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Preface 

In particular, the situation is often met when a sto- 
chastic process has to be controlled, the model of which is 
a priori not well known. In this case the decision make1 
tor decision making device - controller) has to determine 
sequentially the input on the basis of his limited know- 
ledge of the process and to learn the process at the same 
time. The present paper deals with the process identifi- 
cation under these conditions and under the assumption 
that the mathematical model of the process is a priori 
known up to a finite number of unknown parameters. The 
uncertainty of the parameters is characterized by sub- 
jective probability distributions. Recursive relations 
are derived for the evolution of this distribution when 
the amount of observed data is growing. The general 
theory is elaborated, including practical algorithms 
for the case when the input-output relation is describ- 
able by a multivariate (auto-) regression model no param- 
eter of which (except the order) is a priori known. 
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Abstract 

A dynamic stochastic system with multivariate input 
and multivariate output, possibly controlled in a closed 
loop, is considered. It is assumed that the input-output 
relation is describable by a model of a given structure 
but with a finite set of unknown parameters. The uncer- 
tainty of the parameters is characterized by the subjective 
probability density function. Functional recursion re- 
lations are derived describing the evolution of this sub- 
jective p.d.f. when it is successively conditioned by the 
observed data. A self-reproducing form of the conditional 
p.d.f. is found for the case, when the process is des- 
cribable by a multivariate regression model and no para- 
meter - except the order - is a priori known. This makes 
it possible to reduce the functibnal recursion into an 
algebraic recursion which is easy to perform. 

1. Introduction 

A multivariate stochastic process with v-dimensional output 

{y(t);t=1,2,...) and v-dimensional input {u ;t=1,2, ... 1 is 
(t) 

considered. The inputs u (t) ' t > 1, are accessible to the decision - 
maker and may be used to influence the output of the process y (t) ' 
t - > 1, in order to achieve some desired goal which may be, for 

instance, the minimization of some criterion characterizing the 

quality of the process. The time indexing of random variables is 

chosen so that the time sequence of inputs and outputs is 

u(l) 'Y(1) lU(2) 'Y(2) '""" (t) 'Y(t) ' 

Thus, the output y is not known when u 
(t) 

is applied and there- 
( t ) 

fore cannot be taken into account when the decision concerning 

(t) 
is taken. The decision maker can only make use of past out- 

puts and inputs known to him when the decision is made. 



If the following notation for the sets of random variables 

is introduced 

the general form of the control law - which is to be determined by 
the decision maker - can be written as the conditional probability 
density function (c.p.d.f.) 

In the special case, when the applied control law is deterministic 

the c.p.d.f. (1.1) degrades into the Dirac &-function 

where f 
(t) 

is the function which is to be determined by the decision 

maker. 

To be able to perform this task in some optimal way the deci- 

sion maker needs to know the c.p.d.f. 

In this paper it will be assumed that the process is describable 

by a model which defines the c.p.d.f. (1.2) up to a finite set of 

unknown parameters Kt i.e., that only the c.p.d.f. (for 'any K) 

is apriori known. The purpose of the present paper is to answer 

the following question: What is the optimal way for the decision 

maker to collect information about the unknown parameters which 



are contained in observable input-output data? How has he to accu- 

mulate his experience in order to improve his performance? 

If the true values of the parameters K are not known the 

c.p.d.f. (1.3) cannot be directly used by the decision maker. The 

unknown parameters have to be eliminated first. This can be done 

in the following way. 

where 

is the subjective c.p.d.f., as defined e.g., in [2], which reflects 

the uncertainty of the parameters. The integration in (1.4) is 

taken over all possible values of the parameter set K. However, 

to be able to perform this integration the c.p.d.f. (1.5) has to 

be known. Thus, the problem of first importance is to find the 

way this c.p.d.f. can be calculated for each t. 

The paper is organized in the following manner. 

In the next Section the general recursion relations for the 

evolution of the c.p.d.f. (1.5) will be derived (Theorem 1) for 

the "natural conditions of control" which are defined and discussed. 

In Section 3 the general recursion relations are applied to 

the particular case of a multivariate regression model of given 

order but with unknown parameters. The self-reproducing form of 

the subjective c.p.d.f. for the set of unknown parameters is found 

and analyzed. The practical advantage of the self-reproducing form 

is that it makes it possible to reduce the functional recursion into 

an algebraic recursion which is easy to perform. These results are 

summarized in Theorem 2. The self-reproducing form of the c.p.d.f. 

( 1.2) is given by Theorem 3. 

The topic of Section 4 is the question of how prior information 

about the unknown parameters can be respected in the starting sub- 

jective p.d.f. Section 5 is then the concluding section. 



2. Evolution of Conditional Probability Density Functions 

According to the relation (1.4) all information relevant for 

the forecast and/or control of the output of a stochastic process 

with an unknown parameter set K can be expressed through the c.p.d.f. 

(1.5). In this Section general recursion relations will be derived 

which make it possible to update this c.p.d.f. under certain, very 

general conditions which will be called "natural conditions of 

control." Before the precise mathematical definition of these 

conditions is given, some basic concepts have to be clarified. 

Consider the information flow diagram in Figure 1. In this 

diagram the decision maker and the observer are distinguished. 

The decision maker determines for each t the input of the process 

Figure 1. 

u 
(t) ' 

The input u 
(t) 

is followed by the output of the process Y(~). 

The observer has the possibility to observe both the inputs and 

the outputs of the process starting with t = 1. 



To make our consideration as general as possible, we shall 

not consider a particular type of the process model at this stage. 

We shall only assume that the c.p.d.f. 

is known to the observer up to a finite set of unknown parameters 

K. The task of the observer is to determine 

for each t > 1. The initial (unconditioned) subjective p.d.f. p(K) 

reflects the observer's initial belief in the likelihood of possible 

values of the unknown parameters and he has to update his opinion 

according to new data which he is obtaining sequentially in real 

time. 

In a general case the information available for the observer 

may be different from that available to the decision maker. If, 

for instance, either the parameters K were known to the decision 

maker or the decision maker had more experimental data at his dis- 

posal and the observer knew his strategy, the observer could also 

gain some information about the parameters K from the single action 

of the decision maker. However, when the decision maker and the 

observer are the same person - mathematically speaking, when they 
operate on the same a-algebra - nothing can be gained from the 
single u 

(t) ' 
One cannot learn solely from one's own action without 

getting the response. 

Throughout the rest of the paper it will be assumed that the 

decision maker and the observer are identical, i.e., that the 

decision maker has both to learn the process and to control it. 

These conditions may be mathematically defined as follows. 

D e f i n i t i o n  I .  The conditions under which 

holds will be called t h e  n a t u r a l  c o n d i t i o n s  o f  c o n t r o l .  



From (2.1) it immediately follows that 

(t-1) (t-1) 
= p(u 

(t-1) (t-1) 
P (u (t) IKry ,a Iu 1 (2.2) (t) l y  

as it can be seen from the second equality in the following re- 

lation. 

The equality (2.2) may well be used as a definition of natural con- 

ditions of control instead of (2.1). In this equality the fact 

is reflected that the action of the decision maker may not depend 

on the unknown parameter set K when all information contained in 

the past history of the process and in the initial subjective 

p.d. f. p (K) is considered. In other words, the process input u 
(t) 

may depend on the unknown parameters K only through the past his- 

tory of the process {y (t-1) IU (t-l) 1 which is known to the decision 
maker at the time instant when the decision concerning u 

(t) 
is 

taken. When this information is considered in the condition part 

of the c.p.d.f. (2.2) the conditioning on K is redundant. Notice 

that the equality (2.2) does not hold if any y 
(T 1 

or u 
(-c 

of the 

set {+I r"(~) ;t>~>l) - is omitted in the conditional part of the 

c.p.d.f.'s in (2.2). 

The equalities (2.1) and (2.2) make it possible to derive the 

desired recursion in a straightforward way. Consider the joint 

p.d. f. Y(t)# U(t) and K conditioned by the past history of the 

process {y (t-1) (t-1) 
IU and rewrite it in the following two ways. 



When the equalities (2.1) and (2.2) are considered, the following 

result is obtained from the second equality in (2.3) and from 

(1.4). 

Theorem 1 .  Under n a t u r a l  c o n d i t i o n s  o f  c o n t r o l  t h e  e v o l u t i o n  

o f  t h e  c . p . d . f .  ( 2 . 1 )  i s  de termined  b y  t h e  r e c u r s i v e  r e l a t i o n  

where 

In the next Section this general result is applied to the 

particular case of the multivariate regression model. 

3. Self-reproducing Forms of Conditional Probability Distributions 

for Multivariate Regression Models 

The functional recursion relations derived in the previous 

Section may be applied to any process model defining the c.p.d.f. 

where K is the set of unknown model parameters. In general it may 

be difficult to perform this calculation as the whole function 

has to be'recalculated for each t according to the recursion (2.4) 

and (2.5). However, if such a form of the c.p.d.f. (3.2) can be 

found that remains unchanged, up to a finite set of its parameters, 

when t is growing, the functional recursion (2.4) and (2.5) can 

be reduced to an algebraic recursion which considerably simplifies 

the calculation. The c.p.d.f.'s having this property are called 

self-reproducing, or one says that they form a conjugate family of 

distributions [2,5] . 



In this Section it will be assumed that the relation between 

the p-dimensional input u and the v-dimensional output y of the 

process is describable by the multivariate (auto-) regression model 

where {e ;t=1,2, . . . I  is a sequence of mutually independent 
(t) 

gaussian random vectors with zero mean 

and covariance matrix 

Ai, Bi are matrix-valued regression coefficients of appropriate 

dimensions and c is a v-vector. However, it is not assumed that 

the parameters Ail Bit c and R are apriori known. 

It is convenient to write the multivariate regression model 

(3.3) in the following compact form 

where z 
(t) 

is a column vector of dimension 

and P is a (pxv)-matrix of regression coefficients. The following 

arrangement of z 
(t) 

and P may have some advantages 

It is also convenient to consider the precision matrix [2,5] 



to be the unknown parameter instead of R itself. Thus, the set of 

unknown parameters in our particular case of multivariate regression 

models will be 

and the c.p.d.f. (3.1), defined by the regression model for t > n, 

may be written as follows. 

The goals of this Section are: 

(i) to find and analyze the self-reproducing form of 

and related c.p.d.f.'s 

(ii) to derive the algebraic recursions for updating of the 

parameters of these c.p.d.f.'s, 

(iii) to find the c.p.d.f. p(y (y (t-1) 
(t) tu (t)) which does not 

contain the unknown model parameters and may be used to 

forecast and/or control the output. 

The results concerning the items (i) and (ii) are summarized in 

Theorem 2, item (iii) is addressed in Theorem 3. As the proofs 

of these Theorems are rather involved they are left to Appendices 

A and B. 

Theorem 2. If the process, describable b y  the multivariate 

regression model (3.5) with gaussian random component e 
(t)' 

is 

controlled under natural conditions (see Definition 1 )  and if,& 
v 

denotes the set of all positive definite matrices of dimension v, 

then 

(a) the self-reproducing c. p. d. f. (3.1 2) is 



p ( ~ . ~ l y ( t ) l u ( t ) )  = O  for a l l  a jt.,dv I 

where 8 ( t )  
i s  a  scaZar parameter  de t e rmined  by t h e  r e c u r -  

s i o n  r e l a t i o n  

" t )  i s  a  ( v + p ) x ( v + p ) - m a t r i x  f o r  which  t h e  f o l l o w i n g  r e -  

c u r s i o n  h o l d s  

I means t h e  i d e n t i t y  m a t r i x  o f  d imens ion  ( V X V )  and a ( t )  
v  

i s  t h e  n o r m a l i z i n g  f a c t o r  i n d e p e n d e n t  o f  m a t r i x - v a l u e d  

v a r i a b l e s  P and R ( s e e  ( g l  f o r  f o r m u l a ) ;  

( b l  t h e  maximum o f  t h e  c . p . d . f .  ( 3 . 1 3 )  l i e s  i n  t h e  p o i n t  

where V Z ( t )  and  V ~ y ( t l  a r e  t h e  s u b m a t r i c e s  o f  V f t )  par-  

t i t i o n e d  i n  t h e  f o l l o w i n g  way 



and 

( c )  t h e  m a r g i n a l  d i s t r i b u t i o n  o f  t h e  u n c e r t a i n  m a t r i x  R i s  

t h e  W i s h a r t  d i s t r i b u t i o n  

(trP 

p(~ly(~).u(~) - - Y(t) 14 2 ,  exp{- 1 tr(M(t))l f o r  R c V d v  (3.20) 

p(~ly(t)fu(t)) = o f o r  a t - ~ ,  

where  y ( t )  i s  t h e  n o r m a l i z i n g  f a c t o r  g i v e n  i n  ( 9 ) ;  

( d l  t h e  c o n d i t i o n a l  d i s t r i b u t i o n  o f  t h e  u n c e r t a i n  r e g r e s s i o n -  

c o e f f i c i e n t s  m a t r i x  P g i v e n  t h e  p r e c i s i o n  m a t r i x  R i s  

( e )  t h e  m a r g i n a l  p r o b a b i l i t y  d i s t r i b u t i o n  o f  t h e  u n c e r t a i n  

m a t r i x  P i s  

where  B ( t )  i s  t h e  n o r m a l i z i n g  f a c t o r  g i v e n  i n  ( 9 ) ;  

( f l  i n s t e a d  o f  u s i n g  t h e  formulae  ( 3 . 1 6 )  and ( 3 . 1 9 )  f o r  e a c h  
A 

t t h e  c h a r a c t e r i s t i c s  P i t ) '  and 

may b e  u p d a t e d  d i r e c t l y  by  t h e  f o l l o w i n g  a l g e b r a i c  r e c u r -  

s i o n  r e l a t i o n s  



( g )  t h e  f a c t o r s  a ( & ) ,  @ ( t )  
and y ( t )  n o r m a l i z e  t h e  c . p . d .  f .  ' s  

( 3 . 1 3 1 ,  ( 3 .  2 2 )  and  ( 3 .  2 0 )  i n  s u c h  a  way t h a t  

w h e r e  X s t a n d s  f o r  ( P , R )  o r  P o r  R ,  r e s p e c t i v e l y ,  a r e  

g i v e n  b y  t h e  f o r m u l a e  

- 
Ivz (t) I *  

IA(t) 1% 



R e m a r k  3 . 1 .  In most practical applications the normalizing 

factors given by complicated formulae in (g) are not required to 

be known. 

R e m a r k  3 . 2 .  Notice that the c.p.d.f. (3.21) is actually a 

gaussian distribution for a'vector, obtained by stacking the matrix 

P column by column, with covariance matrix R-' where 8 

denotes the Kronecker product. 

R e m a r k  3 . 3 .  For a univariate case, when v = 1 and R is a 

scalar, the Wishart distribution (3.20) turns into r-distribution 

where A 
(t) 

defined by (3.13) is a scalar and 

2 If the distribution for uncertain variance o = ~(e:~)) is of 
I 

interest, it can be obtained from (3.33) through simple transfor- 

mation o2 = R-' which gives 1 

R e m a r k  3 . 4 .  Notice that in the univariate case, when v = 1 

and P is a p-vector, (3.22) turns into a p-dimensional Student distri- 
bution with (8 -p+2) degrees of freedom the mean of which is 

(t) 



Remark 3 . 5 .  It is numerically advantageous to propagate 
1 - 

the trianqular Cholesky square root C 2 
(t) ' 

- 
2 

(t) l T  , = 
(t) (t) 

instead of C 
(t) 

itself. See [3,4] for the algorithm and more de- 

tailed discussion of numerical aspects. It also may be of great 

numerical advantage to update directly the Cholesky square root 

of V-' which can be done by the same algorithm [41. 
(t) 

Theorem 3 .  I f  t h e  a s s u m p t i o n s  o f  Theorem 1  a r e  f u l f i l l e d  t h e  

p r o b a b i l i t y  o f  t h e  o u t p u t  y  
(t) 

g i v e n  t h e  p a s t  h i s t o r y  o f  t h e  pro-  

c e s s  { y  ( t - l ) , u ( t )  ) b u t  n o t  t h e  p a r a m e t e r s  P and Q i s  d i s t r i b u t e d  

a c c o r d i n g  t o  t h e  v - d i m e n s i o n a l  S t u d e n t  d i s t r i b u t i o n  w i t h  

( e  i t - 1  ) - p + 2 )  d e g r e e s  o f  f r e e d o m  

w h e r e  P ( t - l ) ,  n i t - ] )  and 5 ( t )  a r e  d e f i n e d  b y  ( 3 . 1 6 ) ,  ( 3 . 1 9 )  and 
( 3 . 2 6 )  and.rnay b e  c a l c u l a t e d  r e c u r s i v e l y  a c c o r d i n g  t o  f o r m u l a e  

( 3 . 2 4 )  t o  ( 3 . 2 9 ) .  T h e  n o r m a l i z i n g  f a c t o r  o f  t h e  S t u d e n t  c . p . d .  f .  

( 3 . 3 8 )  i s  

The proof of Theorem 3 is given in ~ppendix B. 

4. Prior Information 

In this Section the question will be discussed how the prior 

information about the possible values of the parameters of the 

multivariate regression model can be incorporated. 



The regression model (3.3) defines the c.p.d.f. (3.12) only 

for t > n and therefore the recursion according to Theorem 1 for 

K = {P,R) may start with p ( ~ ( ~  , u ) . The self-reproducing 

form (3.13) of this c.p.d.f. has two parameters, matrix V 
(n) 

and 

scalqr 0 
(n) ' into which the prior information about the unknown 

parameters has to be inserted. The matrix V 
(n) 

itself determines 
A 

three characteristics P 
(n) '(n) '(n) 

and conversely for given 
A 

P 
(n) '(n) 

and A 
(n) 

the matrix V (n) can be composed according to 

(3.1 C )  where 

According to the part (b) of Theorem 2 6 can be chosen directly 
(n) 

as the most likely value of P. However, the remaining character- 

istics cannot be determined so easily. 

'~irst, we shall consider the case with single output, v = 1, 

when A 
(n) 

and R = 1/02 are scalars. We shall assume that the prior 

information is expressed through 

and 

2 "  
cov[P1 t Var [a I P=P 1 . (n) 

It is a lengthy, but easy exercise to prove that the following 

relations hold. 



From these relations we get 

2 Notice that in the case when the "prior estimate" of a  , i.e., 
2 E [ a  (P=P 1 ,  must be considered as very uncertain, i.e., when 

2 (n) 
Var [a (P=P 1 + m, the formula (4.7) gives a simple result 8 

(n) 
= 2 .  

(n) 
Notice also that high uncertainty of the "prior estimate" 

h 

P can be modelled by a diagonal matrix C 
(n) 

with large numbers 
(n) 

on its diagonal. 

The multivariate case, v > 1, can be handled as v univariate 

regression models if the "prior estimate" of the covariance matrix 

R is assumed to be diagonal, however, the convariances of the 

"prior estimates" of R and P cannot be chosen independently in 

order to maintain the advantageous self-reproducing forms of 

c.p.d.f.'s given in Theorem 2. 

5. Conclusion 

The paper solves the problem of real-time identification of 

a multivariate stochastic process which is controlled in a closed 

feedback loop. It is assumed that the model of the process is 

known up to a finite set of parameter's which are time-invariant 

but unknown. The introduction of the fairly general "natural 

conditions of control" (Definition 1) made it possible to derive 

the functional recursion for the evolution of the conditional 

subjective-probability density characterizing the uncertainty of 

the unknown parameters. 



The practical use of the derived functional recursion may 

be considerably simplified when the self-reproducing forms of the 

conditional probability densities can be found for the particular 

type of the model. This has been done for the case of a multi- 

variate regression model (with an auto-regressive component). In 

this way the functional recursion was reduced to an algebraic re- 

cursion which is similar to recursive least squares. 



APPENDIX A - PROOF OF THEOREM 2  

I n  t h i s  append ix  t h e  a s s e r t i o n s  o f  Theorem 2  w i l l  be proved 

s e q u e n t i a l l y  a s  t h e y  appea r  i n  t h e  theorem. 

Proof  o f  a s s e r t i o n  ( a )  

The denomina tor  on t h e  r i g h t - h a n d  s i d e  o f  ( 2 . 4 )  d o e s  n o t  

depend on t h e  v a r i a b l e s  K = {P,R).  Hence, t h e  f o l l o w i n g  p ropor -  

t i o n a l i t y  h o l d s  

P ( P I Q ~ Y  (t) , U ( t ) )  p (pIRly( t - l )  ,U( t - l )  )P(Y (t) I P I Q I Y  (t-l) f U ( t ) )  , (A. 1 )  

where a means e q u a l i t y  up t o  a  f a c t o r  n o t  depending  on t h e  v a r i -  

a b l e s  P  and R .  The second c . p . d . f .  on t h e  r i g h t - h a n d  s i d e  o f  ( A . l )  

i s  g i v e n  by (3 .11 )  and  may be  w r i t t e n  i n  t h e  f o l l o w i n g  form 

The s u b s t i t u t i o n  (A.2) and  (3 .13)  i n t o  (A. 1 )  p r o v e s  t h a t  t h e  

c . p . d . f .  ( 3 .13 )  i s  s e l f - r e p r o d u c i n g  and i n  t h e  same t i m e  p r o v e s  

t h e  r e c u r s i o n s  (3 .14 )  and (3 .15 )  . 

P r o o f  o f  a s s e r t i o n  ( b )  

I t  i s  e a s y  t o  v e r i f y  t h a t  t h e  f o l l o w i n g  sequence  o f  e q u a l i t i e s  

h o l d s  

- T 
- ( p - S ( t ) )  %( t )  ( P -  S ( t ) )  + A(t )  



where 3 
(t) 

and A 
(t 

are matrices defined by (3.16) and (3.19) . 
Using this rearrangement the c.p.d.f. (3.13) may be rewritten in 

the form 

Only the last factor of this expression depends on P and its 

maximum--equal to 1 as both R and V 
z (t) 

are positive semidefinite 

-- is reached by P = $ 
(t 

for any  RE&^. Thus, it remains to prove 

that R = d , where fi 
(t) 

is defined by (3.17), maximizes the re- 

maining part of (A. 3) 

This proof,is given in [1;§3.2]. 

Proo f  o f  a s s e r t i o n  ( c l  

The marginal distribution of R given {y(t) ,u(~)) can be ob- 

tained by integration 

After the substitution of (A.3) into (A.4) we obtain 

As both R and VZ(t) must be positive semidefinite they may be 

expressed as products 

2 T - 2  
- 

n = ( n ) n  , - T 'Z 
Vz (t) - (v: (t) ) Vz (t) 



1 1 - 
where RZ and V2 a r e  r e a l  ( n o t  unique)  m a t r i c e s .  The exponent 

x ( t)  
i n  t h e  i n t e g r a n d  (A.5) can be  w r i t t e n  i n  t h e  fo l lowing  form 

2 
where 1 1 .  ) I  deno tes  t h e  square  of  t h e  e u c l i d e a n  norm (sum of  

s q u a r e s  of a l l  e n t r i e s ) .  Thus, us ing  t h e  s u b s t i t u t i o n  

1 1 

t h e  i n t e g r a l  i n  (A.5) can be c a l c u l a t e d  a s  t h e  p roduc t  of i n t e -  

g r a l s  

However, t h e  Jacob ian  of t h e  t r a n s f o r m a t i o n  (A.6) has  t o  be de- 

te rmined.  I n  o r d e r  t o  f i n d  t h i s  Jacob ian  l e t  us  decompose t h e  

t r a n s f o r m a t i o n  (A.6) i n t o  two s t e p s .  

I f  Y [j d e n o t e s  t h e  jth column i n  Y ,  t hen  

and 

But i n  t h e  same way a l l  v columns of t h e  m a t r i x  P a r e  t ransformed 

and t h u s  we have 



If the second transformation (A.9) is written in the transposed 

form 

we get into a similar situation, 

- 
7 

- 
2 

d~ = dxT = 1" dy = lnl 1vZ(,, 12dp . (A. 10) 

Using (A. 10) and (A. 7) the integral in (A. 5) may be expressed as 

follows: 

P PV -- v t 1  ( 
-T 

- - 
A T 

[P-6 ITj dp = (2~) In1 2 l ~ ~ ( ~ )  1 2 jexp - 2 tr Q[p-P(t)l VZ(t) (t) 

(A. 1 1  ) 

The substitution of this integral into (A.5) completes the proof. 

The formula (3.32) for the normalizing factor y (t 
of the Wishart 

distribution may be found e.g. in [I] or €61 . 

Proof of assertion ( d l  - 

Obviously, the following relation holds 

(A. 12) 

Substitution of (A. 3) and (3.20) into (A. 12) gives 

P - 
1 A - T - -  a('] 1nl2 exp I -Ttr Q[P-P(~)] 'Z(t) [P - c 11 

(t) (A.13) 

Considering the integral (A. 11) we can see that 



Thus, we have proved (3.21) and the formula (3.30) for a (t) Ilt 
the same time. 

Proo f  o f  a s s e r t i o n  f e )  

To prove assertion (e) of Theorem 2 we have to perform the 

integration 

where the integral is taken over all set,kV of positive definite 

matrices of dimension vxv. For convenience, we can make use 

of the fact that the normalizing factor y (t) 
of the Wishart dis- 

tribution (3.20) is known [ I ] ,  [ 6 1 .  Hence we have 

(tl -P 

But this integral is of the s m e  type as (A.14). Thus, the 

integral in (A.14) can be evaluated simply by the replacement 
A 

instead of 8 
T 

Of O(t) (t) - P and ([P - P(t) I V, (t) I + A(t) in- 

stead of A (t) in the formula (3.32) for p (t) ' 
In this way the 

c.p.d. f. (3.22) is derived and at the same time the formula (3.31) 

.for the normalizing factor B (t) is proved. 

Proof  o f  a s s e r t i o n  f f )  

The derivation of the recursion relations for the character- 

istics 6 (t)' and A 
( t 

may be found in [3 1 . 
The formulae for the normalizing factors given in assertion 

(e) have been already proved. 



APPENDIX B - PROOF OF THEOREM 3 

The c.p.d. f. (3.3 ) might be derived in a straightforward 

way by integration (2.5). However, it is more convenient to 

exploit the relation 

which follows from (2.4). Ey substitution of (3.13) and (A. 2) 

into (B .  1 ) and considering the relations (3.14) .and (3.15) we 

obtain 

Making use of formulae (3.30) and (3.14) we have 

, 4  1% (t-1) 
v 1 Vz (t) 1 

The determinant I Vz (t) 1 in ( G .  2 )  may be expressed in the following 

way 

T T -1 
Ivz (t) I = Ivz (t-1) + Z(t)Z (t) 1 = vz (t-111 + (tIvz (t-1) (t)) 

Making use of (3.23) and (3.26) we have 



Similarily for the determinant ( we obtain from ( 3 . 2 8 )  

Substitution of ( B . 3 )  and ( B . 4 )  into ( B . 2 )  completes the proof. 
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