by setting the standard deviation equal to zero. In the following
we always parameterize normal distributions through mean and standard deviation (not variance).

21

HISTORY

IZ(P) IOld asset value.

Obviously the parameters in the object EXTERNAL_RET could be turned into variables. In
particular, it would be of high experimental interest to specify a dynamics for the systematic
component.

2 A Behavioral Framework

In the generic version of the model, all variables (and parameters) concerning traders' behavior
have been left constant, or updated at random. This section presents an example of the use of
traders' behavior-related equations. The example is meant as a benchmark to test the
possibilities of the model. The setting was created to try to include in a common, simple
framework, coherent with the characteristics and implementation of the model, a range of
different "behavioral types". The equations taken into consideration are those for traders' flags
and reference prices. Transactions are restricted to be spot on both sides, taking all completion
scheduling options to be constant and equal to {O}. In most cases, there is no distinction
between acceptor and seeker flags and reference prices.

Let us consider a price assessment, in the form

where 01 and O2 are parameters embodying, respectively, "sign and size" of the reaction, and a
"non-reactivity" radius around O. This can be used to determine a trader's flags and reference
prices, diversifying traders in three respects:

• the values of the parameters 01 and 02
2°, on which one could introduce some form of

parametric learning,

• the variables entering the computation, Le. x, Xo

• the way in which the values of xo, g(x - Xo) are employed to determine flags and reference

prices.

20 As well as any other parameters used for the determination of flags and reference prices.

22

The first type of diversification is straightforward. We elaborated on the second and the third.
Traders might be diversified by means of the argument variables x, xo' We consider three

cases:

l. Current External Return. "Fundamentalist" traders with (noisy) access to the current value

Z(H) of the external return, could simply take Z(H) + e as price assessment. This

corresponds to setting Xo = x = Z(H) + e. Clearly g(x - xo) = 0, and the parameters B1

and B2 are irrelevant.

2. History of External Returns. "Fundamentalist" traders who can observe only the series of

past values Z(H_I)' Z(H-2)"" Z(H-n) , could take:

Xo = Z(H_I) and x = Z = LX/Z(H-I-J)'

/=0.1

Here the moving average serves as an extrapolation for the current return value.

3. Prices. "Adaptive" or "Chartist" traders could use the time series of prices (which is public
knowledge, up to the very last transaction), and take

X o = P(N) and x = p = L CP/P(N-J)'

/=0.1.

Here the moving average serves as an extrapolation for the next transaction price. "Noise"
traders are a sub-case, taking P(N) as their price assessment, very much like the

fundamentalists in (l) with Z(H) + e (all the weights are equal to 0 except CPo =1). This

corresponds to setting Xo = x = P(N) • Again, g(x - xo) = 0 and the parameters B) and

B2 are irrelevant.

Other examples could be imitators who target another trader, and form their price assessment
using what they know about his reference price, say Ptarget as it appears in the notepad (Le. the

target trader's reference price as it was the last time the imitator met him). This corresponds to

setting Xo =P(N) and x =Ptarget. Last, some traders could follow "Sun-Spots"; that is, use a

random variable completely unrelated to the system and to the external return, taking for

example Xo =P(N) and x =W ~ N(xO,u
2

).

Once the values of xo,g(x - xo) are computed, traders can be further diversified in terms of

the way they use them to determine flags and reference prices. Again we considered three cases:

23

1. "Take Action". The trader's seeker flags are formed on the basis of the value of
g(x-xo) as:

g(X-XO»O~ibO' =1,isO' = o(seek to buy)

g(x - xo) =0~ ib a =is a =0 (hold)

g(X- Xo) < 0~ ib a =0, isa =1if q ~ 1(seek to sell)

Reference prices, on the other hand, do not depend on the price assessment; the trader will
pursue the action he selected to the limit of his current cash and asset endowments21

• If

ib a = 1, the trader is willing to buy at any price he can afford: Pb a = m (cash endowment);

if isa = 1, the trader is willing to sell at any price, no matter how low: Psa = O. "Take

Action" embodies a very extreme strategy. Thus, we confine it to seeker flags and reference

prices, and we assign it to traders that seek only: iba = iba = 0 , and the acceptor reference

prices are irrelevant. Given the way the selection algorithm is specified (see later), when
called upon participating in a trading round, these agents, although ready to buy/sell at very
extreme prices, will at least select the most convenient to themselves among the ones
proposed by acceptors.

2. "Form a Spread". The trader is in principle always available to exchange, within the
limits of his asset endowment and of a share of his cash endowment. Moreover, he makes
no distinction between seeking and accepting (here and in the following, f 's and p's
without superscript refer to both). Flags are not based on the price assessment: ib = 1 and

is =1 if q ~ 1 (and 0 if the trader has no asset to sell). The values of xO' g(x - xo) are

used to determine reference prices as to define a typical spread. The calculation also
involves a spread parameter &, and a "caution" parameter yE [0,1]:

g(x - xo) > 0~ Pb = min(xo,Y ·m),ps = Xo+ 2&

g(x - xo) = 0~ Pb =min(xo - &,y ·m),ps = Xo+ &

g(x - xo) < 0~ Pb = min(xo - 2&,y ·m),ps = Xo

In this strategy, the price assessment Xo+g(x - xo) is considered as relative to some

"generic future", or maybe to the close future, but not completely reliable as a point
evaluation. The trader does not use Xo +g(x - xo) in forming the reference prices for the

very next transaction; instead, he uses the sign of g(x - xo) (which he trusts to be reliable)

to "orient" upwards or downwards a spread anchored to the center Xo .

21 Since transactions are spot on both sides, he can not postpone payments. The same holds for deliveries,
which is why is" =I is conditional on q~l.

24

I. "Form a Divide". Premises and flags are the same as in (2) above, but the trader forms a
unique reference price acting as a divide between buying and selling:

Ps = P* = Xo + g(x-xo)

Pb = mine p*, r .m)

This can be interpreted as using the price assessment Xo + g(x - xo) in the very next

transaction. The trader considers it a reliable point evaluation relative to the close future.
Thus, any price below p* is seen as a buying opportunity (within the limits of a share of his
current cash endowment), and any price above it as a selling opportunity.

On the basis of the above classifications, one can create a whole range of metaphorical traders'
types. For the time being, we concentrate on the following subset of the taxonomy described in
F. Chiaromonte, G. Dosi (1998):

Current
Ext. R.

History of
Ext. R.'s,
(not the
current)

"Form a Divide"

Strong Fund. (1):

uses information on the
current external return, is
always available to buy and
sell (equivalently as seeker
and acceptor), and is
confident in his
assessments.

"Form a Spread"

Strong Fund. (2):

uses information on the
current external return, is
always available to buy and
sell (equivalently as seeker
and acceptor), and is
cautious about his
assessments.

Weak Fundamentalist:

uses information on the
history of the external
return, is always available
to buy and sell
(equivalently as seeker and
acceptor), and is cautious
about his assessments.

"Take Action"

Prices Weak (Chartist or) Noise Strong (Chartist or) Noise
Trader: Trader:

uses public information on uses public information on
prices, is always available prices, and seeks only,
to buy and sell with a very extreme price
(equivalently as seeker and strategy.
acceptor), and is cautious
about his assessments.

25

2. 1 Implementation of the Framework

To complete the set of preliminary experiments illustrated in F.Chiaromonte, M.Berte (1998) a
specific version was created, implementing the above sub-taxonomy and deleting a number of
unnecessary modules (such as the management of the completion phase; all transaction are spot
on both sides).

The following tables list parameters that were added to the model to implement the taxonomy.
Within the object GROUP, some parameters were introduced to control how many traders of
each type are present in the room. Given the values attributed to these parameters, the objects
TRADER are automatically generated in the first time step of the simulation. Leaving
generation as part of the simulation initialization by the user would have been impractical
because of a technical problem with the user-interface for initialization in LSD. This problem
has been solved in the forthcoming version of LSD22

•

GROUP, add:

strongjund(P) Number of strong fundamentalists.

weakjund(P) Number of weak fundamentalists.

weak_noise(P) Number of weak (chartists or) noise traders.

strong_noise(P) Number of strong (chartists or) noise traders.

Another set of parameters was introduced to control the spread-widths used by trader-types, and
the generation of trader-types converting sequences (experiments have been performed for
various values, see F.Chiaromonte, M.Berte, 1998). The values attributed to these parameters
are automatically assigned to traders of the various types during the first time step.

GROUP, add:

x_par_i(P) Spread E[used by all "informed" traders forming a spread (Le. strong and weak
fundamentalists).

x_par_u(P) Spread Eu used by "uninformed" traders forming a spread (Le. strong and weak -
chartists or- noise traders).

paraml_i(P) Mean of the converting sequence for informed traders.

paraml_u(P) Mean of the converting sequence for uninformed traders.23

22 A new paper by M.Valente is forthcoming, see http://www.business.auc.dkl-mv/homelsd.html.

23 These parameters are assigned to param_l [P] in traders' objects WATCH, see later.

26

The parameter r[P] in the object TRADER is now employed to distinguish the trader's argument
variables x, Xo :

TRADER

r(P) I =current external return

2 = history of external return

3 = prices

The parameters involved in the calculation of gO, as well as other parameters, have been

located into the object MANUAL. In particular, type[P] is employed to distinguish among the
various ways in which the values of xo, g(x - Xo) can be used.

MANUAL, add:

gamma(P) Agent-specific caution parameter y for traders forming a divide or a spread.

tetal(P) 81 ,
24

teta2(P) 82 ,

type(P) °="Take Action"

I ="Form a Divide"

2 ="Form a Spread".

x_par(P) Agent-specific parameter which is assigned the value of x_par_i[p] or x_par_u[P]
(depending on the trader).

Additional options have been included in the object EXTERNAL_RET because in the
experimental setting strong fundamentalists see the current value of the external return with an
error. We distinguish between two cases:

• All strong fundamentalists updating within the same board-clock minute read a common
"noisy" value of the external return, Le. pres_vallO] plus the same draw from a N(O,O') (0' is
assigned internally, through the code).

• Strong fundamentalists updating within the same minute read different "noisy" values, Le.
pres_vallO] plus LLd. draws from a N(O,O') (this is realized by adding the noise
independently when the single trader reads the value).

24 As we shall see when describing the equations for the variables in SHEET, 8/ and B:z have been fixed to
zero when r[P]= l. This simplifies the implementation of the rules. Moreover, it guarantees an equal
spread on both sides when type[P]=2, which is needed in our experiments (see F. Chiaramonte, M. Berte,
1998).

27

In our experiments all we are going to consider is the underlying value z[P] plus these "reading"
noises on the side of the traders. Thus, we set z_sd[P]=O. so that pres_val[O]=z[O]25.

EXTERNAL_RET, add:

observed_Z(O) • if one_draw[P] = 1, then observed_Z[O] = pres_valfO]+ N(O,cr)

• else observed_Z[O] = pres_vaHO] -the error occurs in the reading of the single
trader-

(updated at the beginning of every new minute).

one_draw(P) o= different "noisy" values
1 = common "noisy" value

2.2 Equations

The equations embodying the behavioral repertoire refer to variables in SHEET (equations
generating flags and reference prices) and in MANUAL (selection algorithm). The trader's
parameters r[P] and type[PJ, spanning our taxonomy, are used to distinguish among different
updating forms.

SHEET:

Cacc_b[l] • if type[P]=O, then Cacc_b[O]=O (take action; only seeker)

• else (type[p]=1 or 2), Cacc_b[O]=1 (form a divide or a spread; always available
to buy as acceptor

Cacc_s[l] if h[1]:;t:h[2] (updating time) or assetfl]:;t:asset[2] (endowment has changed in the
last time step f6, then:

• if type[P]=O , then Cacc_sfO]=O (take action; only seeker)

• else (type[P]=l or 2):

if asset[O]~l then Cacc_s[O]=l

else, Cacc_s[O]=O

(form a divide or spread; always available to sell as acceptor, if he has at least
one unit of asset)

else Cacc_s[o]=Cacc_s[l] (keep old value of the flag)

25 One could, though, superimpose the "reading noises" to an intrinsic noise in the mechanism generating
pres_val[O], i.e. set Z_sq[P]>O.

28

Cseek_b[l] if h[I]:;t:h[2] (updating time) or cash[1]:;t:cash[2] (endowment has changed in the
last time step)27, then:

• if type[P]=O, then:

if p_seek_b[O]>O then Cseek_b[O]=I

else Cseek_b[O]=O

(take action; see equation for p_seek_b[OD

• else (type[P]=1 or 2), then Cseek_b[O]=1 (form a divide or spread; always
available to buy as seeker)

else Cseek_b[O]=Cseek_b[l] (keep old value of the flag)

Cseek_s[l] ifh[1]:;t:h[2] (updating time) orasset[I]:;t:asset[2], then:

• if type[P]=O, then:

if p_seek_s[O]=O then Cseek_s[O]=1

else Cseek_s[O]=O

(take action; see equation for p_seek_s[OD

• else (type[P]=1 or 2), then:

if asset[O]~1 then Cseek_s[O]=1

else Cseek_s[O]=O

(form a divide or spread; always available to sell as seeker, if he has at

least one unit of asset)

else Cseek_s[O]=Cseek_s[l] (keep old value of the flag)

p_acc_b[l] if h[I]:;t:h[2] (updating time) or cash[1]:;t:cash[2], then:

• if type[P]=O, then p_acc_b[O]=O

(take action; only seeker --irrelevant)

• if type[P]=I, then p_acc_b[0]=min(p_acc_s [O],gamma[p]·cash[OD

(form a divide)

• if type[P]=2, then p_acc_b[O]=min(p_acc_s[O] - 2·x_par[p], gamma[P]·cash[OD

(form a spread)

else p_acc_b[O]=p_acc_b[l] (keep old value of the reference price)

p_acc_s[l] if h[1]:;t:h[2] (updating time) or asset[l]:;t:asset[2], then:

• if type[P]=O (take action) then p_acc_s[O]=O

26 Notice that since transactions are spot on both sides, this is equivalent to the trader having been a party
of the last transaction; his asset level has increased or decreased, depending on whether he was the buyer
or the seller.

27 Also this is equivalent to having been party to the last transaction, unless it occurred at price O. We
assume that if this is the case the trader will not update.

29

(take action; only seeker -irrelevant)

• else

A. An intermediate variable y, depending on r[pt, is calculated:

• ifr[P]=1 (current external return), then

if one_draw=O (independent draws) then y=pres_val[O]+N(O,)

else (single draw), y=observed_Z[O] (which already contains the common
reading error)

• if r[P]=2 (history of external returns), then

1~ 29
y=9~ Z(H_I_j)[P]-Z(H_I)[P]

(the subscripts refer to the objects HISTORY, in order)

• if r[Pj=3 (prices), then

1 8

y=- L price(N_j)[P]-price_N[Of
O

9 j=O

(the subscripts refer to the objects TRANSACTION, in order;

price_N[Oj=price(N)'

B. g(y) = tetal [P]·y·Ind(lyl~teta2[P])is calculated

(for r[P]=I, tetal [P]=teta2[Pj=O so that the calculation actually results in
g(y)=O)31.

C. xois calculated, depending on r[Pj:

• if r[Pj= I, then xo=y

• if r[P]=2, then XO=Z(H_IJPj

• if r[Pj=3, then xo=price_N[O].

D. The reference price is calculated, depending on type[p]:

• if type[Pj=1 (form a divide), then p_acc_s[Oj= xo+g(y)

• if type[P]=2 (form a spread), then

28 This has been implemented as a "case" control structure in the code.

29 Here the return moving average is based on all retained values (not including the current; thus the 9
historic values we kept) with equal weights.

30 We have imposed the price moving average to be based on 9 equally weighted elements (including the
last transaction price) for simplicity; this could be easily changed. In particular, one might want to use
more than 9 price values, as they refer to transactions, while the return values refer to minutes (the two
scales might be very different).

31 Notice that the easiest way to implement traders who use P(N! as their price assessment is, analogously,
to set tetal [P]=teta2[P]=0 for r[P]=3 (instead of explicitly introducing weights for the moving average
and then set them all to 0, except for j=O). This is what we have done for the experiments described in F.
Chiaramonte, M. Berte (1998).

MANUAL:

select(O)

30

if g(y)<O. then p_acc_s[O]= Xo

else if g(y)=O. then p_acc_s[O]= xo+x_par[P]

else if g(y»O then p_acc_s[O]= xo+2·x_par[P].

else p_acc_s[O]=p_acc_s[l] (keep old value of the reference price)

ifh[11:t:h[2] (updating time) or cash[I]:t:cash[2J, then:

• if type[P]=O. then:

if p_seek_s[O]=-1O then p_seek_b[O]=cash[O]

else p_seek_s[O]=O

(take action; the trader buys at any price he can afford)

• else (if type[P]=1 or 2). p_seek_b[O]=p_acc_b[O]

(form a divide or spread; same prices are used for seeking and

accepting)

else p_seek_b[O]=p_seek_b[l] (keep old value of the reference price)

• if type[P]=1 or 2. then p_seek_s[O]=p_acc_s[O]32

• else (type[P]=O; take actioni3

• y. g(y) and Xoare computed as in the equation for p_acc_s[O]. according to
r[PJ, and the reference price is given by:

• if g(y)<O and assets[O]~I. then p_seek_s[Ol=O (the trader sells at any
price)

• if g(y)=O then p_seek_s[O]=-1 (through p_seek_b[O] and flags. he holds)

• if g(y»o. then p_seek_s[O]=-1O (through p_seek_b[O] and flags. he buys
at any price he can afford)

The seeker chooses the acceptor whose reference price is most convenient:

if id[P]=sig[P] (the trader is the seeker)

iterated on all objects ALPHA (for all possible acceptors):

• (we use intermediate variables yl' Y2; side. identity. y* indicates the current y's
maximum through the iteration and is initialized at -I)

• the notepad is checked for the reference prices of the trader with identity a[P]
(the traders have already exchanged information)

32 Even though the code repeats some calculations; this was used as a check.

33 For type[P]=O. p_acc_s[O] has not been really calculated. but only set as an irrelevant default.

31

• if p_seek_b[O]-tp_acc_s[P]>O and tCacc_s[P]=l (the transaction is feasible on
buying side), then YI=lp_seek_b[O]-(1ambda[P]·p_seek_b[O] +(1-
lambda[P])·tp_acc_s[O])I, else yj=-2

• if p_seek_s[O]-tp_acc_b[P]<O and tCacc_b[P]=l (the transaction is feasible on
selling side), then Y2= Ip_seek_s[O]-(1ambda[P]·p_seek_s[0] +(1-
lambda[P])·tp_acc_b[O])I, else Y2=-2

• if max{Yl'Y2}>Y*' then y*= max{Yl'yJ, side=the flag determining the side,
identity=a[P]

select[O]=identity

b_oCs[O]=side

b_ocs(O) Calculated in the equation for select[O].

Another equation becomes extremely important in this specific implementation of the model;
namely, that of num_birthsO (in object GROUP). The reason for this is that the initialization of
the various types of agents has to be fulfilled automatically assigning all the parameters, prices
and initial data.

num_births(l) the total number of traders is calculated (adding the different types):

sum=strong_fund[p]+weak_fund[P]+strong_noise[P]+weak_noise[P]

for i=l,... ,sum (all traders in the market):

• an object TRADER is created
34

• iq[P] is assigned (iq.[P] I =i)

• assets[O]=assets[O] of first trader (as initialized by the user)

• cash[O]=cash[O] of first trader (as initialized by the user)35

• B[O]=max_B[P]

• r [P] is assigned:

if kstrong_fund[p], then r[P]=l

else if kstrong_fund[P]+weakjund[P], then r[P]=2

else r[P]=3

• watch parameters and variables are initialized:

if kstrongjund[p]+weak_fund[P]

if one_draw[P]=136 (single draw)

34 The one object TRADER allocated when specifying the structure hosts the first trader.

35 All traders thus start with equal levels of cash and asset.

36 The distribution of the converting sequence will be a Poisson if the traders read the same "noisy" values
of the external return and constant otherwise (one_draw[P]=O). If traders were synchronous and read the

32

distcv[P]=1 (Poisson)

v[O]=draw from a Poisson(paraml_i[P])

else (iid draws)

distcv[P]=5 (Constant value)

v[O]=paraml_i[P]

else (uninformed traders)

distcv[P]=1 (Poisson)

v[O]=draw from a Poisson(paraml_u[P])

h[O]=1

sum_v[O]=v[O]

param2[P]=-1 (not needed, both for Poisson and constant value case)

if i<strongjund[P]+weakjunq.[pJ, then paraml [P]=paramCi[P]

else paraml [P]=paramCu[P] (uninformed traders)

(these will be used for all draws after the first)

• reference prices are initialized:

this is experimental; in the experiments completed the agents have been

separated into two groups with different centers

• type[P], teta! [P] teta2[P] and x_par[P] are assigned, with the same method as
for r[P]

same noisy value, their price assessments would converge right away (see F. Chiaramonte, M. Berte,
1998).

a
I

Define:

i=l ...k

33

APPENDIX A: Pseudo-Simultaneous Procedure for
Completing Transactions

The completion of transactions is a very important issue because a failure in completing a
transaction within the scheduled time results in loosing one or more bonus minutes and
eventually in being expelled from the room. For this reason the model was conceived in a way
that prevents failures dependent from the order in which transactions which are due
simultaneously are completed. A transaction is not completed only if the trader involved
actually does not possess the endowments necessary to honor it.

This view of the completion phase implies the introduction of a pseudo-simultaneous procedure,
which virtually enables all the transactions involved to be completed at the same time. The
procedure implemented has been chosen evaluating both effectiveness and computational
efficiency, which becomes a critical point when solving a problem that is by definition
computationally heavy. The procedure is described thoroughly in the next sections, giving both
analytical justifications and implementation details.

1. Description of the pseudo-simultaneous procedure

The symbols we will introduce in this section are completely unrelated to those used elsewhere
in the paper.

the active transactions (transactions in completion phase) on the cash side,

right after a new transaction conclusion,

the quantity of cash involved in transaction i,

the trader who has to deliver the cash in transaction i,

the trader who has to receive the cash in the transaction i,

j=l. ..n all the traders present in the market,

b
j

endowment of agent j.

Consider the algorithm:

1=0

for j=l...n (all traders)

for i=l...k (all active transactions)

34

{

oi~j ~ ~ and) :;C lfIi

a.· = a If] =B}l I I

- ai if and) :;C lfIi

if aii = °Vi = l...k , thenj= j+l

else

A =bi

j=j+l

This algorithm produces:

l=number of traders involved,

a matrix A = (a; .. ~) of dimension (kxl),

a vector jJ = (Pt ...Af of dimension (Ix I),

an "identities" vector Id = (Idl ... ldz)T .

Consider now the optimization problem:

maxxTT

with AT x:-s; jJ i.e.

ajTx:-s; fJI

a 2
Tx:-s; fJ2

(1)

(2)

35

This corresponds to maximizing the number of active transactions that are completed under the

constraints given by agents' endowments.3
? If there is more than one solution x· , clearly any

one can be chosen randomly, since no other criteria is considered.

A transaction i with<= 0 is a transaction that has failed. The number of failures of agent j
can be calculated by finding I so that Idl=j and counting the number of transactions i with li>O

and <= 0 Uis the failing agent in them).

The same procedure can be applied to the asset side, where a; will always be equal to I.

Claim:

using x· , no "solvent" agent is failing (no agent is failing a transaction only due to the order in
which "active" transactions are completed).

Proof:

j 0 I (via Id[= j) is solvent iff CIzT 1~ f3z so we need to show that if

CIzT 1~ f3z, there is no i s.1. ali > 0 and Xi· = O.

By contradiction, suppose ::Ji st ali > 0 and Xi· = 0; if we define X' as x· + (0...1. ..O)T where

the 1 is in position i (this is equal to x· with position i switched to I). Clearly

x,TT>x·TT (x,TT=x·TT+l),and x' E{O,lV.

Moreover, a/x' = a/x· + ali ~ a/x· ~ A whenever tt:l (because in these cases

ali = 0 or ali =-ai), and a/x' =a/x' ~ a/ T ~ fit (the constraint is guaranteed by the

solvency of jBI).

But then x· would not be a solution of (2) because x' would.

The optimization problem described above can clearly be solved with linear integer
programming. Since the most known integer programming methods, such as "branch and
bound" or "Gomory cuts" might give efficiency and convergence problems in some instances,
the particularly simple objective function has been exploited to devise an ad hoc method, which
is summarized below.

A simplex method is applied to the problem:

J7 Note that no priority is given to transactions involving higher amounts or any other criterion.

36

maxyTT

ATy ~ ft,
y~T,

y~ U.

(3)

which is equal to the original problem without the integer constraints. Obviously if the solution

yO is such that yO E {O, 1}k then the optimum of the original problem has been found; if not, one

certainly has yOT T ~ yOT T.

At this point, since the objective function is merely a maximization of the number of ones in a

binary vector, the set of possible optimums is [0, y °T T]I1N i.e. all the integer numbers ranging

from the optimum given by the simplex method rounded to the lowest integer, down to zero.
Through a method which has resulted quite efficient, for each integer number t contained in this
set (starting from the highest) solutions with all the possible combinations of t ones and k-t
zeroes are substituted in the constraints. As soon as one constraint is not respected the solution
is discarded.

2. Implementation

A new class, optim, has been added to the LSD files, for the management of the pseudo
simultaneous procedure described above. The class is defined in file decl.h and its functions are
described in the new file simplex.cpp. The class contains the method for performing the simplex
algorithm, the procedure to find the final integer solution (psO), functions related to memory
managemeneS and variables for the matrix on which the simplex is performed and its
dimensions m and n.

The new class is used by equations pseudo_sim_a[O] and pseudo_sim_c[O], which complete the
transactions, the first on the asset side and the second on the cash side. These eqations are
described in the next paragraph.

The two equations work exactly in the same way and therefore the description is left general.

Before constructing the matrix to solve problem (3) its dimensions have to be defined for
technical reasons. This is what the first part of the equation is devoted to.

38 Taken from W. H. Press et al., Numerical Recipes in C Second Edition, Cambridge University Press,
Cambridge, 1992.

37

First of all the equation goes through all the objects TRANSACTION to detect if there are any
active ones on the appropriate side. If there are they are assigned their position in the matrix
which will be constructed:

v[1J=p->cal("N" ,0);

v[2J=p->cal("N" ,1);

v[7]=p->cal("H" ,0);

v[8]=O;

for (cur=p->son;cur!=NULL;cur=cur->next) Ilchecks if there are transactions

Ilin completion phase

v[3]=cur->cal("c2",0);

v[4]=cur->cal(" time" ,0);

v[5]=cur->cal("dh2" ,0);

v[6]=v[5]+v[4];

if «v[3]==0) && «v[6])<=v[7]))

{

cur->write("tran_num",v[8]+ I,t);

v[8]++;

}

}

Ilif there are their position in the matrix is

Ilassigned

If there are transactions in completion and a new negotiation occurred, the transactions are
sorted according to their value of tran_num[P]. Each trader is then checked, to see if he is
involved in any of the transactions in completion phase. If he is, his position in the matrix is
assigned:

if «v[8] !=O) && (v[I] !=v[2])) Ilif there are transactions in completion

Iland a new negotiation occurred

(p->son)->sort_asc(p,"tran_num");

cuev=p->search_var(p,"num_tr");

curl=cuev->up; Ilpoints to object GROUP

v[13]=O;

for (cur=curI->son;cur!=NULL;cur=cur->next) Ilfor each agent

v[9]=1;

v[l2]=cur->cal("id'''0); lIagent's identity

38

for(cur2=p->son;cur2!=NULL && v[9]<=v[8];cur2=cur2->next) Ilfor each active
transaction

v[l 0]=cur2->cal("buy",0);

v[II]=cur2->cal("sell II ,0);

v[14]=cur->cal("trad_num",0);

if «(v[IO]==v[12])II(v[11]==v[12])) && (v[14]==0)) Ilif agent is involved in the
transaction

{
involved)

cur->write("trad_num",v[13]+ I,t);

v[13]++;

v[9]++;

II(and it is the first one in which he is

l/he is assigned a position in the matrix

The variables of an instance of the object optim (integer_sol) are now initialized. The matrix for
solving the maximization problem (3) is defined in restricted normal form as follows:

,
integer_s,?l.n+l+k

0 0 0
~ objective function

bl -all -a l2 -a1k -I 0 0 0
bz -aZI -azz -aZk 0 -1 0 0

~ bi ,-Ai' slack variable

bl - all -aiZ -alk

1 -I 0 0

I 0 -1 0

0 0 -1 0 ~ constraints x j ~ 1, slack variable

1 0 0 -1 0 0 0 -1
0 0 0 ~ used in simplex algorithm

Since all the constraints are inequalities, one slack variable for each has to be considered. This is
done automatically by the simplex algorithm; therefore the matrix initialized has dimensions
(l+k+2)x(k+ I) which are assigned to integer.sol.m (number of constraints for the simplex+2)
and integer.sol.n (variables in the simplex, which correspond to the number of transactions to be
completed, and one column for). The values aij are assigned as described in (I).

for (cur=curl->son;cur!=NULL;cur=cur->next)

39

{

v[17]=2;

v[9]=cur->cal("trad_num" ,0);

if (v[9] !=O)

v[12]=cur->cal("id" ,0);

v[14]=cur->cal("assets" ,0);

for(cur2=p->son;cur2 !=NULL && v[17]<=v[8]+ I ;cur2=cur2->next)

v[10]=cur2->cal("buy",0);

v[II]=cur2->cal("sell" ,0);

if (v[1O]==v[12])

integer_sol.a[(int)(v[9]+ I)][(int)(v[17])]=1; //receives asset

else if (v[II]==v[12])

integecsol.a[(int)(v[9]+ I)][(int)(v[17])]=-1 ;//gives asset

v[17]++;

integecsol.a[(int)(v[9]+ I)][l]=v[14] ;//budget constraint (b)

}

}

The integer solution is then calculated (and assigned to vector integecsol.ans) by the function
integecsol.psO which first solves the problem (3) with a simplex method and then solves
problem (2) as described in the previous section. At this point all the possible negotiations are
completed and any bonus points needed are assigned.

for (cur=p->son;(cur!=NULL && v[25] !=lOO);cur=cur->next)

if (integecsol.ans[(int)v[25]]==I) //completes all possible negotiations

cur->write("c2", I ,t);

v[261=cur->cal("buy" ,0);

curl =p->search_var_cond("id" ,v[26],0);

v[27]=curl->cal("assets" ,0);

v[27]++;

curl->write("assets ",v[27] ,t);

v[28]=cur->cal("sell" ,0);

40

curl=p->search_var_cond("id" ,v[281,0);

v[27]=curl->cal("assets" ,0);

v[27]--;

curl->write("assets" ,v[27],t);

else if (v[7] !=v[O]) Ilif the minute is finished, assign bonus points to who needs them

v[28]=cur->cal("sell" ,0);

curl =p->search_var_cond("id",v[28],0);

v[12]=curl->cal("B" ,0);

curl->write("B",v[12]-1 ,t);

if (v[12]>0)

{

cuev=p->search_var(p,"num_bonus"); Iistastistical variable num_bonus is updated

cur2=cur_v->up;

v[15]=cur2->cal("num_bonus" ,0);

cur2->write("num_bonus" ,v[151+ l,t);

if «cur->next)!=NULL)

v[25]=(cur->next)->cal("tran_num" ,0);

The function returns the value of integer_sol.n.

41

Appendix B: Saving Options

The implementation of Financial "Toy-Room" associates the LSD time step to a round of the
model. Since, though, some features of the model are governed by different timings, the
implementation offers the possibility of using different saving options depending on what the
user is studying. This is done by the functions special_svO and sp_svO which are included in
LSD class OBJECT and are defined in the fun_*.cpp file. The implementation also uses a lot of
indirect updating, Le. variables and parameters are frequently updated from other variables,
often even more than once during the same time step; as for example for the variables cash and
assets. This is the reason why instead of saving variables when these are calculated, it was found
useful to modify LSD in order to calculate all the variables first and then save them; obviously
to the expense of time.

1. Function speciaLsvO

This function is called by main_ux or main_win (in the LSD src directory), associated with the
first object of the model. The function reads parameter sv_opt[P], fixed by the user, and goes
through every variable of the object. Depending on the value of sv_opt[P], different criteria
(apart from checking if the user has set the saving flag on) are used to determine if the variable
needs to be saved; if it does its value is written on the appropriate file. This process is repeated,
with an iterative process, for all the other objects in the model.

2. Function sp_svO

This function manages the carriage return in the result file. Every time the function special_svO
has completed its search sp_svO checks to see if to insert a carriage return. Depending on the
value of sv_opt[p] the carriage return is inserted at every time step, at every N or at every H.

42

References

Berte Mariele, Un Mercato Artificiale per la Valutazione di Strumenti Finanziari Derivati,
Universita degli Studi di Milano, Milan, 1997.

Chiaromonte Francesca, Giovanni Dosi, Modeling a Decentralized Asset Market: Financial
"Toy-Room", nASA Interim Report,???, Laxenburg, 1998.

Chiaromonte Francesca, Mariele Berte, Some Preliminary Experiments with the Financial "Toy
Room", nASA Interim Report,???, Laxenburg, 1998.

Kernighan Brian W., Dennis M. Ritchie, The C Programming Language, Second Edition,
Prentice-Hall Inc., New Jersey, 1989.

Press William P. et aI., Numerical Recipes in C Second Edition, Cambridge University Press,
Cambridge, 1992.

Schildt Herbert, Guida al Linguaggio C++, McGraw-Hill, Milan, 1996.

Valente Marco, Laboratory for Simulation Development User Manual, nASA Interim Report
IR-97-020IMay, Laxenburg, 1997.

(also http://www.business.auc.dk/-mv/homelsd.html for Programmer Manual and new version
of LSD)

