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FUZZY SET CONCEPTS FOR RISK ASSESSMENT

*Yoshikuni Shinohara

I. Introduction

The risk assessment problems are essentially those of

decision-making under uncertainty. If there is no uncertainty

as to the result of activity considered, then there will be no

sense of risk. Also if there is no possibility for us to

make a choice, it would be a fate rather than a risk.

There are many types of uncertainties which can be

divided into two major categories: the uncertainty due to

randomness and that due to ambiguity. Conventional methods

of treating the uncertainty are to apply statistical methods

of estimation which are, in turn, based upon the concept of

probability. Even in the case where the source of uncertainty

is of non-statistical nature, formal application of statistical

methods of analysis is often done to deal quantitatively with

the uncertainty by tacitly accepting the premise that un­

certainty - whatever its nature - can be equated with

randomness (1). Most of the works on risk assessment have

been done using such methods.

However in risk assessment problems, where societal or

humanistic systems as we+l as technological or mechanistic

systems are concerned, we encounter a variety of sources of
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Atomic Energy Agency, P.O. Box 590, A-lOll Vienna, Austria.



-2-

uncertainty wllich are due to ambiguity in our cognition or

perception of objects. For systematic treatment of this type

of uncertainty, the concepts of fuzzy sets could be applied

to construct system models, thus taking the ambiguity into

consideration.

The aim of this note is to introduce basic concepts of

fuzzy sets and to point out some possible application of this.
concept to the problems of risk assessment and decision-making.

II. Types of uncertainty

It would be useful to consider some typical types of

uncertainty which may be encountered in the problems of risk

assessment before introducing the concepts of fuzzy sets.

Only four types of uncertainty will be presented in this

chapter. The simplest examples of picking up a ball from

an urn will be used.

1: Uncertainty with precise and complete information

about non-fuzzy outcome.

A simple example of this type of uncertainty is that of

picking up a white ball from the urn which contains only a

known number of white balls and a known number of black balls.

Here we assume that all balls are made identically except for

their colour, so that one cannot identify their colour unless

he looks at them. The process of picking up a ball is, how­

ever, assumed to be completely random.

If there are m white balls and n black balls in the urn,

the probability that one will pick up a white ball can be

defined as p = m/(m + n). This type of probability, which

can be determined with objective information, is usually
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called the objective probability. This probability concept

is consistent with that based on the relative frequency of

occurrence of the event, and it can be verified experimentally

with the aid of the law of large numbers if the ratio min

is moderate. However, its experimental verification will

become practically impossible if the ratio min becomes

extremely small, 10-6 for instance. The probability of this

type can, however, be determined exactly in the mathematical

sense, even if it is extremely small. It can then be

applied to develop probabilistic assessment of the problems

in which a complete set of information necessary to de­

termine such probabilities is available.

The uncertainty associated with fair lottery falls

into this category.

2. Uncertainty with imprecise and/or incomplete in­

formation about non-fuzzy outcome.

Now let us consider a variation of the preceding example

by assuming that the number m of white balls is not accurately

known and that we are told only an approximate number ~ of

white balls. In this case, we cannot determine precise pro­

bability of picking up a white ball from the urn. It could

also be said that the uncertainty is twofold, in that there

are uncertainties due to randomness of the picking-up

process and to imprecise information about the number of

white balls. Usually, one would apply the same formula that

was used in the previous example to define an "approximate"

value of the probability by p = rn/ (In + n). However, the

meaning of the word "approximate" is usually more or less

fuzzy and the true number of white balls may differ from the

approximate number by 2% to 5% or more, depending upon the

individual case. If we have the opportunity to make a sampling

of balls, we can improve the value of probability by applying
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Bayesian statistics. But if we have no opportunity at all

to make such a sampling test, we must accept the fuzzyness

which is involved in the given information. In conventional

methods, it is often assumed that such fuzzyness can be

captured by the terms of a probability distribution (2).°

3. Uncertainty with precise and complete information

about fuzzy outcome.

Let us suppose that the urn contains a total number of

N balls but that the colour of the balls ranges almost

continuously from sufficiently white to sufficiently black.

We also assume that the degree of whiteness of each ball

can be uniquely determined using some opto-electronic

equipment for colour measurement and that a complete table

showing the degree of whiteness of each ball contained in

the urn has been given to us.

Under these conditions, what is the probability of

picking up a "white" ball from this urn? dne might clai~

that the question is not properly posed because the meaning

of "white" is fuzzy. But we often encounter these types

of problems in actual systems analysis.

The conventional practice in answering this question

is as follows: We put a threshold on the degree of white­

ness and define a ball as white if its degree of whiteness

is higher than this threshold. By defining a white ball in

this way, we can construct a non-fuzzy system model in which

only "white" and "non-white" balls exist and thus we can

determine the probability of picking up a "white" ball by

applying the same formula that was used in the first example.

But where should the threshold be placed? Subjectivity cannot

be avoided in placing the threshold.
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4. Uncertainty with imprecise and/or incomplete in­

formation about fuzzy outcome.

Let us make a little modification in the preceding

example: Instead of a complete table which lists the grade

of whiteness of each ball contained in the urn, suppose we

are given an incomplete table in which the information about

the grade of whiteness is missing for a certain number of

balls. The question is the same: What is the probability

that one will pick a white ball from the urn?

A conventional method which is often used in systems

analysis is as follows: First, the "white" ball is defined

rather subjectively as in the previous example, Then, using

the data available in the table, the distribution of the

number of balls as a function of the grade is determined.

By assuming the same distribution for the balls for which the

information about the grade is missing, an appropriate grade

is assigned to each ball of missing information. Then the

probability of picking up a white ball is determined using

the same formula that was applied in the previous example.

In this example, subjectivity is twofold, that is , subjectivity

is involved in making the definition of a white ball, and is

assigning grades to the balls of missing information.

The above examples represent a static system. In dynamic

systems, variation of system parameters will cause other types

of uncertainty. Many types of uncertainty are mixed in the

actual complex system.

III. Basic Concepts of Fuzzy Sets

The theory of fuzzy sets, which was first proposed by

Zadeh (3) in 1~65, provides a novel method of treating fuzziness

in a systematic manner. In fact, much of our real world is
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more or less fuzzy. The traditional scientific method of

investigation, however, is to try to eliminate fuzziness

in the model to be built rather than to accept the fuzzziness

as it is perceived. The development of the fuzzy set theory

has opened a new possibility of handling very complex

problems which are very difficult to treat by conventional

methods of mathematical analysis. In this chapter, some

basic concepts of fuzzy sets will be presented in order to

introduce such concepts to those who are not familiar with

the fuzzy qet theory. Detailed description of the theory

can be found in the references (3) to (6).

A fuzzy set is a set of elements whose limit is not

sharply defined but fuzzy. That is, the transition between

membership and non-membership of the elements to a given

attribute is gradual and an element can "more or less"

belong to the set, in contrast to the classical set, for

which membership of the elements can be characterized by

a binary form such as "yes" or "no, "true" or "false",

"1" or "9", etc.

The
l
set of the adults which is defined by the age only

will serve as a very simple example of a classical set. We

may define the adults as those people whose age has attained

twenty, for instance, regardless of any other states of those

people such as mental development. Such a definition of

the adult is traditionally adopted and is widely applied in

the society. It is, however, clearly unreasonable in many

cases to make such a clear-cut classification for reasons

other than those of tradition or convenience, especially when

one considers the larger differences. It should be noted,

therefore, that such a method of classification like this is

often used, consciously or unconsciously, in the systems

analysis without adequate forethought.
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If we apply the concept of characteristic functions to

characterize membership of the elements to the set of the

adults as a function of age, then we obtain a binary function

described in Fig. 3.1. We asssociate the value 1 with the age

greater than and including twenty, and the value 0 with the

age less than twenty. In mathematical expression we can

write it as:

{

__= 1 if X ~ 20

o if X < 20

(or X € A)

(or X E. A)

where fA(X) is the characteristic function, A the set of the

adults and X the age. Thus, for example:

= 0; f
A

(20.5) = . 1

Now let us consider the set of "old" men which will serve

as a simple example of fuzzy set. Here we will think of the

word "old" as used in daily life. In this case, we have no

actual clear-cut definition of the word "old", that is, there

is no definite threshold of age above which it should be called

to be old. In fact, a man becomes old, although this may not

necessarily be in linear relationship with his age. A man of

age 80 is usually considered to be quite old and a man of age

50 is said to be less old than a man of age 60. This implies

that, even if we think of the meaning of the word "old" in

connection with age only, the delineation is very fuzzy.

However, our daily conversation is usually not based on

words which have clear-cut definitions as is done in mathematics,

but on very fuzzy words; yet it usually goes smoothly.
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If we apply the concept of characteristic functions to

characterize membership of the elements to the set of "old"

men, a rather continuous function that represents gradual

transition between membership and non-membership and not a

binary function must be used. The characteristic function,

or the membership function as it is called in the fuzzy set

theory, might have a form as described in Fig. 3.2., for

example. Thus, the membership function which characterizes

the fuzzy set can be considered as a generalization of the

characteristic function applied to the classical set. In

terms of a more general mathematical expression, a fuzzy

set A in X, where X is a space of points with a generic

element of X denoted by X, is characterized by a member­

ship function fA(X) which associates a real number in the

interval {O,l} with the value of fA(X) at (X) representing

the grade of membership of X in A with each point in X.

X ---~) CO, I}

One of the difficulties in applying the fuzzy set theory

to actual complex problems is how to determine the membership

functions. This is a problem which is fortunately somewhat

similar to that of determining the utility function in utility

theory.

To show that the concepts of fuzzy sets are an extension

of those of classical sets, some basic definitions will be

listed below:

- Empty Set

The definition of empty set is the same as for the

classical set. A fuzzy set is said to be empty if and

only if its membership function is identically zero

on the space X.
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- Equality

Two fuzzy sets A and B are equal if and only if the

membership functions fA(X) and fB(X) are equal for

all X in X. Written more simply, A = B if and only

if fA = f B·

- Complement (Fig. 3.3)

The complement of a fuzzy set A ~enoted by AI) is the

fuzzy set which is characterized by the membership

function

1 - f
A

- Containment

A fuzzy set A is said to be contained in a fuzzy set B'

if and only if fA:::; f B for all X in X.

This is equivalent to saying that A is a sub-set of B,

or that A is smaller than or equal to B.

Symbolically, this relation is written as

- Union (Fig. 3.4.)

The union of two fuzzy sets A and B with respective

membership functions fA(X) and fB(X) is defined as a

fuzzy set C whose membership function fc(X) is related

to those of A and B by

f C = Max {fA (X) , fB(X)}

or in abbreviated form

X e X
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The union of A and B is symbolically written

C = A U B

- Intersection (Fig. 3.5)

The intersection of two fuzzy sets A and B with

respective membership functions fA(X) and fB(X) is

a fuzzy set C whose membership function fC(X) is

related to those of A and B by

XEX

In abbreviated form, the above expression is written

as:

The intersection of A and Bis sYmbolically written as:

C = A n B

- Probability of Fuzzy Event

As an extension of the expression of the probability for

the non-fuzzy event characterized by an ordinary set,

the probability peA) of a fuzzy event characterized by

a fuzzy set A in n-dimensional Euclidian space R
n

can

be expressed by the following integral

peA) = ~nfA(X)dP = E(fA)

where fAis the membership function associated with the

fuzzy set A, P is the probability measure and the

operation E denotes the mathematical expectation.
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Using this basic definition, the probability theory

for the fuzzy events can be developed in a manner

similar to that for the non-fuzzy events.

We will not go any further into the mathematical aspects

of fuzzy set and conclude this chapter by pointing out that a

quite broad area of the theory has been developed in the past

ten years. This includes fuzzy topology, fuzzy matrices, fuzzy

convex sets, fuzzy logic, fuzzy systems, fuzzy language, L-fuzzy

sets, and others. Fuzzy theory is being applied to a variety

of problems in the field of social sciences, i.e., economics,

psychology and sociology, as well as in the field of engineering.

IV. possible Application to Risk Assessment

The term risk may generally refer to the undesirable

effect associated with a specific activity considered in

connection with their respective uncertainties (7). Since

the notion of risk here must be conceived in terms of the

ipteraction between the object (environment, activity, techno­

logical products, etc.) and the subject (individual, group,

society, etc.) a concrete definition of risk must be provided

with the specifications of the type "of what" and "to whom"

(Fig. 4.1).

Presence of the subject in the risk concept is an essential

source of fuzziness in the risk assessment,because the same

object may be differently risky to different subjects who

are in different positions and who have different amounts of

information, different types of perception and preference with

respect to the object. In this sense, risk is a notion which

is not of absolute or objective nature but rather of relative

or subjective nature.

In this chapter some posssible applications of the fuzzy

set concepts to the risk assessment problems will be pointed

out by using very basic conceptual illustrations.
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1. Event-Consequence Model

In Reference (7), risk estimation refers to the

identification of the second (and higher) order conse­

quences of a decision and the subsequent estimation of the

magnitude of the associated risks. For this purpose, it is

necessary to construct a model based on which the analysis

is to be performed. However, for a complex real system such

as the energy system, it is usually very difficult to con­

struct a detailed model which can simulate exactly the

behaviour of the real system. In such a case, there exists

a certain gap between the real system and its model (Fig. 4.2).

It is, however, difficult to predict how large this

gap will be because it is usually very difficult to know

the range of the real system behaviour and also to predict

exactly how the model itself will behave. Usually, it is

possible to know about the gap only very vaguely. If we can

know about the gap even in a vague way the model may be

improved by taking this vagueness into consideration.

Let us take an example of the core melting model for

a nuclear reactor. In Reference (8), it is assumed that

"if conditions are such that some core melting results, then

essentially complete core melting results". This is an

assumption made for the sake of conservatism, and is due

to lack of sufficient data. The categorization of the set

is similar to the example of the set of adults described in

the previous chapter (Fig. 4.3a). However, as the past

accident records show, partial core melting is'more likely

to occur than complete core melting which has never been

experienced up to now in actual reactors. Therefore, if we

want to make a more "realistic" assessment rather than a

"conservative" one, it would be better to take partial core

melting into consideration in the model. In terms of fuzzy
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set, a macroscopic model of core melting can be represented

by a fuzzy set of "core melting" which includes 50% to 100%

core melting. The associated membership function here is

possibly linear with the percentage of molton core (Fig. 4.3b).

2. Inadequate Statistical Data

When the data available for analysis are very poor,

there will be a large amount of uncertainty in the results

of analysis. If the measurement technique for the event

of interest is not well developed, or if the measured data

are much distorted by various types of disturbances, avail­

able data will be very inaccurate. Also, if the number of

samples is very small, the data will be statistically in­

adequate. Let us suppose, for example, that there is a

big urn which contains a large number of small balls which

are all identical except for their colour. Also suppose that

somebody gave us, asa sample, only ten balls picked up

from the urn, of which one is white and the remaining nine

are black. Now we are asked to estimate the ratio m of the

number of white balls to the total pumber of balls contained

in the urn. What can we say with only the data given above?

Is the ratio m nearly equal to O.l? Such a sample may be

obtained even if the true value of m is 0.01 in this case.

We do not know whether or not the sampling was made under

sufficiently randomized condition. We do not know if there

are balls of other colour in the urn or not. In this

situation, it is almost impossible to make a statistically

meaningful estimation of the ratio m. If we are informed

that the sampling was made under randomized conditions and

that there are only white balls and black balls in the urn,

then the situation will become much better. However, the un­

certainty in the estimate of m is still large; and we cannot

eliminate such uncertainty.
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One of the methods which is often employed in such

situations is to use the value 0.1 as a base estimate of

m and then to make a sort of sensitivity analysis by

varying the value of m around the base point 0.1. A more

complicated method is to apply the statistical theory of

estimation, although formal application of the theory will

not produce good results when available data are poor. A

less complicated method would be to apply fuzzy set concept.

Since we must start our analysis using available data, it

would be justifiable to think that m is nearly equal to 0.1.

Even if somebody else knows that the true value of m is

0.01, it does not effect our analysis, since we do not

know it.

Now, in fuzzy set terms, the statement "nearly equal

to 0.1" is replaced by a fuzzy set of numbers with an

associated membership function which takes its largest value

at 0.1. This membership function may be determined sub­

jectively, depending on how much we can rely upon the avail­

able data. If one does not like this type of subjectivity,

the membership function may be determined, for example, as

the likelihood function, which assumes randomized conditions

for the sampled data (Fig. 4.4). However, subjectivity cannot

be avoided in assuming the randomized condition also in this

case.

In the assessment of risks associated with low frequency­

large consequence events for which adequate statistical data

are usually not available, a large amount of uncertainty and

ambiguity may exist in the data as well as in the model.

3. Decision-Making Involving Risks

Risk-benefit problems essentially involve multiple object

functions,of which at least two functions are related to the

risk and the benefit. The decision-making problem with



-15-

multiple object functions is generally very difficult to

treat "objectively", because simultaneous satisfaction of

multiple object functions is not always possible. There­

fore, there will usually arise the problem of weighting

or trade-off among different object functions, for which

subjective judgement is more or less inevitable. Even in

the problem of mechanistic system related decision-making, such

as the optimization of control system of a power plant having

multiple object functions, determination of the weight for

each object function is usually made only very vaguely

through designer's experience and rather subjectively. For

more complex decision problems related to humanistic systems,

subjectivity will become more inevitable than for the case

of mechanistic systems.

One of the classical approaches to such decision problems

is to apply the utility theory. Interesting discussions on

decision problems from the psychological standpoint can be

found in Reference (9). A mathematical theory of decision­

making based on the ordinary set theory can be found in

Reference (10) also. In the classical theories, the

problem statement must be clearly made so that in the

system model, the goal and the constraints could also be

clearly defined. The formulation of the utility theory, for

example, is based on the concepts of ordinary sets and

postulates a set of axioms with regard to preference

ordering which must be respected by a "rational" subject,

although such an abstract and mathematical notion of

rationality cannot be achieved so easily in a real world

situation. In order to apply the theory, it is usual

practice to construct a clear-cut model in which fuzziness

is absent by abstracting, from the vast complexity of the

real situation, manageable features relevant to the

problems under consideration. In practice, there is always

more or less subjective judgement as to what should be
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taken as the model which is appropriate for our study. How­

ever, the fact that all modelling process involves in part

certain subjective judgement is usually obscured in the use

of such a clear-cut model by the absence of any explicit

representation of the subjective elements within the model

itself. In this respect, the fuzzy-set-theory approach

might improve such situations by accepting the fuzziness

or the ambiguity in the model.

When the problem is stated very vaguely, the appropriate­

ness of the fuzzy set concepts becomes more pronounced.

Just to explain conceptually the fuzzy set theoretic approach

to decision problems, let us consider a very simple example.

Suppose that the problem is to find a value or a set of

values which satisfies the following goal and constraint:

Goal: x is required to be sufficiently larger than 1.

Constraint: x must be roughly equal to 5.

Using conventional mathematical notation, it can be

expressed by:

Goal: x» 1

Constraint: x ~ 5

How can we handle this problem using conventional

methods? A conventional method would be to reformulate the

problem as follows:

Taking y = x as the object function, and assuming that

the meaning of "roughly equal to 5" can be represented by a

number which lies between 5 - d and 5 + d, we maximize the

object function under the constraint which is subjectively

interpreted. In mathematical expression, it can be written by:
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Goal: Max y ~ x
x

Constraint: 5 - d ~ x ~ 5 + d

The solution is simple:

x = 5 + d

This is shown graphically in Figure 4.5a.

In fuzzy-set-theoretic approach, the vagueness in the

problem statement is expressed more or less subjectively in

the form of a membership function. Assuming the membership

functions for the goal f (x) and for the constraint f (x),
g c

which are respectively associated with the fuzzy goal set G

and the fuzzy constraint set C, the solution is expressed by

a fuzzy set which is the intersection of the fuzzy goal set

G and the fuzzy constraint set C.

Using mathematical notation, the solution set is:

D = G n C

with the associated membership function:

= f g
A f

c

If it is required to find a particular number x instead

of a set, one may choose, for example, the value of x which

maximizes the membership function f d . This is called the

maximizing decision. A graphical illustration is given in

Fig. 4.5b. Determination of f (x) and f (x) will depend
g c

upon the nature of the problem. Thus the expression "x »1",

for instance, may be represented by different membership
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functions in different problems, depending upon the judgement

as to what is "sufficiently" larger than 1 in a particular

problem.

v. Concluding Remarks

There will be raised a question about the merits which

can be gained by the application of fuzzy set theory to risk.

assessment problems. It will be difficult to give a clear­

cut answer to such a question because no sophisticated

methods can be very powerful if we do not take into con­

sideration the real world situation. Successful application

of the theory will therefore depend as much upon the skill

of the analyst as upon the nature of the problem itself.

Determination of the membership function and interpretation

of various fuzzy relations are the major key points for

successful application of the theory. Although the fuzzy

set concept can be applied to construct a microscopic model

as well as a macroscopic model, its application on the level

of microscopic model may not be interesting since it will

only complicate the model without adding any substantial gain

to the result of the analysis. Application of the' fuzzy set

theory for constructing a macroscopic model for risk assess­

ment would be more appropriate since certain fine structures

in the microscopic model can be retained to some extent,

while using the fuzzy set concepts in the macroscopic model.

The possibility of constructing better macroscopic models

based on the fuzzy set concept will be advantageous, from

the computational viewpoint, for its application to the

development of reactor diagnostics which must be performed

on an on-line, real-time base.
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A mathematical formulation of risk assessment problems

based on the fuzzy set theory will be presented in a forth­

coming paper (11). The present paper is intended as an

introduction to this.
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Fig. 4.2 The gap between the real system and the model
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Fig. 4.2 (a): Characteristic function for the model in
Re ference (8)

(b): A possible membership function for the fuzzy
set "core melting"
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Fig. 4.4 Likelihood function used as a membership function
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Fig. 4.5 (a): A conventional method

(b): A fuzzy set theoretic approach


