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Abstract

A dynamic model of investment process for a technology innovator in a market environ-
ment is designed. The ”light” dynamics of the active innovator is described by the system
of exponential trajectories in which one can quickly change growth parameters. It is as-
sumed that the innovator operates in the inert market environment which can be presented
by ”heavy” exponential trajectories. The growth parameters of the market trajectories
vary slowly and can be identified to some accuracy in the dynamic process of economet-
ric observation basing on information of the current technology stock (the average market
technology stock) and its rate (the average market technology rate). The model consists of
three decision making levels for dynamical identification, optimization of the commercial-
ization time and optimal control design. On the first level the innovator makes assessment
for the market commercialization time using econometric characteristics of the current
level of the market technology stock and the market technology rate. Since the market
environment is inert and its acceleration (the second derivative) is small then informa-
tion about the market technology stock (current position) and the market technology rate
(current first derivative) gives an opportunity to estimate exponential parameters of the
market growth trajectories, to forecast the market commercialization time and indicate its
sensitivity. On the second level the innovator optimizes its commercialization time basing
on its own current technology stock and taking into account the forecast of the market
commercialization time. Two scenarios are possible for the innovator: the ”slow” scenario
with ”large” time of innovation is oriented on the local extremum with usual level of sales
of invented products, the ”fast” scenario with ”small” time of innovation maximizes the
level of early innovation with bonus sales due to the market overtaking. On the third
level the innovator solves an optimization problem for the investment policy basing on
information about the chosen innovation scenario, the commercialization time, and the
difference between the achieved technology stock and the demanded technology stock for
starting commercialization. Dynamical optimality principles for optimizing discounted in-
novation costs on investment trajectories are used for finding the optimal investment plan
and designing optimal feedback for its realization. Properties of sensitivity and robustness
are investigated for the optimal profit result and innovation feedbacks.
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Dynamic Model of Innovation: Optimal

Investment, Optimal Timing, Market

Competition

Alexander Tarasyev * (tarasiev@iiasa.ac.at)
Chihiro Watanabe (watanabe@iiasa.ac.at, chihiro@me.titech.ac.jp)

Introduction

In this paper we deal with a dynamic model of innovation for a technology innovator which
operates in the competitive market environment. In this model three main interacting
objectives of the innovator are in the focus. These three tasks can be formulated shortly
as: (i) observation and assessment of the market potential innovation, (ii) selection of the
possible innovation scenario and optimization of the commercialization time, (iii) optimal
design for the investment level. The main feature of the model is in its dynamic setting: all
three problems are considered as the time evolved processes. At each moment of time the
innovator can make a decision on the new innovation scenario, optimal time of innovation
and optimal investment level in the feedback interaction basing on information about
the current econometric characteristics of its own technology stock, the market technology
stock and the market technology rate. The problem is to find a policy strategy for assessing
the potential market innovation, choosing a scenario, optimizing the commercialization
time and the investment level.

In the problem of designing optimal investment level we use the basic constructions
of the models of optimal growth with irreversible investment and allocation of resources
for invention (see [Intriligator, 1971], [Arrow, 1985]). The construction of the benefit and
expenditure functionals is based on integral payoffs for the problem of the optimal control
with discount coefficients (see, for example, [Dolcetta, 1983]), and, in particular, on pay-
off patterns for the problem of allocation of drug control efforts (see [Dawid, Feichtinger,
1996]). We adapt the time-delay dynamics of the model of a firm’s R&D investment (see
[Griliches, 1984], [Watanabe, 1992, 1997]) for description of the controlled investment pro-
cess. For dynamic selection of scenarios and optimization of the commercialization time we
apply and develop the static model of optimal timing of innovations (see [Barzel, 1968]).
This paper deals with the problem of determining the date for which an innovation is opti-
mal. It discusses also the effect of premature timing of innovation and competitive trends
which could enlarge or reduce the amount of resources devoted to innovating activity due to
indeterminacy in assessment of benefits. In our research we use patterns of the differential
games theory (see, [Krasovskii, Subbotin, 1988], [Ivanov, Tarasyev, Ushakov, Khripunov,
1993]) for modeling the identification process of the market innovation trajectories which
can be interpreted as dynamics of a “heavy” object with the weak controllability. For
composing dynamics of the market technology growth and the investment process of the

*This author was partially supported by the Russian Fund for Fundamental Research (96-15-96245,
96-01-00219, 97-01-00161) and Fujitsu Research Institute (IIASA-FRI Contract No. 99-114).
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innovator we adjust econometric measurement formulas for R&D activities with time lag
in interaction between technology and economy (see [Watanabe, 1995]).

The dynamic model of optimal investment policy consists of three interacting levels
of decision making: the econometric identification of the market technology trajectories,
the selection of an innovation scenario and optimization of the commercialization time,
optimal control design of investment level. In the identification part of the model we as-
sume that the identified object - the market environment, has the “heavy” dynamics with
weakly variable (controllable) parameters of exponential trajectories. This assumption
gives the opportunity to describe the trajectories ensemble, to assess the attainability set
of the market potential innovation, and to analyze sensitivity of the predicted commer-
cialization times. Basing on the evaluated time of the market innovation the innovator
can make decision on selection of the innovation scenario. There are two possible strate-
gies. The first strategy is oriented on the local maximum of the profit function with the
usual level of benefit sales. The second strategy tends to overtake the market potential
innovation and to capture the local maximum of the profit function with the bonus sales
of early innovation. In the second scenario the time of innovation is smaller then in the
second one, but the amount of the technology investment resources of the fast innova-
tion is too large in comparison with the slow trajectory. In parallel with identification
and selection problems the innovator can dynamically optimize the investment level. The
natural problem of minimizing innovation expenditures is posed on the trajectories of the
investment dynamics. In solving this optimal control problem the innovator should reach
the level of the technology stock which is necessary for starting commercialization at the
time prescribed by the selected scenario.

For solution of identification, selection and optimal control problems in the dynamic
model of investment policy we use dynamic programming principle (see [Bellman, 1961]),
Pontryagin’s maximum principle of optimal control theory (see [Pontryagin, Boltyanskii,
Gamkrelidze, Mishchenko, 1962]) and methods of differential games (see [Krasovskii, Sub-
botin, 1988]).

Using the principle maximum of Pontryagin we find the optimal plan (programming
control) for the investment strategy which depends on initial and final technology stocks.
We extract the optimal feedback equivalent to the optimal plan. This optimal feedback is
based on the current situation of the technology stock and generates the optimal trajectory
of the technology growth in the interactive procedure. Substituting optimal investment
plans to the integral of discounted expenditure we derive the collection of value functions
parametrized by the commercialization times. Basing on the principle of dynamic pro-
gramming one can prove that solution for the joint optimization problem of investment
policy can be decomposed into two levels: on the first level the optimal investment feed-
back is designed and value functions of innovation expenditures are calculated for the
parametrized commercialization times; on the second level the balance in the profit func-
tion between benefit from the parametrized amount of sales and innovation expenditures
is optimized by the parameter of the commercialization time. Two possible scenarios of
investment arise naturally due to the difference in amounts of sales: the first scenario is
oriented on advancing the commercialization time beyond the market and on the bonus
sales; the second scenario optimizes the commercialization time for the profit function
with the usual amount of benefit sales. These scenarios correspond to two local maximum
points of the profit function which does not have properties of convexity or concavity. The
proper selection of the global maximum among two local maximum points depends on the
correct assessment of the market commercialization time. To assess market trajectories
we use the model of the inert market environment. In this model the dynamic observation
of the market technology stock and its rate allows to identify parameters of the market
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exponential growth. Under assumption of small acceleration rate we evaluate the market
commercialization time and analyze its sensitivity.

Combining all three levels of the model: identification of the market commercialization
time, selection of the innovation scenario, optimal control design of the investment level,
we obtain the optimal dynamic algorithm for the investment policy organized on the
feedback principle. We show that the optimal feedback strategy of innovation constitutes
the saddle type equilibrium in the game interaction of the innovator with the market
environment and guarantees the value of the profit function at this equilibrium. The
sensitivity and robustness properties of the optimal profit value and the optimal strategy
for scenarios selection are analyzed and corresponding linear estimates with respect to
values of acceleration are given.

1 Dynamical Model of Innovation Policy

We consider the dynamical model of innovation policy for an innovating firm which includes
three interacting objectives of decision making: (i) econometric assessment of the market
technology trajectories and prediction of the market commercialization time; (ii) selection
of the innovation scenario with optimizing the innovator commercialization time; (iii) the
feedback design for dynamical optimization of the investment level.

In the problem (iii) of the optimal investment we assume that the current technology
stock x(t) is subject to the growth dynamics with the time-delay and obsolescence effects
(see, for example, [Griliches, 1984], [Watanabe, 1992, 1997])

ẋ(t) = −σx(t) + rγa(t) (1.1)

Here parameter σ > 0 is coefficient of technology obsolescence, the control parameter
ra(t) is the index of R&D investment, parameter γ, 0 < γ < 1 is the time-delay exponential
coefficient. Let us note that the “light” dynamics (1.1) describes the energetic behavior
of the innovator since the controlled investment ra(·) influences directly on the technology
rate ẋ.

The innovator starting the innovation process at time t0 from the initial level x0 of
the technology stock x(t) should reach at the commercialization time ta the technological
level xa, xa > x0 which is necessary for launching commercialization. In this investment
process the innovator is minimizing its expenditures

J(t0, x0, ta, xa, ra(·), γ, λ, σ) =
∫ ta

t0

e−λsra(s)ds (1.2)

ra = ra(s) = ra(s, t0, x0, ta, xa, γ, λ, σ)

Here parameter λ > 0 is a constant rate of discount.
The dynamic optimization problem with dynamics (1.1) and the functional of expen-

ditures (1.2) can be treated in the framework of optimal control theory (see [Pontryagin,
Boltyanskii, Gamkrelidze, Mishchenko, 1962], [Arrow, 1985]).

Assume that the problem (iii) is solved. Denote by the symbol r0
a = r0

a(s) the optimal
investment intensity, and by the symbol x0 = x0(s) the corresponding scenario of the
technology growth. Substituting the optimal intensity into the functional (1.2) one can
calculate the optimal total investment

w(t0, x0, ta, xa, γ, λ, σ) =
∫ ta

t0

e−λsr0
a(s)ds (1.3)
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Fixing in relation (1.3) parameters ta, xa, γ, λ, σ and varying initial positions (t0, x0) =
(t, x) one can consider the series of optimal result functions (value functions)

(t, x)→ w(t, x, ta, xa, γ, λ, σ) (1.4)

parametrized by variables ta, xa, γ, λ, σ. In the problem (ii) of selecting the innovation
scenario we will be interested in dependence of the series w(·) (1.4) with respect to the
commercialization time ta.

Let us consider now the problem (ii) of optimizing the commercialization time ta.
Assume that the benefit function d(·) of commercialization of the new technology depends
on the difference of the commercialization times of the innovator ta and the market tb
which gives the bonus sales Sb with respect to the usual amount of sales Sa

d = d(ta, tb, Sa, Sb, λ, µ) =

∫ +∞

ta

Sae
−(λ−µ)sds+ max{0,

∫ tb

ta

Sbe
−(λ−µ)sds} (1.5)

Here parameter µ, 0 < µ < λ is the rate of the discounted stream of the innovation
benefits.

Let us note that the benefit function d(·) (1.5) is a generalization of the stream of
benefits (see [Barzel, 1968]).

The sense of the benefit function is quite clear:
if the commercialization time ta of the innovator is less than the market commercial-

ization time tb, ta < tb, then in the period [ta, tb) the total amount of sales S0 = Sa + Sb
for the innovator will be larger than the usual amount of sales Sa due to the bonus sales
Sb of the early innovation compared to the market; in the period [tb,+∞) after the mar-
ket commercialization time tb the benefit of the innovator will be measured by the usual
amount of sales S0 = Sa;

if the innovator can not overtake the market in its innovation ta ≥ tb, then in the
period [ta,+∞) the benefit of the innovator is determined by the usual amount of sales
S0 = Sa.

Let us introduce the profit function R(·) of the innovation (the present value of the
innovation) as the balance of the benefit function d(·) and the optimal investment expen-
diture w(·)

R(t, x, ta, xa, tb, Sa, Sb, γ, λ, µ, σ) = d(ta, tb, Sa, Sb, λ, µ)−w(t, x, ta, xa, γ, λ, σ) (1.6)

The key problem of the innovator is to maximize its profit R in the dynamical invest-
ment process. This optimal solution essentially depends on the accurate assessment of the
market commercialization time tb. Identifying dynamically the market commercialization
time tb the innovator can select one of two possible scenarios of optimal innovation which
correspond to the profit function R(·).

To model the market technology trajectories y(·) of the exponential growth we use the
“heavy” dynamics which describes the inert behavior of the market environment with the
large number of innovators

ẏ(t) = −σy(t) + rb(t) = −σy(t) + z(t)y(t)

ż(t) = v(t), |v(t)| ≤ v0 (1.7)

Here parameter y(t) stands for the average market technology stock, parameter rb(t)
denotes the average market investment, and variable z(t) = rb(t)/y(t) is the market R&D
intensity.

The “heavy” market dynamics (1.7) with the small acceleration v0 describes the expo-
nential growth of the market technology stock y(t) with the “nonintensive” variation ż(t)
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(the second derivative ÿ(t)) of the market R&D intensity z(t) (the first derivative ẏ(t)).
The market commercialization of the new technology starts at time tb when the market
technology stock y(·) achieves the commercialization level yb, 0 ≤ y(t) ≤ yb, 0 ≤ t ≤ tb.
In the dynamical identification process one can assess the market commercialization time
tb of the technology trajectory y(·) measuring econometric characteristics: the current
market technology stock y(t) and the current market technology rate ẏ(t)/y(t). In this
identification process one can assess sensitivity of the market commercialization time and
estimate the reliability of its prediction.

Combining all three components of the model: identification of the market trajecto-
ries, scenarios selection and feedback optimization of the investment level, we obtain the
dynamic design of the optimal innovation policy. The main feature of this model consists
in the feedback interaction of three dynamic processes: identification, scenarios selection,
optimization.

Objective I. Optimal Design of the Investment Level

2 Dynamic Optimality Principles and Investment Synthesis

Let us consider the first problem of optimal control design for the investment level. To
reach this objective we are dealing with the investment dynamics (1.1) of the innovator
and its expenditure functional (1.2). Introducing notations

u(t) = rγa(t), t0 ≤ t ≤ ta, 0 < γ < 1 (2.1)

we obtain the optimal control problem with the linear dynamics for the growth of the
technology stock x(t) depending on the scaled investment level u(t)

ẋ(t) = −σx(t) + u(t) (2.2)

and the exponential expenditure functional

J(t0, x0, ta, xa, u(·), α, λ, σ) =
∫ ta

t0

e−λsuα(s)ds (2.3)

α =
1

γ
> 1, u = u(s) = u(s, t0, x0, ta, xa, α, λ, σ)

The problem is to find the optimal investment level u0(·) and the corresponding trajec-
tory x0(·) of the technology stock subject to dynamics (2.2) for minimizing the expenditure
functional (2.3).

For convenience let us consider the new variable

w(t) =

∫ t

t0

e−λsuα(s)ds (2.4)

for the accumulated effective R&D investment and substitute the problem with the integral
functional (2.2), (2.3) by the terminal optimal control problem

ẋ(t) = −σx(t) + u(t)

ẇ(t) = e−λtuα(t) (2.5)

with the following boundary conditions

x(t0) = x0, x(ta) = xa, w(t0) = w0

ta > t0 ≥ 0, xa > x0 ≥ 0, w0 ≥ 0 (2.6)
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For dynamics (2.5) it is necessary to minimize the terminal boundary value of coordi-
nate w(t) at time ta

w(ta) −→ min
(u(·),x(·),w(·))

(2.7)

or equivalently to maximize the terminal boundary value of negative coordinate −w(t) at
time ta

−w(ta) −→ max
(u(·),x(·),w(·))

(2.8)

We solve the problem of optimal investment (2.5), (2.8) using the Pontryagin’s max-
imum principle (see [Pontryagin, Boltyanskii, Gamkrelidze, Mischenko, 1962]). We find
the optimal investment process t→ (u0(t), x0(t), w0(t)) as the planned scenario, starting
from the initial position (t0, x0, w0). Then we synthesize the equivalent optimal feedback
procedure u = u(t, x) which react in the interactive regime on the current position (t, x)
of the technology stock and generate the same optimal trajectory t → x0(t). Finally we
calculate the optimal accumulated R&D investment w(·) as the function of the problem’s
parameters t0, x0, ta, xa, α, λ, σ – the value function.

Introducing prices ψ1 = ψ1(t) for the technology stock x = x(t) and ψ2 = ψ2(t) for
the accumulated effective R&D investment w = w(t) we compile the Hamiltonian of the
problem (2.5), (2.8)

H(s, x, w, ψ1, ψ2) = −ψ1σx+ ψ1u− ψ2e
−λsuα (2.9)

which measures the current flow of utility from all sources.
The maximum value of the utility flow is achieved when the optimal condition takes

place
∂H

∂u
= ψ1 − αψ2e

−λsu(α−1) = 0 (2.10)

at the optimal investment level

u0 =

(
eλsψ1

αψ2

) 1
(α−1)

(2.11)

For prices ψ1, ψ2 one can compose the equilibrium dynamics of adjoint equations

ψ̇1(s) = −∂H
∂x

= σψ1(s)

ψ̇2(s) = −∂H
∂u

= 0 (2.12)

which balances the increment in flow and the change in price.
The general solution of the adjoint equations (2.12) is given by relations

ψ1(s) = A1e
σs

ψ2(s) = A2 (2.13)

with positive constants A1 > 0, A2 > 0.
Substituting solutions (2.13) for prices ψ1, ψ2 into relation (2.11) for the optimal level

u0 we obtain the structure of the optimal plan

u0(s) = Ke
(λ+σ)
(α−1)

s
, K =

(
A1

αA2

) 1
(α−1)

(2.14)
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Remark 2.1 The optimal investment plan u0(s) (2.14) is the exponential growing func-
tion of time s on the time interval [t0, ta] with the growth rate (λ+ σ)/(α− 1).

Using the structure of optimal control (2.14) in the Cauchy formula we obtain the
general solution of the optimal technology dynamics (2.2)

x(t) = x0e
−σ(t−t0) +

∫ t

t0

e−σ(t−s)u(s)ds =

x0e
−σ(t−t0) +K

(α− 1)

(ασ + λ)
(e

(ασ+λ)
(α−1)

t − e
(ασ+λ)
(α−1)

t0)e−σt (2.15)

The constant K in the Cauchy solution (2.15) can be identified from the boundary
conditions x(ta) = xa (2.6)

K =
(ασ + λ)

(α− 1)

(eσ(ta−t0)xa − x0)

(e
(ασ+λ)
(α−1)

(ta−t0) − 1)
e
− (λ+σ)

(α−1)
t0 (2.16)

Combining relations (2.14), (2.16) we obtain the final expression for the optimal plan

u0 = u0(s, t0, x0, ta, xa, α, λ, σ) =
(xae

(ta−s)σ − x0e
−(s−t0)σ)ρ

(e(ta−s)ρ − e−(s−t0)ρ)
(2.17)

Here function ρ = ρ(α, λ, σ) is given by relation

ρ = ρ(α, λ, σ) =
(ασ + λ)

(α− 1)
(2.18)

3 Sensitivity Analysis of Optimal Investment Plan

Let us examine the sensitivity of the optimal plan u0(·) (2.17) with respect to parameters
α, λ, σ.

Proposition 3.1 For the range of time s

s ∈ [t0, (t0 + ta)/2] (3.1)

the level of the optimal plan u0(s) (2.17) is decreasing to zero, while the discount parameter
λ is growing to infinity, or parameter α is declining to unit.

If time s is located in the second half of the time interval [t0, ta]

s ∈ ((t0 + ta)/2, ta) (3.2)

then the level of the optimal plan u0(s) (2.17) is first growing and then declining to zero,
while the discount parameter λ is growing to infinity, or parameter α is declining to unit.

For time s ∈ [(t0 + ta)/2, ta) the level of the optimal plan u0(s) (2.17) is first growing
and then decreasing to zero, while the obsolescence parameter σ is growing to infinity. For
time s ∈ [t0, (t0 + ta)/2) there are two alternatives for the level of the optimal plan u0(s)
(2.17) depending on the values of parameters t0 < ta, x0 < xa, and α > 1, λ > 0: it can
strictly decline to zero, or it can first grow and then decline to zero, while the obsolescence
parameter σ grows to infinity.

At the final moment of time
s = ta (3.3)

the level of the optimal plan u0(ta) (2.17) is growing to infinity, while the discount pa-
rameter λ is growing to infinity, or the obsolescence parameter σ is growing to infinity, or
parameter α is declining to unit.
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Proof. Let us present the optimal plan u0 (2.17) in the following way

u0(s, t0, x0, ta, xa, α, λ, σ) = u0
1(s, t0, x0, ta, xa, σ)u0

2(s, t0, ta, ρ)

u0
1(s, t0, x0, ta, xa, σ) = (xae

(ta−s)σ − x0e
−(s−t0)σ)

u0
2(s, t0, ta, ρ) =

ρ

(e(ta−s)ρ − e−(s−t0)ρ)
(3.4)

Calculating derivatives of optimal plan u0 with respect to parameters α, λ we derive
the following relations

∂u0

∂α
= u0

1

∂u0
2

∂ρ

∂ρ

∂α
(3.5)

∂u0

∂λ
= u0

1

∂u0
2

∂ρ

∂ρ

∂λ
(3.6)

Let us estimate signs of derivatives (3.5), (3.6). Note first that function u0
1 is positive

u0
1 = (xae

(ta−s)σ − x0e
−(s−t0)σ) > 0 (3.7)

We indicate now the signs of derivatives of the function ρ (2.18)

∂ρ

∂α
= − σ

(α− 1)2
< 0,

∂ρ

∂λ
=

1

(α− 1)
> 0,

∂ρ

∂σ
=

α

(α− 1)
> 0 (3.8)

Let us estimate derivative ∂u0
2/∂ρ

∂u0
2

∂ρ
=

((1− (ta − s)ρ)e(ta−s)ρ − (1 + (s− t0)ρ)e−(s−t0)ρ)

(e(ta−s)ρ − e−(s−t0)ρ)2
(3.9)

The denominator in derivative ∂u0
2/∂ρ (3.9) is positive. Let us consider function in

the numerator for ρ ≥ 0

n(ρ) = (1− (ta − s)ρ)e(ta−s)ρ − (1 + (s− t0)ρ)e−(s−t0)ρ) =

(1 + (s− t0)ρ)e(ta−s)ρ
(

(1− (ta − s)ρ)
(1 + (s− t0)ρ)

− e−(ta−t0)ρ
)

(3.10)

To estimate the sign of numerator n(ρ) let us compare derivatives of the hyperbolic
function

g(ρ) =
(1− (ta − s)ρ)
(1 + (s− t0)ρ)

−

and the exponential function
h(ρ) = e−(ta−t0)ρ

We have the following relations for derivatives at point ρ = 0

g′ = − (ta − t0)
(1 + (s− t0)ρ)2

|ρ=0 = −(ta − t0)

g(2) =
2(ta − t0)(s− t0)
(1 + (s− t0)ρ)3

|ρ=0 = 2(ta − t0)(s− t0)

g(3) = −6(ta − t0)(s− t0)2

(1 + (s− t0)ρ)4
|ρ=0 = −6(ta − t0)(s− t0)2

h′ = −(ta − t0)e−(ta−t0)ρ|ρ=0 = −(ta − t0)
h(2) = (ta − t0)2e−(ta−t0)ρ|ρ=0 = (ta − t0)2

h(3) = −(ta − t0)3e−(ta−t0)ρ|ρ=0 = −(ta − t0)3
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It is clear that the following relations take place

g(0) = h(0) = 1, g′(0) = h′(0) = −(ta − t0)
g(2)(0) = 2(ta − t0)(s− t0) < (ta − t0)2 = h(2)(0), t0 ≤ s < (t0 + ta)/2

g(3)(0) = −3

2
(t0 + ta)

3 < −(t0 + ta)
3 = h(3)(0)

These relations imply that in a neighborhood B(0, ε)

B(0, ε) = {ρ : 0 ≤ ρ < ε}

of the origin functions g(ρ), h(ρ) are connected by inequalities

g(ρ) < h(ρ), ρ ∈ B(0, ε) \ {0}, 0 ≤ s ≤ (t0 + ta)/2 (3.11)

g(ρ) > h(ρ), ρ ∈ B(0, ε) \ {0}, (t0 + ta)/2 < s ≤ (ta + t0) (3.12)

Let us prove that the first inequality is valid for all ρ > 0

g(ρ)< h(ρ), ρ > 0, 0 ≤ s ≤ (t0 + ta)/2 (3.13)

Really we have the chain of inequalities for 0 ≤ s ≤ (t0 + ta)/2

g′(ρ)− h′(ρ) = − (ta − t0)
(1 + (s− t0)ρ)2

+ (ta − t0)e−(ta−t0)ρ ≤

(ta − t0)(−
1

(1 + (s− t0)ρ)2
+ e−2(s−t0)ρ) ≤ 0 (3.14)

Integrating inequality (3.14) on interval [0, ρ], ρ > 0 and taking into account that
g(0) = h(0) we obtain the necessary inequality (3.13).

Let us prove that for parameters (t0 + ta)/2 < s < ta there exists threshold ρs ≥ ε > 0
such that starting from it ρ > ρs the opposite relation to the second inequality (3.12)
takes place

g(ρ) < h(ρ), ρ > ρs ≥ ε > 0, (t0 + ta)/2 < s < ta (3.15)

In the difference
(1− (ta − s)ρ)
(1 + (s− t0)ρ)

− e−(ta−t0)ρ

the first hyperbolic term tends to the negative number −(ta − s)/(s− t0) < 0

g(ρ) =
(1− (ta − s)ρ)
(1 + (s− t0)ρ)

→ −(ta − s)
(s− t0)

< 0, ρ→ +∞

and the second exponential term tends to zero

h(ρ) = e−(ta−t0)ρ → 0, ρ→ +∞

It means that for a fixed parameter s, (t0 + ta)/2 < s < ta there exists a threshold
ρs ≥ ε > 0 starting from which ρ > ρs the necessary inequality g(ρ) < h(ρ) takes place.

Let us estimate now derivatives of the optimal plan u0 (3.4) with respect to the obso-
lescence parameter σ. It is convenient to calculate them in the logarithmic form

∂u0

∂σ
=
∂(elnu0

)

∂σ
=
∂(lnu0)

∂σ
u0 = u0(

1

ρ

∂ρ

∂σ
− ((ta − s)eρ(ta−s) + (s− t0)e−ρ(s−t0))

(eρ(ta−s) − e−ρ(s−t0))

∂ρ

∂σ
+

((ta − s)xaeσ(ta−s) + (s− t0)x0e
−σ(s−t0))

(xaeσ(ta−s) − x0e−σ(s−t0))
),

∂ρ

∂σ
=

α

(α− 1)
> 0 (3.16)
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Let us indicate the sign of derivative (3.16) for large values of parameter σ. The first
term is a positive, monotonically decreasing function with respect to parameter σ

H1(s, σ) =
α

(α− 1)ρ
=

1

(σ + λ/α)
↓ 0, σ → +∞ (3.17)

The second term in derivative (3.16) is a negative, monotonically increasing function

H2(s, σ) = − α

(α − 1)

((ta − s) + (s− t0)e−ρ(ta−t0))

(1− e−ρ(ta−t0))
≤ − α

(α− 1)
(ta − s) (3.18)

The third term

H3(s, σ) =
((ta − s)xa + (s− t0)x0e

−σ(ta−t0))

(xa − x0e−σ(ta−t0))

in relation (3.16) is the bounded function which monotonically decreases with respect to
parameter σ

(ta − t0)xa
(xa − x0)

≥ ((ta − s)xa + (s− t0)x0)

(xa − x0)
≥ H3(s, σ) ≥ (ta − s) ≥ 0 (3.19)

Combining the first and third terms (3.17), (3.19) together we obtain the following
estimate: for arbitrary ε > 0 there exists threshold σε starting from which σ > σε the
chain of inequalities

(ta − s) < H1(s, σ) +H3(s, σ) < (ta − s) + ε (3.20)

is valid.
Fixing parameter ε = ε(s), 0 < ε < (ta− s)/(α− 1) and combining inequalities (3.18),

(3.20) we obtain the necessary estimate

H1(s, σ) +H2(s, σ) +H3(s, σ) < − α

(α− 1)
(ta − s) + (ta − s) + ε < 0 (3.21)

t0 ≤ s < ta, σ > σε(s)

which implies decrease of the optimal investment level u0(s) (2.17) to zero for parameters
σ growing to infinity.

Let us examine the behavior of derivative (3.16) for small parameters σ, ρ. Combining
the first and second terms together we obtain the indefinite ratio

H1 +H2 =
α

(α− 1)

((1− ρ(ta − s))− (1 + ρ(s− t0))e−ρ(ta−t0))

ρ(1− e−ρ(ta−t0))
(3.22)

when parameter ρ tends to zero.
Calculating the first and second derivatives of the numerator

N(ρ) = (1− ρ(ta − s))− (1 + ρ(s− t0))e−ρ(ta−t0), N(0) = 0

and the denominator
D(ρ) = ρ(1− e−ρ(ta−t0)), D(0) = 0

at point ρ = 0 we obtaining the following relations

N ′(ρ) = −(ta − s)− (s− t0)e−ρ(ta−t0) + (ta − t0)(1 + ρ(s− t0))e−ρ(ta−t0)

N ′(0) = 0

N ′′(ρ) = (ta − t0)(s− t0) + (ta − t0)e−ρ(ta−t0)((s− t0)− (ta − t0)(1 + ρ(s− t0)))
N ′′(0) = (ta − t0)((s− t0)− (ta − s))
D′(ρ) = (1− e−ρ(ta−t0)) + ρ(ta − t0)e−ρ(ta−t0), D′(0) = 0

D′′(ρ) = 2(ta − t0)e−ρ(ta−t0) − (ta − t0)2ρe−ρ(ta−t0), D′′(0) = 2(ta − t0)
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According to the L’Hospital rule the indefinite ratio (3.22) has the finite value

(H1 +H2)|ρ=0 =
N ′′(0)

D′′(0)
=

α

(α− 1)
(s− (t0 + ta)

2
) (3.23)

The third term H3 in derivative (3.16) for σ = 0 is strictly positive

H3|σ=0 =
((ta − s)xa + (s− t0)x0)

(xa − x0)
> 0 (3.24)

It is clear that for small enough parameters σ, ρ derivative (3.16) conserves the sign
of the sum

(H1 +H2)|ρ=0 +H3|σ=0 =
α

(α− 1)
(s− (t0 + ta)

2
) +

((ta − s)xa + (s− t0)x0)

(xa − x0)
(3.25)

This sign is definitely positive if s ≥ (t0 + ta)/2 and hence for such times s the optimal
investment level u0(s) (2.17) is first growing with respect to the obsolescence parameter
σ. For times s ∈ [t0, (t0 + ta)/2) depending on parameters ta > t0, xa > x0, and α > 1,
λ > 0 the sign of relation (3.25) can be positive or negative and imply the initial growth
or decrease of the optimal investment level u0(s) (2.17).

Finally we consider the case s = ta. The derivatives of the optimal investment level u0

(2.17) with respect to parameters α, λ, σ can be presented in the following form

∂u0

∂α
= u0(D1 +D2)

∂ρ

∂α
,

∂ρ

∂α
= − (λ+ σ)

(α − 1)2

∂u0

∂λ
= u0(D1 +D2)

∂ρ

∂λ
,

∂ρ

∂λ
=

1

(α− 1)

∂u0

∂σ
= u0((D1 +D2)

∂ρ

∂σ
+D3),

∂ρ

∂σ
=

α

(α− 1)

D1 =
1

ρ

D2 =
((ta − s) + (s− t0)e−ρ(ta−t0))

(1− e−ρ(ta−t0))
|s=ta =

(s− t0)e−ρ(ta−t0)

(1− e−ρ(ta−t0))

D3 =
((ta − s)xa + (s− t0)x0e

−σ(ta−t0))

(xa − x0e−σ(ta−t0))
|s=ta =

(s− t0)x0e
−σ(ta−t0)

(xa − x0e−σ(ta−t0))

For the sum D1 +D2 we have the following relation

(D1 +D2)|s=ta =
(1− (1 + ρ(ta − t0))e−ρ(ta−t0))

ρ(1− e−ρ(ta−t0))

It is clear that for the numerator the following inequality takes place

g(ρ) =
1

(1 + (ta − t0)ρ)
> e−(ta−t0)ρ = h(ρ), ρ > 0

Hence both terms D1 + D2 and D3 are strictly positive at the final moment of time
s = ta and the level of the optimal plan u0(ta) (2.17) is growing to infinity, while the
discount parameter λ is growing to infinity, or the obsolescence parameter σ is growing to
infinity, or parameter α is declining to unit. 2

Remark 3.1 Proposition 3.1 means that the optimal investment level u0(s) (2.17) asymp-
totically has the impulse character: for the discount parameter λ > 0, or the obsolescence
parameter σ > 0 tending to infinity, or the delay parameter α > 1 tending to unit, the op-
timal investment level u0(s) (2.17) tends to zero for times t0 ≤ s < ta and it is impulsing
to infinity for the final time s = ta.
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4 Optimal Technological Trajectories

In this section we analyze properties of optimal technological trajectories. Substituting
the optimal control plan u0(·) (2.17) into the Cauchy formula (2.15) for technological
trajectories x(·) we obtain the optimal technological trajectory x0(·)

x0(s) = e−σ(s−t0)

(
x0 +

(eσ(ta−t0)xa − x0)(e
ρ(s−t0) − 1)

(eρ(ta−t0) − 1)

)
(4.1)

Let us indicate properties of the optimal technological trajectory x0(·) (4.1). We begin
with indication of boundaries for its values.

Proposition 4.1 The values of the optimal technological trajectory x0(·) (4.1) are re-
stricted by boundaries

0 ≤ x0(s) ≤ xa, t0 ≤ s ≤ ta (4.2)

Proof. First of all let us note that since xa > x0 ≥ 0, ta ≥ s ≥ t0 then from formula
(4.1) the first inequality x0(s) ≥ 0 for t0 ≤ s ≤ ta obviously follows.

Let us present optimal technological trajectory x0(·) in the following form

x0(s) = ae(ρ−σ)(s−t0) + (x0 − a)e−σ(s−t0) (4.3)

a =
(eσ(ta−t0)xa − x0)

(eρ(ta−t0) − 1)

Calculating the first and second derivatives of function x0(s)

dx0(s)

ds
= a(ρ− σ)e(ρ−σ)(s−t0) − (x0 − a)σe−σ(s−t0)

d2x0(s)

ds2
= a(ρ− σ)2e(ρ−σ)(s−t0) + (x0 − a)σ2e−σ(s−t0)

we obtain the following conclusions:
if x0 − a < 0 then the first derivative dx0(s)/ds is positive and the optimal technolog-

ical trajectory x0(s) is monotonically growing from the initial stage x0(t0) = x0 till the
commercialization stage x0(ta) = xa;

in the opposite case x0−a ≥ 0 the second derivative d2x0(s)/ds2 is positive and starting
from some time t1, t0 ≤ t1 < ta the first derivative dx0(s)/ds becomes positive and the
convex trajectory x0(s) is monotonically growing from the level x0(t1) till the final stage
x0(ta) = xa.

These conclusions imply the necessary second inequality x0(s) ≤ xa, t0 ≤ s ≤ ta. 2
We formulate now the monotonicity condition for the optimal technological trajectories

x0(·).

Proposition 4.2 The monotonicity condition with respect to commercialization time ta
is valid for the optimal technological trajectories x0(·)

x0(s, t′a) > x0(s, t′′a), t′a < t′′a, t0 < s ≤ min{t′a, t′′a} (4.4)

Monotonicity condition (4.4) means that optimal technological trajectories for different
commercialization times ta don’t intersect each other and thus form the field of character-
istics.



– 13 –

Proof. Let us estimate derivative of optimal technological trajectories with respect to
commercialization time ta

∂x0

∂ta
= κ(s)

(σxae
σ(ta−t0)(eρ(ta−t0) − 1)− ρeρ(ta−t0)(eσ(ta−t0)xa − x0))

(eρ(ta−t0) − 1)2
≤

≤ xaκ(s)
(σ(eρξ − 1)− ρe(ρ−σ)ξ(eσξ − 1))eσξ

(eρξ − 1)2

κ(s) = e−σ(s−t0)(eρ(s−t0) − 1), ξ = ta − t0

Consider the multiplier in the numerator

f(ξ) = −(ρ− σ)eρξ + ρe(ρ−σ)ξ − σ

which determines the sign of derivative ∂x0/∂ta. Its derivative is expressed by formula

f ′(ξ) = −ρ(ρ− σ)(eρξ − e(ρ−σ)ξ)

We obtain the following relations f(0) = 0, f ′(0) = 0, and f ′(ξ) < 0 for ξ > 0, which
imply the negative values of numerator f(ξ) < 0 for ξ > 0, and consequently the negative
sign of derivative ∂x0/∂ta < 0. The last inequality provides monotonicity condition (4.4).
2

We give now the estimates of technology rates ẋ0(·).

Proposition 4.3 At the commercialization time ta the rate ẋ0(ta) of the technological
trajectory x0(·) is positive.

At the initial time t0 the rate ẋ0(t0) of the technological trajectory x0(·) could be positive
and negative. If x0 = 0 or σ = 0 then the initial rate ẋ0(t0) is positive. For the fixed
positive initial stage x0 > 0 and final stage xa > x0 the rate ẋ0(t0) is positive for small
innovation times (ta − t0) but there exists a threshold t2 > t0 starting from which ta > t2
the rate ẋ0(t0) is negative.

Proof. From the proof of Proposition 4.1 it is clear that the technology rate ẋ0(s) is
strictly positive starting from time t1, t1 ≤ s < ta and consequently is strictly positive at
time ta.

Let us calculate the first derivative ẋ0(·) at the initial time t0

ẋ0(t0) = a(ρ− σ)− (x0 − a)σ = aρ− x0σ =
(eσ(ta−t0)xa − x0)ρ

(eρ(ta−t0) − 1)
− x0σ (4.5)

It is clear that if x0 = 0 or σ = 0 then the initial technology rate is positive

ẋ0(t0) = aρ > 0

Transforming formula (4.5) we obtain the following relation

ẋ0(t0) =
xa((ρ− σ) + eρ(ta−t0))

(eρ(ta−t0) − 1)

(
ρeσ(ta−t0)

((ρ− σ) + σeρ(ta−t0))
− x0

xa

)
(4.6)

Let us note that the first term

F (ta) =
ρeσ(ta−t0)

((ρ− σ) + σeρ(ta−t0))
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in (4.6) has the following properties. It equals to one F (ta) = 1 when ta = t0 and it tends
to zero F (ta)→ 0 when the final time ta tends to infinity ta → +∞. Taking into account
that the second term in (4.6) is less than one x0/xa < 1 we come to the conclusion that
the initial rate ẋ0(t0) changes the sign from positive to negative when the final time ta
varies from the initial time t0 to infinity. 2

Let us indicate the range of parameters α, λ, σ for which the optimal technological
trajectories are convex.

Proposition 4.4 If parameters α, λ, σ satisfy inequalities

1 < α ≤ 2 +
λ

σ
(4.7)

then the optimal technological trajectory x0(·) is convex.

Proof. Let us calculate the second derivative of the optimal technological trajectory
x0(·)

ẍ0(s) = −σẋ0(s) + u̇0(s) = −σ(−σ + u0(s)) + u̇0(s) = σ2x0(s)− σu0(s) + u̇0(s)

Under condition (4.7) we have the chain of inequalities

−σu0(s) + u̇0(s) = −σKe
(λ+σ)
(α−1)

s
+

(λ+ σ)

(α− 1)
Ke

(λ+σ)
(α−1)

s
=

Ke
(λ+σ)
(α−1)

s
(
−σ +

(λ+ σ)

(α− 1)

)
=

(λ− (α− 2)σ)

(α− 1)
Ke

(λ+σ)
(α−1)

s ≥ 0

It is clear that if −σu0(s) + u̇0(s) ≥ 0 then the second derivative is nonnegative
ẍ0(s) ≥ 0 since x0(s) ≥ 0, s ∈ [t0, ta] and the optimal technological trajectory x0(·) is
convex. 2

Remark 4.1 Propositions 4.1-4.4 indicate the range of the model parameters for which
the optimal technological scenario x0(·) is a convex trajectory with the growth properties.

5 The Value Function and Optimal Feedback for Techno-
logical Dynamics

We will pass now to analysis of the value function (t, x)→ w(t, x), (t, x) = (t0, x0)

w = w(t, x, ta, xa, α, λ, σ) =

∫ ta

t
e−λs(u0(s))αds =

Kα(t, x, ta, xa, α, λ, σ)
∫ ta

t
e−λse

α(λ+σ)
(α−1)

s
ds =(

(ασ + λ)

(α− 1)

)(α−1) e−λt(eσ(ta−t)xa − x)α

(e
(ασ+λ)
(α−1)

(ta−t) − 1)(α−1)
= ρ(α−1)e

−λt(eσ(ta−t)xa − x)α
(eρ(ta−t) − 1)(α−1)

=

ρ(α−1)e
−λta(xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
, ρ =

(ασ + λ)

(α− 1)
(5.1)

Let us indicate properties of the value function w(·) with respect to the optimization
parameter – the commercialization time ta.
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Proposition 5.1 For the fixed parameters α, λ, σ, initial condition (t, x) and the com-
mercialization technology level xa, xa > x the value function w(·) (5.1) has the following
properties as function ta → w(ta), w(ta) = w(t, x, ta, xa, α, λ, σ) of the commercialization
time ta:

it grows to infinity when the commercialization time ta tends to the initial time t

w(ta)→ +∞, ta ↓ t (5.2)

it decreases to zero with the exponential rate −λ when the commercialization time ta
tends to infinity

w(ta)→ 0, ta → +∞, lim
ta→+∞

eλtaw(ta) = wa < +∞ (5.3)

Proof. Let us note that the numerator in relation (5.1) is strictly separated from zero
(eσ(ta−t)xa−x) ≥ xa−x > 0 since xa > x. Hence denominator (eρ(ta−t)−1) tends to zero
when ta → t and all other multipliers in relation (5.1) are strictly separated from zero,
then the value function w(ta) grows to infinity while the commercialization time ta tends
to the initial time t.

Let us consider in relation (5.1) presentation of the value function w(·) in the form

w = w(t, x, ta, xa, α, λ, σ) = ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
e−λta (5.4)

which is obtained by carrying out exponentials eσ(ta−t), eρ(ta−t) from the brackets. Multi-
plying relation (5.4) on the term eλta and passing to the limit while the commercialization
time ta goes to infinity we obtain the necessary asymptotics

lim
ta→∞

eλtaw(ta) = lim
ta→∞

ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
=

ρ(α−1)xαa = wa, 0 < wa <∞

The last relations mean that the value function w(ta) decreases to zero with the expo-
nential rate −λ while the commercialization time ta grows to infinity. 2

Let us derive the optimal feedback for the R&D investment. To this end it is necessary
to express the adjoint variable ψ1 = −∂w/∂x through the current position (t, x)

ψ1 = −∂w/∂x = αe−λtρ(α−1) (e
σ(ta−t)xa − x)(α−1)

(eρ(ta−t) − 1)(α−1)
(5.5)

Substituting expressions for price ψ1 (5.5) and price ψ2 = 1 to relation (2.11) of the
structure of R&D investment we obtain the optimal investment feedback

u0 = u0(t, x, ta, xa, α, λ, σ) = ρ
(eσ(ta−t)xa − x)
(eρ(ta−t) − 1)

(5.6)

and the optimal feedback dynamics for the technology stock

ẋ = −σx+ ρ
(eσ(ta−t)xa − x)
(eρ(ta−t) − 1)

(5.7)

Remark 5.1 The optimal investment feedback has the quite clear sense: if the current
technology stock x = x(t) does not reach yet the commercialization level xa, x < xa, then
the optimal R&D investment level u0 increases proportionally to the difference (eσ(ta−t)xa−
x) with the intensification coefficient ρ/(eρ(ta−t) − 1). This coefficient rapidly increases
when time t approaches the commercialization time ta and enforces the innovator to reach
the commercialization technology level x(t) ↑ xa with the optimal expenditure.
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Objective II. Selection of Optimal Scenario and Commer-
cialization Time

6 The Profit Function of Innovation

Let us introduce the profit function of innovation and examine its properties. It is rea-
sonable to use usual structure of profit from innovation as a balance between benefit from
commercialization of new technologies and expenditure for creating new technologies. The
benefit from commercialization of a new technology can be expressed by the amount of
sales of goods in which this technology is embedded (see [Barzel, 1968]). The amount
of sales S0 with the commercialized technology may have different levels S0 = Sa or
S0 = (Sa + Sb), Sb > 0 and depend on the difference between the commercialization time
of the innovator ta and the expected commercialization time tb on the market. We define
this effect of different levels of sales by the following construction of the benefit function

d = d(ta, tb, Sa, Sb, λ, µ) =
∫ +∞

ta

S0e
−(λ−µ)sds = (6.1)∫ +∞

ta

Sae
−(λ−µ)sds+ max{0,

∫ tb

ta

Sbe
−(λ−µ)sds}

S0 = S0(s, ta, tb) =

{
Sa + Sb if ta ≤ s < tb
Sa if s ≥ tb

Parameter µ, 0 < µ < λ in relation (6.1) stands for the rate of the discounted stream
of the innovation benefits.

The structure (6.1) of the benefit function d(·) means that the earlier commercialization
time ta, ta < tb gives the additional bonus sales Sb, Sb > 0 in comparison with the usual
amount of sales Sa: in the period [ta, tb) the total amount of sales S0 = Sa + Sb for the
innovator is larger than the usual amount of sales S0 = Sa in the period [tb,+∞) after
the market commercialization time tb. For the later commercialization time ta, ta ≥ tb the
innovator does not receive bonus sales and in the period [ta,+∞) its benefit is determined
by the usual amount of sales S0 = Sa.

Calculating integrals in relation (6.1) we obtain the following form of the benefit func-
tion

d(ta, tb, Sa, Sb, λ, µ) =
1

(λ− µ)
Sae
−(λ−µ)ta + max{0, 1

(λ− µ)
Sb(e

−(λ−µ)ta − e−(λ−µ)tb)}
(6.2)

Remark 6.1 The benefit d = d(ta, tb, Sa, Sb, λ, µ) (6.2) is a convex and monotonically
decreasing function with respect to the commercialization time ta, ta > t0.

Proof. The first term in relation (6.2) for the benefit function d(·) is an exponential
function with the negative rate −(λ − µ) < 0 and hence it is convex and monotonically
decreasing.

The second term is a convex function since it is a function of the maximum type for two
convex functions: the zero constant and the exponential function with the negative rate
−(λ − µ) < 0. It is clear that this maximum type function is a monotone nonincreasing
one.

The sum of two terms with such convex and monotone properties is a convex and
monotonically decreasing function. 2
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Let us pass to the second component – the expenditure for creating new technology or
the cost function. It is very natural to consider the optimal integrated R&D investment
w(·) in this role

w = w(t, x, ta, xa, α, λ, σ) =

∫ ta

t
e−λsr0(s)ds =∫ ta

t
e−λs(u0(s))αds = ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
e−λta (6.3)

We define the profit function R(·) of the innovation (the present value of the innova-
tion) as the balance of the benefit function d(·) (6.1) and the cost function (the optimal
investment expenditure) w(·) (6.3)

R(t, x, ta, xa, tb, Sa, Sb, α, λ, µ, σ) = d(ta, tb, Sa, Sb, λ, µ)−w(t, x, ta, xa, α, λ, σ) =
1

(λ− µ)
Sae
−(λ−µ)ta + max{0, 1

(λ− µ)
Sb(e

−(λ−µ)ta − e−(λ−µ)tb)} −

ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
e−λta , ρ =

(ασ + λ)

(α− 1)
(6.4)

Let us examine properties of the profit function R(·) (6.4).

Proposition 6.1 The profit function ta → R(ta) (6.4) tends to minus infinity R(ta) →
−∞ when the commercialization time ta is close to the initial time t, ta → t. Then it
increases and becomes positive R(ta) > 0 while time ta grows. For the large commercial-
ization times ta → +∞ the profit function declines to zero R(ta) ↓ 0.

There exists an optimal commercialization time tm > t at which the profit function
R(ta) reaches its positive maximum value Rm = R(tm) ≥ R(ta), R

m > 0 on the interval
ta > t.

Proof. The benefit component d(ta) (6.2) has finite values when the commercialization
time ta is close to the initial time t. The cost function w(ta) according to Proposition
5.1 tends to plus infinity while time ta tends to the initial time t. Hence the profit
function R(ta) = d(ta)−w(ta) has negative values which tend to minus infinity when the
commercialization time ta is close to the initial time t, ta → t.

Let us prove that starting from some time tp > t0 the profit function R(ta), ta > tp is
positive. Really let us fix time tp for which the following inequalities take place

1− e(λ−µ)(ta−tb) < 0, 1− e−ρ(ta−t) > ρ,
Sa

(λ− µ)
eµta − xαa > 0, ta > tp

Basing on these inequalities we can derive the necessary conclusion on the strict posi-
tiveness of the profit function R(ta) (6.4) for ta > tp

R(ta) = (
Sa

(λ− µ)
eµta + max{0, Sb

(λ− µ)
eµta(1− e(λ−µ)(ta−tb))} −

ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)
)e−λta ≥(

Sa
(λ− µ)

eµta − ρ(α−1) (xa − xe−σ(ta−t))α

(1− e−ρ(ta−t))(α−1)

)
e−λta >(

Sa
(λ− µ)

eµta − xαa
)
e−λta > 0, ta > tp
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Let us note that when the commercialization time ta is growing to infinity then all
terms in relation (6.4) for the profit function R(ta) tends to zero and hence the profit
function R(ta) starting from some time td is strictly positive and declines to zero from
above R(ta) ↓ 0 when ta → +∞, ta > td.

Finally we note that the profit function R(ta) (6.4) is continuous on the interval ta ∈
(t,+∞). According to the indicated above properties for arbitrary ε > 0 there exists a
closed interval [tl, tr], t < tl < tr < +∞ such that outside it the profit function has the
following qualitative behavior: it is negative R(ta) < 0 for small times ta ∈ (t, tl) and its
values are small and positive 0 < R(ta) < ε for large times ta ∈ (tr,+∞). It is clear that
the profit function R(ta) reaches its positive maximum Rm = R(tm) ≥ R(ta), R

m > ε > 0
at the optimal commercialization time tm on the segment [tl, tr]. 2

Remark 6.2 Proposition 6.1 means that for the small commercialization time ta the cost
of innovation is too high and the profit function has the negative values. For the large
commercialization time ta the profit function is positive but its values tend to zero when
the commercialization time ta tend to infinity.

Let us pass to the problem of finding the maximum profit and selecting the optimal
scenario. We present the profit R(ta) (6.4) as a function of the maximum type

R(ta) = max{ Sa
(λ− µ)

e−(λ−µ)ta −w(ta),
(Sa + Sb)

(λ− µ)
e−(λ−µ)ta −w(ta)− r(tb)} (6.5)

Here

r(tb) =
Sb

(λ− µ)
e−(λ−µ)tb (6.6)

Let us introduce the following notations for components of the profit function

RC(ta, S) =
S

(λ− µ)
e−(λ−µ)ta − w(ta) (6.7)

with different levels of sales S = S1 = Sa, S = S2 = (Sa+Sb), 0 < S1 < S2. The maximum
values and corresponding optimal times we denote by symbols

RCmi = max
ta>t

RC(ta, Si) = RC(tmi , Si), tmi ∈ (t,+∞), i = 1, 2 (6.8)

One can consider optimal times tm1 , tm2 and maximum profits RCm1 , (RCm2 − r(tb))
which correspond to different levels of sales S1, S2 with the commercialized technology as
two different scenarios Σ1, Σ2 of the technology development.

Remark 6.3 The optimal times tmi for reaching the maximum values RCmi , i = 1, 2 (6.8)
may be not unique. In this case it is necessary to consider the sets of all optimal times
Tmi = {tmi } and introduce selectors of optimal times tmi ∈ Tmi , i = 1, 2. For definiteness
one can operate with selectors which have the smallest values.

Let us indicate properties of optimal constructions: optimal values RCmi , optimal times
tmi , i = 1, 2, for the profit function R(·) (6.5).

Proposition 6.2 1) The optimal value Rm of the profit function R(ta) (6.4) attained at
the optimal commercialization time tm can be presented as maximum of optimal profits
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RCm1 , (RCm2 − r(tb)) for two possible scenarios of technology development with optimal
commercialization times tm1 , tm2

Rm = max
ta>t

R(ta) = R(tm) =

max{RCm1 , RCm2 − r(tb)} = max{RC(tm1 , S1), RC(tm2 , S2)− r(tb)} (6.9)

2) The optimal commercialization times tm1 , tm2 of two investment scenarios Σ1, Σ2

with different levels of sales S1, S2 are connected by inequalities

t < tm2 < tm1 (6.10)

Due to this fact the scenario Σ2 with possible larger sales S2 > S1 and smaller commer-
cialization time tm2 < tm1 can be called “fast innovation” in comparison with the scenario
Σ1 of “slow innovation” with the normal level of sales S1 and larger commercialization
time tm1 .

3) Components RC(ta, Si), i = 1, 2 of the profit function R(ta) are connected by in-
equalities

RC(ta, S2)− r(tb) ≥ RC(ta, S1), t < ta ≤ tb
RC(ta, S2)− r(tb) < RC(ta, S1), ta > tb

(6.11)

Proof. Let us note first that components RC(ta, Si), i = 1, 2 have the same prop-
erties as the profit function R(ta) (6.4): (i) they are continuous on the interval (t,+∞),
(ii) decline to minus infinity when time ta tend to initial time t, (iii) they increase and
become positive while time ta grows, (iv) for the large commercialization times ta → +∞
the components decline to zero. Due to these properties components RC(ta, Si) reach the
positive maximum values RCmi > 0 (6.8) at the finite moments of time – optimal commer-
cialization times tmi ∈ (t,+∞), i = 1, 2. Taking into account the maximum type structure
of the profit function R(ta) (6.5) we derive for the optimal profit value Rm the formula
(6.9) which selects the maximum value among two possible scenarios RCm1 , (RCm2 −r(tb)).

Let us prove the second statement that scenario Σ2 with larger sales S2 > S1 is faster
tm2 < tm1 than scenario Σ1 with normal level S1. It is clear that tm1 6= tm2 since

∂

∂ta
(RC(tm1 , S2)) = −S2e

−(λ−µ)ta − ∂w

∂ta
(tm1 ) < −S1e

−(λ−µ)ta − ∂w

∂ta
(tm1 ) =

∂

∂ta
(RC(tm1 , S1)) = 0

and component RC(ta, S2) strictly declines at the maximum point tm1 .
Assume the contrary tm2 > tm1 . According to definition of commercialization times tmi ,

i = 1, 2 we have two contradicting inequalities

RC(tm1 , S1) ≥ RC(tm2 , S1)

and

RC(tm2 , S1) = RC(tm2 , S2)−
Sb

(λ− µ)
e−(λ−µ)tm2 ≥ RC(tm1 , S2)−

Sb
(λ− µ)

e−(λ−µ)tm2 =

RC(tm1 , S1) +
Sb

(λ− µ)
(e−(λ−µ)tm1 − e−(λ−µ)tm2 ) > RC(tm1 , S1)

The contradiction implies the necessary inequality for commercialization times t <
tm2 < tm1 .
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The third statement obviously follows from formula

RC(ta, S2)− r(tb) = RC(ta, S1) + r(ta)− r(tb) =

RC(ta, S1) +
Sb

(λ− µ)
(e−(λ−µ)ta − e−(λ−µ)tb)

and monotonicity of function ta → (e−(λ−µ)ta − e−(λ−µ)tb) which provide the proper in-
equalities in relation (6.11). 2

Remark 6.4 The optimal commercialization times tmi of two investment scenarios Σi,
i = 1, 2 can be found as solutions of necessary optimality conditions

∂

∂ta
(RC(tmi , Si)) = −Sie−(λ−µ)tmi − ∂w

∂ta
(tmi ) =

−Sie−(λ−µ)tmi + ρ(α−1) (xa − xe−σ(tmi −t))α

(1− e−ρ(tmi −t))(α−1)
e−λt

m
i (λ+

(α− 1)
ρe−ρ(t

m
i −t)

(1− e−ρ(tmi −t))
− α σxe−σ(tmi −t)

(xa − xe−σ(tmi −t))
) = 0, i = 1, 2 (6.12)

or equivalent equations

−Sieµt
m
i + ρ(α−1) (xa − xe−σ(tmi −t))α

(1− e−ρ(tmi −t))(α−1)
(λ+

(α− 1)
ρe−ρ(t

m
i −t)

(1− e−ρ(tmi −t))
− α σxe−σ(tmi −t)

(xa − xe−σ(tmi −t))
) = 0, i = 1, 2 (6.13)

Relation (6.12) defines commercialization times tmi , i = 1, 2 as implicit functions of the
current position – time t, technology stock x = x(t), the commercialization technological
level xa and econometric parameters α, σ, λ.

7 Dynamical Optimality Principle for Investment Scenarios

In this section we address to the qualitative properties of the proposed solution. We focus
on optimality properties and dynamic programming principle.

We consider first the optimality properties. Let us note that in the previous sections
we constructed optimal solutions for two objectives. We show now that these two solutions
solve the joint problem of maximizing the technology innovation

V m = sup
ta,u(·)

V (ta, u(·), tb, t, x, xa, α, λ, µ, σ) (7.1)

V = V (·) =
Sa

(λ− µ)
e−(λ−µ)ta + max{0, Sb

(λ− µ)
(e−(λ−µ)ta − e−(λ−µ)tb)} −

−
∫ ta

t
e−λuα(s)ds

ẋ(s) = −σx(s) + u(s), x(t) = x, x(ta) = xa

Proposition 7.1 The optimal value Rm (6.9) of the profit function R(ta) (6.4) in the two-
level problem with the consequently optimized objectives coincides with the total maximum
Vm (7.1) of the technology innovation Rm = V m.
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Proof. Let us suppose the contrary Rm < V m. Consider two possibilities. Assume
first that the total maximum has the infinite value V m = +∞. In this case according to
definition of supremum (7.1) for any parameter ε > 0 there exist time tε, and investment
control uε(·) such that the strict inequality V (tε, uε(·)) > Rm + 1/ε takes place. For the
fixed commercialization time ta = tε and corresponding optimal investment plan u0(·)
(2.17) we have the conflicting chain of relations

Rm = R(tm) ≥ R(tε) = V (tε, u
0(·)) ≥ V (tε, uε(·)) > Rm +

1

ε

In the second case assume that the total maximum value is finite 0 < V m < +∞.
According to definition of supremum (7.1) we have two relations

1) V m ≥ V (ta, u(·)) ∀ ta, u(·)
2) ∀ ε > 0 ∃ tε, uε(·) V (tε, uε(·)) > V m − ε

Defining the optimal investment plan u0(·) (2.17) for the commercialization time ta = tε
we obtain the chain of inequalities

Rm = R(tm) ≥ R(tε) = V (tε, u
0(·)) ≥ V (tε, uε(·)) > V m − ε

which contradicts to assumption Rm < V m.
So we conclude with the proper relation Rm = V m. 2
Let us prove that the dynamic programming principle is valid for the optimal value Rm

(6.9) of the profit function R(ta) (6.4). To this end we fix the market commercialization
time tb, the levels of sales Sa, Sb with the commercialized technology and econometric
coefficients α, λ, µ, σ. For the initial position (t, x) of the technology stock we denote by
the symbol Rm the optimal value of innovation

Rm = Rm(t, x) = max
ta>t

R(ta, t, x) (7.2)

by the symbol Tm – the set of optimal innovation times

Tm = Tm(t, x) = {tm : Rm(t, x) = R(tm, t, x)} (7.3)

by the symbol U0 – the set of optimal innovation plans and by X0 – the set of optimal
technological trajectories

U0 = U0(τ, t, x) = {u0(s), t ≤ τ ≤ s ≤ tm :

w(t, x, tm, xa) = min
u(·)

∫ tm

t
e−λsuα(s)ds =

∫ tm

t
e−λs(u0(s))αds} (7.4)

X0 = X0(τ, t, x) = {x0(s), t ≤ τ ≤ s ≤ tm :

ẋ0(s) = −σx0(s) + u0(s), x0(t) = x, x0(tm) = xa} (7.5)

Finally denote by the symbol w(t, x, τ, ξ) the optimal cost of innovation from level x
to level ξ, x ≤ ξ on interval [t, τ ], t ≤ τ

w(t, x, τ, ξ) = min
u(·)

∫ τ

t
e−λsuα(s)ds =

∫ τ

t
e−λs(u0)α(s)ds (7.6)

ẋ0(s) = −σx0(s) + u0(s), t ≤ s ≤ τ ≤ tm, x0(t) = x, x0(τ) = ξ
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Proposition 7.2 The optimal constructions of innovation Tm, U0, X0, Rm satisfy the
dynamic programming principle in the following form

Tm(τ, ξ)⊆ Tm(t, x), U0(τ, τ, ξ)⊆ U0(τ, t, x)

X0(τ, τ, ξ)⊆ X0(τ, t, x), ξ = x0(τ, t, x), t ≤ τ ≤ tm (7.7)

Rm(τ, ξ)−Rm(t, x) = w(t, x, tm, xa)−w(τ, ξ, tm, xa) = w(t, x, τ, ξ) (7.8)

ξ = x0(τ, t, x), t ≤ τ ≤ tm

Relations (7.7) of the dynamic programming principle mean that along the optimal
trajectory (τ, ξ), ξ = x0(τ, t, x), which starts at the initial technological position (t, x), x =
x0(t, t, x) the optimal innovation times Tm(τ, ξ), the optimal investment plans U0(τ, τ, ξ)
and optimal trajectories X0(τ, τ, ξ) are identical to each other and can be determined at
the initial technological position (τ, ξ) = (t, x).

The sense of dynamic programming condition (7.8) consists in the fact that along
the optimal trajectory (τ, ξ), ξ = x0(τ, t, x), the difference of optimal innovation profits
(Rm(τ, ξ)−Rm(t, x)) and equivalently the difference between values of optimal investment
(w(t, x, tm, xa) − w(τ, ξ, tm, xa)) constitutes the value of optimal innovation expenditure
w(t, x, τ, ξ) for reaching the technology stock ξ at time τ starting from the initial techno-
logical position (t, x).

Proof. Let us prove the first statement. All others can be proved analogously.
Let tmp ∈ Tm(τ, ξ), tm ∈ Tm(t, x) be the optimal innovation times at the current

position (τ, ξ) and the initial position (t, x) respectively.
Let us denote by the symbol u0

p(·) the optimal innovation plan which minimizes the
innovation expenditures on the time interval [τ, tmp ]∫ tmp

τ
e−λs(u0

p(s))
αds = min

u(·)

∫ tmp

τ
e−λsuα(s)ds

By the symbol x0
p(·) we denote the technological trajectory which is generated by the

optimal innovation plan
ẋ0
p(s) = −σx0

p(s) + u0
p(s)

from the current technological position ξ = x0
p(τ) and directed to the commercialization

level xa = x0
p(ta).

We assume as usual that u0(·) is the optimal innovation plan and x0(·) is the corre-
sponding technological trajectory with the optimal innovation time tm ∈ Tm(t, x) and the
fixed boundary conditions x0(t) = x, x0(ta) = xa.

Let us remind that the dynamic programming principle takes place for the optimal
innovation cost w(·)

w(t, x, tm, xa) = w(t, x, τ, ξ)−w(τ, ξ, tm, xa) (7.9)

and optimal investment plans u0(·), u0
p(·) are connected with these costs by relations

w(t, x, τ, ξ) =

∫ τ

t
e−λs(u0(s))αds, w(t, x, tm, xa) =

∫ tm

τ
e−λs(u0(s))αds (7.10)

ẋ0(s) = −σx0(s) + u0(s), x0(t) = x, x0(τ) = ξ, x0(tm) = xa
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w(τ, ξ, tmp , xa) =
∫ tmp

τ
e−λs(u0

p(s))
αds (7.11)

ẋ0
p(s) = −σx0

p(s) + u0
p(s), x0

p(τ) = ξ, x0
p(t

m
p ) = xa

Let us suppose on the contrary to relations (7.7) of the dynamic programming principle
that there exists better innovation time at the current position (τ, ξ) than at the initial
position (t, x)

tmp ∈ Tm(τ, ξ), tmp /∈ Tm(t, x) (7.12)

and/or optimal innovation plans u0(·), u0
p(·) and corresponding optimal trajectories x0(·),

x0
p(·) don’t coincide essentially on the joint time interval

u0(s) 6= u0
p(s), x0(s) 6= x0

p(s), s ∈ A ⊆ [τ,min{tm, tmp }], mes(A) > 0 (7.13)

Here A is a measurable set and mes(A) is its measure.
Relations (7.10), (7.12), (7.13) imply the strict inequality for the optimal innovation

result Rmp

Rmp = R(tmp ) = max
ta

R(ta, τ, ξ)> R(tm, τ, ξ) = d(tm)−w(τ, ξ, tm, xa) =

d(tm)− (w(t, x, τ, ξ)+w(τ, ξ, tm, xa)) + w(t, x, τ, ξ) = Rm + w(t, x, τ, ξ) (7.14)

Let us compose the new optimal innovation plan u∗(·) from innovation plans u0(·),
u0
p(·)

u∗(s) =

{
u0(s) if s ∈ [t, τ)
u0
p(s) if s ∈ [τ, tmp ]

(7.15)

and the corresponding technological scenario x∗(·) from technological scenarios x0(·), x0
p(·)

x∗(s) =

{
x0(s) if s ∈ [t, τ ]
x0
p(s) if s ∈ [τ, tmp ]

(7.16)

Taking into account relations (7.10), (7.11), (7.15), (7.16) we have the following chain
of inequalities for the optimal innovation result Rm

Rm = R(tm) = max
ta

R(ta, t, x) ≥ R(tmp , t, x) =

d(tmp )− w(t, x, tmp , xa) ≥ d(tmp )−
∫ tmp

t
e−λs(u∗(s))αds =

d(tmp )−
∫ τ

t
e−λs(u0(s))αds−

∫ tmp

τ
e−λs(u0

p(s))
αds =

d(tmp )− w(t, x, τ, ξ)−w(τ, ξ, tmp , xa) = Rmp −w(t, x, τ, ξ) (7.17)

The last relation (7.17) contradicts to assumption (7.14) and hence the dynamic pro-
gramming relations (7.7) are valid. The dynamic programming principle (7.8) for the
optimal innovation value Rm(·) then follows from relations (7.7) for optimal sets Tm, U0,
X0 and principle (7.9) for the optimal innovation cost w(·). 2
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Objective III. Assessment of the Market Potential Innova-
tion

8 The Heavy Dynamics of the Market Innovation

In this section we consider the third problem of econometric assessing the market technol-
ogy trajectories and prediction of the market commercialization time tb. To some extent
the competitive market environment can be treated as the second player which makes
the technological innovation. The peculiarity of this player consists in the fact that the
market environment is not homogeneous: it constitutes the large group of agents with dif-
ferent utilities, managers and resources. Therefore, it is reasonable not to model possible
decision making rules of agents but exploit the current information about the market tech-
nological innovation for estimating the market commercialization time. Due to inertness
of the market it is rather natural to describe its behavior by the “heavy” dynamics with
the small resource for acceleration. In this case the current information about the market
technological stock and its rate allows to predict the market innovation trajectory with
the reasonable confidence level and to analyze sensitivity of the market commercialization
time tb with respect to uncertainties.

Let us describe the model of market dynamics in more details. We assume that the
market of technological innovation consists of n agents. The growth of the technology
stock of each agent yi with respect to investment ri is described by similar equations with
the obsolescence effect

ẏi(s) = −σyi(s) + ri(s), s ≥ t0, yi(t0) = y0
i , i = 1, ..., n (8.1)

Introducing average market technology stock y, average market technology rate ẏ and
average market technology investment rb by convolutions of stocks yi, rates ẏi and invest-
ments ri with weight coefficients αi

y =
n∑
i=1

αiyi, y0 =
n∑
i=1

αiy
0
i , ẏ =

n∑
i=1

αiẏi, rb =
n∑
i=1

αiri (8.2)

n∑
i=1

αi = 1, αi ≥ 0, i = 1, ..., n

we obtain the aggregated dynamics of the market innovation

ẏ(s) = −σy(s) + rb(s), s ≥ t0, y(t0) = y0 (8.3)

Let us estimate the potential of the market environment to accelerate its innovation.
We introduce the following notions :

ẏi/yi – technology rate of firm i;
ri/yi – R&D intensity of firm i;
ẏ/y – technology rate of the market;
rb/y – R&D intensity of the market.
One can bind technology rates and R&D intensities of firms with technology and R&D

intensity of the market by relations

ẏ

y
=

n∑
i=1

βi
ẏi
yi
,

rb
y

=
n∑
i=1

βi
ri
yi

(8.4)

βi = βi(y) =
αiyi
y
,

n∑
i=1

βi = 1, βi ≥ 0, i = 1, ..., n



– 25 –

Basing on relations (8.4) one can present technology rate ẏ/y and R&D intensity rb/y
of the market as the mean value of technology rates ẏi/yi and R&D intensities ri/yi of
firms with variation given by relation

D =
n∑
i=1

βi

(
ẏi
yi
− ẏ

y

)2

=
n∑
i=1

βi

(
ri
yi
− rb
y

)2

(8.5)

Introducing notations for R&D intensities

z = z(s) =
rb
y
, zi = zi(s) =

ri
yi
, i = 1, ..., n

we rewrite investment dynamics (8.1), (8.3) of firms and the market in the form of quasi-
linear differential equations

ẏi(s) = −σyi(s) + zi(s)yi(s) = (−σ + zi(s))yi(s), i = 1, ..., n (8.6)

ẏ(s) = −σy(s) + z(s)y(s) = (−σ + z(s))y(s) (8.7)

Investment dynamics equations (8.6), (8.7) are in consistency with the concept of
exponential technological growth since solutions of these equations are given by the Cauchy
exponential formulas

yi(s) = y0
i e
bi(s), bi(s) = −σ(s− t0) +

∫ s

t0

zi(τ)dτ, i = 1, ..., n (8.8)

y(s) = y0e
b(s), b(s) = −σ(s− t0) +

∫ s

t0

z(τ)dτ (8.9)

Let us estimate the first derivatives of R&D intensities ri/yi, rb/y which influences
directly on the second derivative (acceleration) of the technology stocks lnyi, ln y

żi =

(
ri
yi

)′
=
ṙiyi − riẏi

y2
i

=
ri
yi

(
ṙi
ri
− ẏi
yi

)
=
ÿiyi − (ẏi)

2

y2
i

= (lnyi)
′′ (8.10)

ż =

(
rb
y

)′
=
ṙby − rbẏ

y2
=
rb
y

(
ṙb
rb
− ẏ

y

)
=
ÿy − (ẏ)2

y2
= (lny)′′ (8.11)

We express now the investment acceleration ż = (lny)′′ of the market through the
investment accelerations żi = (lnyi)

′′ of firms

ż = (lny)′′ =

(
rb
y

)′
=

(
n∑
i=1

βi(y)
ri
y

)′
=

n∑
i=1

βi

(
ri
yi

)′
+

n∑
i=1

β′i
ri
yi

=

n∑
i=1

βiżi +
n∑
i=1

βi

(
ẏi
yi
− ẏ

y

)
ri
yi

=
n∑
i=1

βi(lnyi)
′′ +

n∑
i=1

βi

(
ri
yi
− rb
y

)
ri
yi

=

n∑
i=1

βi(lnyi)
′′ +

n∑
i=1

βi

(
ri
yi
− rb
y

)2

=
n∑
i=1

βi(lnyi)
′′ +

n∑
i=1

βi

(
ẏi
yi
− ẏ

y

)2

(8.12)

We will make a reasonable assumption about inertness of the market and assume that
overwhelming majority of firms develop the technology according to the chosen scenario
with the zero acceleration

(ln yj)
′′ =

(
rj
yj

)′
=
rj
yj

(
ṙj
rj
− ẏj
yj

)
= 0, j = 1, ..., n0, 0 ≤ n− n0

n
� 1 (8.13)
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The last relation means that firms of this large group hold the strategy of proportional
investment: the investment rate ṙj/rj should be proportional to the technology rate ẏj/yj

ṙj
rj

=
ẏj
yj
, j = 1, ..., n0 (8.14)

We assume that in the rest small group there could be firms with the positive or
negative investment accelerations

(lnyk)
′′ > 0, k = 1, ..., n+, (ln yl)

′′ < 0, l = 1, ..., n− (8.15)

Due to the previous assumptions one can suppose that the mean value of firms’ accel-
erations (lnyi)

′′ is finite and small with respect to the absolute value of technology rate
ẏ/y

|M | = |
n∑
i=1

βi(lnyi)
′′| � R (8.16)

Here parameter R is the minimal value of technology rate ẏ/y

R = min
s≥t0
| ẏ(s)
y(s)
| (8.17)

Finally let us assume that technology rates ẏi/yi for the major part of firms are close
to each other and consequently differ slightly from the average technology rate ẏ/y, and,
therefore, the variance D (8.5) of technology rates ẏi/yi is also small in comparison with
the absolute value of technology rate

D =
n∑
i=1

βi

(
ẏi
yi
− ẏ

y

)2

� R (8.18)

Taking into account all previous assumptions we arrive to the “heavy” technological
dynamics of the market environment

ẏ(s) = −σy(s) + z(s)y(s)

ż(s) = v(s), |v(s)| ≤ v0, v0 � R (8.19)

Introducing change of variables

p = lny ⇐⇒ y = ep

q = z − σ =
ẏ

y
⇐⇒ z = q + σ =

ẏ

y
+ σ (8.20)

we present the “heavy” motion of the market environment in the form of the “crocodile”
dynamics known in the differential games theory (see [Isaacs, 1965])

ṗ(s) = q(s)

q̇(s) = v(s), |v(s)| ≤ v0, v0 � R (8.21)

Later we will specify more precisely condition v0 � R of the market inertness.
Let us note that the “light” motion (2.2) of the competitive innovator can be presented

as the known “boy” dynamics (see [Isaacs, 1965])

Ẋ(s) = U(s), |U(s)| ≤ U0 < 1− σ (8.22)

X = X(s) = lnx(s), U = U(s) = −σ +
u(s)

x(s)
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We can consider the described dynamic model of innovation as a game between two
qualitatively different players: one of them – the innovator (“boy”), has the “light” dy-
namics which provides high possibilities for acceleration even for small levels of technology
rates; the second player is the weakly controllable (weakly dynamical) “heavy” market
(“crocodile”) which may have large rates of technological growth but due to its nonhomo-
geneity and inertness has small acceleration.

Let us note that another type of the problem statement in the game with “heavy” and
“light” dynamics was considered for optimizing navigation noise by the “toreador” in the
pursuit-evasion process (see [Ivanov, Tarasyev,Ushakov, Khripunov, 1993]).

The inertness property of the “heavy” market dynamics allows to estimate the market
commercialization time tb basing on information about the current technology stock y =
y(s) or equivalently of its logarithm p = p(s) = ln y(s) and the current technology rate
q = q(s) = ẏ(s)/y(s). The innovator can use this estimate for choosing a scenario of
innovation and guaranteed optimization of its own commercialization time ta.

9 The Market Commercialization Time

Let us estimate the commercialization time of the market tb basing on the “heavy” dynam-
ics (8.21), and the current information about the technology stock y = y(t) and its rate
ẏ = ẏ(t). We fix acceleration v, |v| ≤ v0 and derive solutions for technology trajectories
of the “heavy” dynamics (8.21)

q(s) = v(s− t) + q(t) = v(s− t) +
ẏ

y
, s ≥ t (9.1)

p(s) =
v

2
(s− t)2 + q(t)(s− t) + p(t) =

v

2
(s− t)2 +

ẏ

y
(s− t) + lny (9.2)

We assume that the market starts commercialization of the new technology when its
technological stock y = y(s) reaches the necessary technological level yb, 0 ≤ y(s) ≤ yb.
It means that the commercialization time tb of the market can be found from dynamics
(9.2) as the first passage time of the commercialization level yb

p(tb) = lnyb ⇐⇒ v

2
(tb − t)2 +

ẏ

y
(tb − t) + (ln y − lnyb) = 0 (9.3)

and expressed by formula

tb − t =
(−ẏ/y + ((ẏ/y)2 + 2v(lnyb − lny))1/2)

v
=

2(lnyb − lny)

(ẏ/y + ((ẏ/y)2 + 2v(lnyb − lny))1/2)
(9.4)

In particular, for the zero acceleration v = 0 the market commercialization time t0b can
be assessed by relation

t0b − t =

(
ẏ

y

)−1

(lnyb − lny) (9.5)

Analogously for the minimum acceleration v = −v0 the market commercialization time
t1b is given by formula

t1b − t =
(−ẏ/y+ ((ẏ/y)2 − 2v0(lnyb − ln y))1/2)

v0
=

2(lnyb − ln y)

(ẏ/y+ ((ẏ/y)2 − 2v0(lnyb − ln y))1/2)
(9.6)
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For the maximum acceleration v = v0 the market commercialization time t2b is deter-
mined by equation

t2b − t =
(−ẏ/y+ ((ẏ/y)2 + 2v0(lnyb − ln y))1/2)

v0
=

2(lnyb − ln y)

(ẏ/y+ ((ẏ/y)2 + 2v0(lnyb − ln y))1/2)
(9.7)

Let us introduce notations for extremal trajectories generated by extremal accelerations
v = ±v0 and the zero acceleration v = 0. Denote by the symbol (y1(s), ẏ1(s)) the trajectory
of the market dynamics (8.19) or (8.21) generated by the minimum acceleration v = −v0,
by the symbol (y2(s), ẏ2(s)) – the trajectory generated by the maximum acceleration
v = v0, by the symbol (y0(s), ẏ0(s)) – the trajectory generated by the zero acceleration
v = 0. Analogously by the symbol (y(s), ẏ(s)) we denote the market trajectory of dynamics
(8.19) or (8.21) with an arbitrary measurable acceleration v = v(s), |v(s)| ≤ v0 and by
the symbol tb – the corresponding commercialization time y(tb) = yb. We assume that all
trajectories start from the same initial position (y, ẏ) = (y(t), ẏ(t)).

Remark 9.1 According to the comparison theorem the following relations take place for
the market trajectories (y(s), ẏ(s)), (y1(s), ẏ1(s)), (y2(s), ẏ2(s))

y1(s) ≤ y(s) ≤ y2(s), ẏ1(s) ≤ ẏ(s) ≤ ẏ2(s), s ≥ t (9.8)

y1(t) = y2(t) = y(t) = y, ẏ1(t) = ẏ2(t) = ẏ(t) = ẏ

In particular, the similar inequalities are fulfilled for the normal market trajectory
(y0(s), ẏ0(s)) generated by the zero acceleration v = 0

y1(s) ≤ y0(s) ≤ y2(s), ẏ1(s) ≤ ẏ0(s) ≤ ẏ2(s), s ≥ t (9.9)

y1(t) = y2(t) = y0(t) = y, ẏ1(t) = ẏ2(t) = ẏ0(t) = ẏ

Consequently the analogous relations are valid for the market commercialization times
tb, t

1
b , t

2
b

t2b ≤ tb ≤ t1b (9.10)

and for the normal commercialization time t0b

t2b ≤ t0b ≤ t1b (9.11)

Let us estimate the maximum and minimum commercialization times t1b , t
2
b from above

and below. One can see that the following inequalities hold for them(
ẏ

y

)−1

(lnyb − ln y) = t0b − t ≤ t1b − t =

2(lnyb − lny)

(ẏ/y + ((ẏ/y)2 − 2v0(lnyb − lny))1/2)
≤ 2

(
ẏ

y

)−1

(lnyb − lny) (9.12)

1

2

(
ẏ

y

)−1

(lnyb − ln y) ≤ 2(lnyb − ln y)

(ẏ/y+ ((ẏ/y)2 + 2v0(lnyb − ln y))1/2)
=

t2b − t ≤ t0b − t =

(
ẏ

y

)−1

(lnyb − ln y) (9.13)

Basing on inequalities (9.12), (9.13) one can assess sensitivity of maximum and min-
imum commercialization times t1b , t

2
b with respect to the absolute value of acceleration

v0.
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Proposition 9.1 The deviation of maximum and minimum commercialization times t1b ,
t2b from the normal time t0b is evaluated by linear functions of acceleration v0

0 ≤ t1b − t0b ≤ 2v0

(
ẏ

y

)−3

(ln yb − lny)2 (9.14)

0 ≤ t0b − t2b ≤
1

2
v0

(
ẏ

y

)−3

(ln yb − lny)2 (9.15)

Proof. Substituting extremal values of acceleration v = −v0, v = v0 into equation
(9.3), subtracting from them the analogous relation for zero acceleration v = 0 and taking
into account estimates (9.12), (9.13) we obtain the necessary chain of inequalities

0 ≤ t1b − t0b =
1

2
v0

(
ẏ

y

)−1

(t1b − t)2 ≤ 2v0

(
ẏ

y

)−3

(lnyb − ln y)2

0 ≤ t0b − t2b =
1

2
v0

(
ẏ

y

)−1

(t2b − t)2 ≤ 1

2
v0

(
ẏ

y

)−3

(lnyb − ln y)2

2

Remark 9.2 The linear assessment of sensitivity (9.14), (9.15) for commercialization
times t1b , t

2
b means that its accuracy is directly proportional to the absolute value of ac-

celeration v0. According to the assumption of the market inertness this value is relatively
small v0 � R. Therefore, one can use the normal trajectory (y0(s), ẏ0(s)) of the market
with the zero acceleration v = 0, its commercialization time t0b and sensitivity estimates
(9.14), (9.15) for prediction of the market commercialization time tb, t

2
b ≤ tb ≤ t1b .

Let us note that coefficient (ẏ/y)−3(lnyb − lny)2 shows dependence of sensitivity esti-
mates (9.14), (9.15) with respect to the current situation (y, ẏ) of the market trajectory:
the greater is the technology rate ẏ/y and/or the closer is the current technology stock y
to the commercialization level yb, the smaller is this coefficient and sensitivity estimates
(9.14), (9.15) are more accurate.

Finally let us indicate sensitivity of the market commercialization time tb = tb(v) (9.4)
with respect to nonnegative accelerations v ≥ 0.

Remark 9.3 The sensitivity of the market commercialization time tb = tb(v) (9.4) with
respect to accelerations v can be expressed by the first derivative

t′b(v) =
−2(lnyb − ln y)2((ẏ/y)2 + 2v(lnyb − ln y))−1/2

(ẏ/y + ((ẏ/y)2 + 2v(lnyb − lny))1/2)2
(9.16)

Its absolute value for nonnegative accelerations v ≥ 0 reaches maximum at the zero
acceleration v = 0 due to its monotonic decrease

max
v≥0
|t′b(v)| = |t′b(0)| = 1

2

(
ẏ

y

)−3

(lnyb − lny)2 (9.17)

For nonnegative accelerations v2 > v1 ≥ 0 according to the Lagrange mean value
theorem the following chain of inequalities take place

|tb(v1)− tb(v2)| = tb(v1)− tb(v2) = t′b(v̄)(v1 − v2) = |t′b(v̄)|(v2 − v1) ≤

|t′b(v1)|(v2 − v1) ≤
1

2

(
ẏ

y

)−3

(lnyb − ln y)2(v2 − v1), 0 ≤ v1 < v̄ < v2 (9.18)

The last inequality and monotonic decrease of the absolute value of derivative |t′b(v1)|
show that estimate (9.18) is improved with growth of acceleration v1.
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10 Guaranteed Strategy of Technological Innovation

In this section we construct the optimal guaranteed strategy of technological innovation
and describe the saddle point equilibrium in the game between the “light” innovator and
the “heavy” market. The special attention will be paid to the questions on sensitivity of
the optimal profit result and robust properties of optimal strategies for scenarios selection.

Let us introduce the basic element of the guaranteed strategy: the threshold time t∗b
of the market innovation which separates two innovation scenarios (6.8) of innovator: the
slow scenario Σ1 with the optimal innovation time tm1 , and the quick scenario Σ2 with
the optimal innovation time tm2 , tm2 < tm1 . We define it as the innovation time of the
market which equalizes profits of slow scenario RCm1 and quick scenario (RCm2 − r(t∗b)) of
innovator (see (6.8), (6.9))

Rm = RCm1 = RCm2 − r(t∗b) (10.1)

Let us indicate properties of the threshold time t∗b .

Proposition 10.1 The threshold time t∗b of the market innovation exists, is unique and
separates commercialization times tm1 , tm2 of slow scenario Σ1 and quick scenario Σ2 of
innovator

tm2 < t∗b < tm1 (10.2)

Proof. Let us consider the auxiliary function

f(tb) = r(tb)− (RCm2 − RCm1 ) =
Sb

(λ− µ)
e−(λ−µ)tb −(

(Sa + Sb)

(λ− µ)
e−(λ−µ)tm2 − Sa

(λ− µ)
e−(λ−µ)tm1 + w(tm1 )−w(tm2 )

)
(10.3)

Exponential function f(tb) with the negative exponent −(λ − µ) monotonically de-
creases for tb > t. Let us calculate values of function f(tb) at points tm1 , tm2

f(tm1 ) = r(tm1 )− (RCm2 − RCm1 ) = −
(

(Sa + Sb)

(λ− µ)
e−(λ−µ)tm2 −w(tm2 )

)
+(

(Sa + Sb)

(λ− µ)
e−(λ−µ)tm1 − w(tm1 )

)
= −RC(tm2 , S2) + RC(tm1 , S2) =

−RCm2 +RC(tm1 , S2) < 0

f(tm2 ) = r(tm2 )− (RCm2 − RCm1 ) = −
(

Sa
(λ− µ)

e−(λ−µ)tm2 −w(tm2 )

)
+(

Sa
(λ− µ)

e−(λ−µ)tm1 − w(tm1 )

)
= −RC(tm2 , S1) +RC(tm1 , S1) =

−RC(tm2 , S1) + RCm1 > 0

The last inequalities and the strict monotonicity of function f(tb) imply the existence
of the unique root t∗b of equation

f(t∗b) = r(t∗b)− (RCm2 −RCm1 ) = 0, tm2 < t∗b < tm1 (10.4)

According to definition this root t∗b is the required threshold time (10.1). 2
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Let us note that equation (10.4) implies the following expression for the threshold time

t∗b =
1

(λ− µ)
(ln

Sb
(λ− µ)

−

ln(
(Sa + Sb)

(λ− µ)
e−(λ−µ)tm2 − Sa

(λ− µ)
e−(λ−µ)tm1 + w(tm1 )−w(tm2 ))) (10.5)

We calculate now minimax and maximin of the profit function R = R(ta, tb) (6.4),
(6.5) with respect to the innovator and the market commercialization times ta, tb. We
show that they coincide with each other and thus there exists a saddle point equilibrium
in the game of the “light” innovator and the “heavy” market. The values V of the profit
function calculated at the saddle commercialization times for the current game positions
(t, x(t), y(t), ẏ(t)) generate the value function of the game (t, x, y, ẏ) → V (t, x, y, ẏ). The
value function V (·) contains the full relevant information for constructing the guaranteed
optimal strategy of innovator. The guaranteed optimal strategy generates the dynamical
process of assessing market, selecting scenarios and optimizing investment. In this process
the innovator can guarantee the saddle equilibrium value of the profit function.

Let us calculate first the upper estimate of equilibrium – minimax of the profit function
R = R(ta, tb) (6.4), (6.5)

V ∗ = min
tb∈[t2b ,t

1
b ]

max
ta>t
{max{ S1

(λ− µ)
e−(λ−µ)ta ,

S2

(λ− µ)
e−(λ−µ)ta − Sb

(λ− µ)
e−(λ−µ)tb} −w(ta)} =

min
tb∈[t2

b
,t1
b
]
max{max

ta>t
{ S1

(λ− µ)
e−(λ−µ)ta −w(ta)},

max
ta>t
{ S2

(λ− µ)
e−(λ−µ)ta − w(ta)} −

Sb
(λ− µ)

e−(λ−µ)tb} =

min
tb∈[t2

b
,t1
b
]
max{RCm1 , RCm2 −

Sb
(λ− µ)

e−(λ−µ)tb} (10.6)

Let us note that the maximum type function in the last relation can be presented in
the piecewise smooth form

g(tb) = max{RCm1 , RCm2 −
Sb

(λ− µ)
e−(λ−µ)tb} =

{
RCm1 if t < tb ≤ t∗b
RCm2 − r(tb) if tb ≥ t∗b

It is clear that function g(tb) is continuous, piecewise smooth and monotonically non-
decreasing. Therefore, its maximum over tb on the closed interval [t2b , t

1
b ] is reached at the

left edge t2b and the minimax value V ∗ is determined by formula

V ∗ = max
tb∈[t1b,t

2
b ]
g(tb) = g(t2b) =

{
RCm1 if t < t2b ≤ t∗b
RCm2 − r(t2b) if t2b ≥ t∗b

(10.7)

We compute now the lower or guaranteed estimate of equilibrium – maximin of the
profit function R = R(ta, tb) (6.4), (6.5)

V∗ = max
ta>t

min
tb∈[t2b ,t

1
b ]
{max{ S1

(λ− µ)
e−(λ−µ)ta ,

S2

(λ− µ)
e−(λ−µ)ta − Sb

(λ− µ)
e−(λ−µ)tb} −w(ta)} (10.8)
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The maximum type function in the last relation can be presented in the piecewise
smooth form

h(ta, tb) = max{ S1

(λ− µ)
e−(λ−µ)ta ,

S2

(λ− µ)
e−(λ−µ)ta − Sb

(λ− µ)
e−(λ−µ)tb} − w(ta) =

=

{
RC(ta, S1) if t < tb ≤ ta
RC(ta, S2)− r(tb) if tb ≥ ta

For the fixed time ta > t function tb → h(ta, tb) is continuous, piecewise smooth and
monotonically nondecreasing. Hence, its maximum over tb on the closed interval [t2b , t

1
b ] is

reached at the left edge t2b

H(ta) = max
tb∈[t1b ,t

2
b ]
h(ta, tb) = h(ta, t

2
b) =

{
RC(ta, S1) if t < t2b ≤ ta
RC(ta, S2)− r(t2b) if t2b ≥ ta

Finally we can derive expression for maximin V∗ of the profit function R = R(ta, tb)

V∗ = max
ta>t

H(ta) = max
ta>t

max{RC(ta, S1), RC(ta, S2)− r(t2b)} =

= max{RCm1 , RCm2 − r(t2b)} =

{
RCm1 if t < t2b ≤ t∗b
RCm2 − r(t2b) if t2b ≥ t∗b

(10.9)

Coincidence of expressions (10.7), (10.9) for maximin and minimax of the profit func-
tion R(ta, tb) shows that in the game of the “light” innovator and the “heavy” market
there exists the saddle equilibrium. We formulate this result in the following statement.

Proposition 10.2 There exists the saddle equilibrium in the game of innovator and mar-
ket. Its value V is determined by identity of maximin and minimax expressions

V = V ∗ = V∗ = min
tb∈[t2b,t

1
b ]

max
ta>t

R(ta, tb) = max
ta>t

min
tb∈[t2b ,t

1
b]
R(ta, tb) = R(tea, t

e
b) =

=

{
RCm1 if t < t2b ≤ t∗b
RCm2 − r(t2b) if t2b ≥ t∗b

(10.10)

The equilibrium pair (tea, t
e
b) of commercialization times which realizes the external

maximum and minimum in maximin and minimax operators is determined by relations

tea =

{
tm1 if t < t2b < t∗b
tm2 if t2b ≥ t∗b

(10.11)

teb = t2b (10.12)

Remark 10.1 The value V (10.10) of the game between innovator and market as well
as optimal strategy tea (10.11) of selecting innovation scenarios depend on the current
position of the innovation process (t, x, y, ẏ). The optimal feedback for dynamical selection
of innovation scenarios tea = tea(t, x, y, ẏ) (10.11) together with the optimal investment plan
u0 = u0(t, x, tea) (5.6) generate technological trajectories of innovator dynamics (2.2) which
provide the optimal profit V = V (t, x, y, ẏ) even in presence of unfavorable technological
development teb (10.12) of the market.

Let us indicate implementation of optimal strategy tea(·) (10.11), u0(·) (2.17) in trajec-
tories x0(·) of technological dynamics of innovator (1.1) operating in the market environ-
ment (y(·), ẏ(·)) (1.7).
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Proposition 10.3 Optimal strategy of selecting scenarios tea(·) (10.11) and optimal in-
vestment plan u0(·) (2.17) generate technological trajectories x0(·) (1.1) which switch in-
novation scenarios no more than one time for any dynamic behavior (y(·), ẏ(·)) (1.7) of
the market.

Proof. Consider two cases. In the first case assume that at the current game position
(t, x, y, ẏ) the fast scenario of innovation is more preferable than the slow one

t2b(t, y, ẏ) ≥ t∗b (t, x) (10.13)

In this case the technological trajectory x0
2(·), x0

2(t) = x is developing in the direction
of the commercialization time tm2 , tm2 < tm1 (10.11) according to the optimal investment
plan u0(·) (2.17).

Let us fix the new current positions of innovator (τ, ξ), ξ = x0
2(τ), t ≤ τ ≤ tm2 and the

market environment (η, η̇) = (y(τ), ẏ(τ)). Position (η, η̇) is generated by some realization
of acceleration v = v(s), |v(s)| ≤ v0, t ≤ s < τ in dynamics (1.7), and all trajectories of
the market environment which start from position (η, η̇) are generated by accelerations
v = v(s), s ≥ τ with the same restriction |v(s)| ≤ v0. Then according to Remark 9.1 the
extremal commercialization times t2b(·) of the market environment satisfy inequalities

t2b(t, y, ẏ) ≤ t2b(τ, η, η̇), t ≤ τ ≤ tm2 (10.14)

y(t) = y, ẏ(t) = ẏ, y(τ) = η, ẏ(τ) = η̇

Let us estimate dynamics of the threshold time t∗b(·). By definition we have

r(t∗b(t, x)) = RCm2 (t, x)−RCm1 (t, x)

r(t∗b(τ, ξ)) = RCm2 (τ, ξ)−RCm1 (τ, ξ), t ≤ τ ≤ tm2 (10.15)

Taking into account the dynamic programming principle (7.8) and definition of maxi-
mum profit values RCmi (·), i = 1, 2 we have the following chain of relations

r(t∗b(τ, ξ)) = RCm2 (τ, ξ)−RCm1 (τ, ξ) =

RCm2 (τ, ξ)−w(t, x, τ, ξ)− (RCm1 (τ, ξ)− w(t, x, τ, ξ)) =

RCm2 (t, x)− (RCm1 (τ, ξ)−w(t, x, τ, ξ))≥
RCm2 (t, x)−RCm1 (t, x) = r(t∗b(t, x)) (10.16)

Since function r(tb) = (Sb/(λ− µ))e−(λ−µ)tb is monotonically decreasing with respect
to time tb, then dynamics of threshold time t∗b(·) also satisfies the monotonicity condition

t∗b(τ, ξ)≤ t∗b(t, x), ξ = x0
2(τ), t ≤ τ ≤ tm2 (10.17)

Combining relations (10.14), (10.17) of the dynamic programming principle with the
condition of the fast scenario (10.13) we obtain the inequality

t2b(τ, η, η̇) ≥ t2b(t, y, ẏ) ≥ t∗b(t, x) ≥ t∗b (τ, ξ) (10.18)

which provides the condition of the fast scenario at the new game position (τ, ξ, η, η̇). Due
to this condition the technological trajectory x0

2(·), x0
2(τ) = ξ will be developing in the

same direction of the commercialization time tm2 , tm2 < tm1 (10.11) according to the optimal
investment plan u0(·) (2.17) without switching to the slow scenario tm1 .

In the second case the innovator chooses the slow scenario of innovation at the current
game position (t, x, y, ẏ)

t2b(t, y, ẏ) < t∗b (t, x) (10.19)
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and the technological trajectory x0
1(·), x0

1(t) = x is developing in the direction of the
commercialization time tm1 , tm1 > tm2 (10.11) according to the optimal investment plan
u0(·) (2.17).

Let us fix the new current positions of innovator (τ, ξ), ξ = x0
1(τ), t ≤ τ ≤ tm2 and the

market environment (η, η̇) = (y(τ), ẏ(τ)).
The extremal commercialization times t2b (·) of the market environment satisfy the same

inequalities (10.14) as in the first case.
According to the dynamic programming principle (7.8) and definition of maximum

profit values RCmi (·), i = 1, 2 one can obtain the following chain of relations for the
dynamics of the threshold times

r(t∗b(τ, ξ)) = RCm2 (τ, ξ)− RCm1 (τ, ξ) =

(RCm2 (τ, ξ)−w(t, x, τ, ξ))− (RCm1 (τ, ξ)−w(t, x, τ, ξ)) =

(RCm2 (τ, ξ)−w(t, x, τ, ξ))−RCm1 (t, x) ≤
RCm2 (t, x)− RCm1 (t, x) = r(t∗b(t, x)) (10.20)

The monotonicity decreasing property of function tb → r(tb) implies the monotonicity
condition of the threshold times t∗b(·)

t∗b(τ, ξ)≥ t∗b(t, x), ξ = x0
1(τ), t ≤ τ ≤ tm1 (10.21)

Comparing relations (10.14) and (10.21) of the dynamic programming principle we find
out that two situations may take place. The first situation is similar to the slow scenario
condition (10.19)

t2b (τ, η, η̇) < t∗b(τ, ξ) (10.22)

and the technological trajectory x0
1(·), x0

1(τ) = ξ will be developing in the same direction
of the commercialization time tm1 , tm1 > tm2 (10.11) according to the optimal investment
plan u0(·) (2.17) without switching to the fast scenario tm2 .

The second situation is equivalent to the fast scenario condition (10.18)

t2b (τ, η, η̇) ≥ t∗b(τ, ξ) (10.23)

and the innovator switches the slow scenario tm1 to the fast scenario tm2 (10.11) in the
technological trajectory x0

1(·), x0
1(τ) = ξ to the technological trajectory x0

2(·), x0
2(τ) =

ξ. After this switching the innovator finds himself in the position similar to the first
case and will be developing along the technological trajectory x0

2(·), x0
2(τ) = ξ into the

direction of the fast commercialization time tm2 according to the optimal investment plan
u0(·) (2.17) without switching scenarios. Thus only one switch of scenarios is possible in
implementation of optimal strategy tea(·) (10.11). 2

Let us discuss the robustness properties of optimal strategy tea(·) (10.11), u0(·) (2.17)
with respect to parameter v0, v0 ≥ 0 which restricts the acceleration potential of the mar-
ket. The optimal strategy tea(·) (10.11) depends on parameter v0 which directly influences
on procedure of scenarios selection. In principle, the maximum acceleration v0 is an uncer-
tain parameter, and its accurate estimation in practice is scarcely possible. Therefore, the
key role in estimation of uncertainty belongs to the sensitivity and robustness properties of
the maximum result Rm(·) (6.9) of the profit function R(·) (6.4), and the optimal strategy
tea(·) (10.11) for selecting innovation scenarios. Assume that lower and upper estimates
v1, v2 for parameter v0 are obtained empirically

0 ≤ v1 ≤ v0 ≤ v2 (10.24)
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In practice the innovator can use in all formulae for optimal results R(·) (6.4) and
strategies tea(·) (10.11) the low bound v1 for the maximum acceleration v0 = v1. But in
realization of optimal innovation trajectories the innovator can meet larger accelerations
v0 = v2. The question is how optimal strategies tea(·) (10.11) with the low level assess-
ment of acceleration v1 will react on more energetic development of market with higher
acceleration v2? The answer on this question is the following. If market is inert - the
value of maximum accelerations v2 is small enough, then optimal strategy tea(·) (10.11)
provides the small difference between results for different levels of acceleration v1, v2. Let
us specify the notion of the market inertness. We make more precise condition v0 � R of
the “heavy” market dynamics (8.21)

0 ≤ v0 = v1 ≤ v2 ≤
(
√

5− 1)

2

R2

(lnyb − lny)
(10.25)

Let us note that constant (
√

5 − 1)/2 introduces the idea of “golden section” into
estimate (10.25).

For formulating the robustness result we introduce the following notations. By the
symbol Rm(v1) (6.9) we denote the optimal value of the the profit function R(·) (6.4)
in presence of the market with the low level of acceleration v1. Accordingly the symbol
tea(v1) stands for the optimal strategy tea (10.11) oriented on level v1. Assuming that in
realization of optimal strategy tea(v1) the innovator can meet higher acceleration level v2

of the market we denote by the symbol R(v2) the value of the profit function R(·) (6.4)
which the innovator obtains on the corresponding trajectories.

The following statement indicates the robustness property of the optimal strategy tea(·)
(10.11) by showing the measure of sensitivity between values Rm(v1), R(v2) of the profit
function R(·) (6.4).

Proposition 10.4 Under condition (10.25) of the market inertness the measure of sen-
sitivity between values Rm(v1), R(v2) of the profit function R(·) (6.4) provided by the
optimal strategy tea(v1) for different levels of the market acceleration v1, v2 is determined
by the following estimate

|R(v2)−Rm(v1)| ≤
1

2
Sbe
−(λ−µ)t

(
ẏ

y

)−3

(lnyb − ln y)2(v2 − v1) (10.26)

Proof. Assume first that the dynamical system (2.2), (8.21) of technological innova-
tion is located at initial position (t, x, y, ẏ) and optimal strategy tea(v1) (10.11) prescribes
selection of the slow scenario t1a. Assuming that the innovator will hold the slow scenario
till the commercialization time s = t1a we come to the conclusion that the value of its profit
in this case does not depend on the acceleration level v0 and equals to Rm(v1) = RCm1
either for the low acceleration level v0 = v1, or for the high acceleration level v0 = v2.

Let us consider the second possibility when at initial position (t, x, y, ẏ) optimal strat-
egy tea(v1) (10.11) prescribes selection of the fast scenario t2a. If the innovator will not
change this scenario along the optimal trajectory till the commercialization time s = t2a
then his profit will be equal either to the value Rm(v1) = RCm2 − r(t2b(v1)) in the case of
the low level v1, or to the value R(v2) = RCm2 − r(t2b(v2)) in the case of the high level
v2 of the market acceleration. Comparing values Rm(v1), R(v2) and taking into account
inequality (9.18) we obtain the following estimate

|R(v2)−Rm(v1)| = Rm(v1)− R(v2) = r(t2b(t, v2))− r(t2b(t, v1)) =
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Sb
(λ− µ)

(e−(λ−µ)t2b(t,v2) − e−(λ−µ)t2b(t,v1)) = Sbe
−(λ−µ)θ(t2b(t, v1)− t2b(t, v2)) =

Sbe
−(λ−µ)θ(t2b)

′(v̄)(v1 − v2) ≤
1

2
Sbe
−(λ−µ)t

(
ẏ

y

)−3

(lnyb − ln y)2(v2 − v1) (10.27)

Here
0 ≤ t2b(v2) < θ < t2b(v1), 0 ≤ v1 < v̄ < v2

Let us note that inequality (10.27) obtained for trajectories of the fixed fast scenario t2a
is similar to the necessary sensitivity estimate (10.26). Let us prove using relations of the
dynamic programming principle (7.8) and condition of the market inertness (10.25) that
estimate (10.27) will be valid for trajectories with possible switches of scenarios. Let us
consider two steps in switching scenarios along technological trajectories. Other switches
can be treated analogously. Assume that behavior of the market trajectory (y(s), ẏ(s)),
s ≥ t is such that optimal strategy tea(v1) (10.11) switches the fast scenario t2a(t, x) for
the slow scenario t1a(τ1, ξ1) at position (τ1, ξ1, y(τ1), ẏ(τ1)), t < τ1 < t2a(t, x), x(τ1) = ξ1,
and further switches the slow scenario t1a(τ1, ξ1) for the fast scenario t2a(τ2, ξ2) at position
(τ2, ξ2, y(τ2), ẏ(τ2)), τ1 < τ2 < t1a(τ, ξ1), x(τ2) = ξ2. Such development is possible, for
example, if observation shows first the high level of the market acceleration and then
indicates the market deceleration. Taking into account that the real level of the market
acceleration can be higher and equal to v2 we indicate dynamics of innovator’s profit in the
two-step procedure of switching scenarios as follows. At position (t, x, y, ẏ) the guaranteed
level of profit is determined by relation

f0 = RCm2 (t, x)− r(t2b(t, v2))

at position (τ1, ξ1, y(τ1), ẏ(τ1)) after the first switch of scenarios – by relation

f1 = RCm1 (τ1, ξ1)− w(t, x, τ1, ξ1)

and at position (τ2, ξ2, y(τ2), ẏ(τ2)) after the second switch of scenarios – by relation

f2 = RCm2 (τ2, ξ2)− r(t2b(τ2, v2))− w(t, x, τ1, ξ1)− w(τ1, ξ1, τ2, ξ2)

Let us remind that symbols w(t, x, τ1, ξ1), w(τ1, ξ1, τ2, ξ2) stand here for optimal in-
vestment expenditures of transferring the technological trajectory x(·) from position (t, x),
x(t) = x to position (τ1, ξ1), x(τ1) = ξ1 and further to position (τ2, ξ2), x(τ2) = ξ2.

We see that in the first switch at position (τ1, ξ1) the profit does not decrease f1 ≥ f0

since according to the structure of the optimal strategy tea(v1) (10.11) and the dynamic
programming principle (7.8), (9.10) we have the following chain of inequalities

f1 = RCm1 (τ1, ξ1)−w(t, x, τ1, ξ1) ≥ RCm2 (τ1, ξ1)− r(t2b(τ1, v1))−w(t, x, τ1, ξ1) =

RCm2 (t, x)− r(t2b(τ1, v1)) ≥ RCm2 (t, x)− r(t2b(τ1, v2)) ≥
RCm2 (t, x)− r(t2b(t, v2)) = f0 (10.28)

In the second switch at position (τ2, ξ2) the profit may decrease f2 ≤ f1 since the
structure of the optimal strategy tea(v1) (10.11) and the dynamic programming principle
(7.8) provides relations

f2 = RCm2 (τ2, ξ2)− r(t2b(τ2, v2))− w(t, x, τ1, ξ1)−w(τ1, ξ1, τ2, ξ2) =

RCm1 (τ2, ξ2) + r(t2b(τ2, v1))− r(t2b(τ2, v2))− w(t, x, τ1, ξ1)− w(τ1, ξ1, τ2, ξ2) =

RCm1 (τ1, ξ1) + r(t2b(τ2, v1))− r(t2b(τ2, v2))− w(t, x, τ1, ξ1) =

f1 + r(t2b(τ2, v1))− r(t2b(τ2, v2)) ≤ f1 (10.29)
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According to relations (10.28), (10.29) in the first switch from the fast scenario to the
slow scenario the innovator sacrifices the fast development for nondecrease of profit f1 ≥ f0.
In the second switch he selects the fast scenario under risky condition f2 ≤ f1. This
risky condition turns into equality f2 = f1 and provides the chain of dynamic optimality
principle f0 ≤ f1 = f2 if level of the market acceleration is assessed properly v1 = v2.
In case of more energetic market v2 > v1 it is necessary to check condition of the profit
increase f2 ≥ f0 in the two-step switching procedure despite of the intermediate decrease
of profit f2 ≤ f1. We will do this under condition (10.25) of the market inertness and the
dynamic programming principle (7.8). Let us estimate the difference (f2 − f0). We have
according to the Lagrange mean value theorem the following chain of relations

f2 − f0 = (f2 − f1) + (f1 − f0) = (r(t2b(τ2, v1))− r(t2b(τ2, v2))) + (f1 − f0) ≥
−(r(t2b(τ2, v2))− r(t2b(τ2, v1))) + (r(t2b(t, v2))− r(t2b(τ1, v1))) ≥
(r(t2b(τ1, v2))− r(t2b(τ1, v1)))− (r(t2b(τ2, v2))− r(t2b(τ2, v1))) =

r′′τv(τ̄ , v̄)(τ1 − τ2)(v2 − v1) = −r′′τv(τ̄ , v̄)(τ2 − τ1)(v2 − v1) (10.30)

Here
τ1 < τ̄ < τ2, v1 < v̄ < v2

It is remained to prove that the second derivative r′′τv of the composite function
r(t2b(τ, v)) (6.6), (9.7) is nonpositive. For the first and second derivatives of the com-
posite function r(t2b(τ, v)) we have the following relations

r′τ = −Sbe−(λ−µ)t2
b (t2b)

′
τ (10.31)

r′′τv = −Sbe−(λ−µ)t2b ((t2b)
′′
τv − (λ− µ)(t2b)

′
τ(t

2
b)
′
v) (10.32)

Let us calculate the first derivatives of function t2b(τ, v)

(t2b)
′
τ = 1− q̇

v
+

(qq̇− qv)
v(q2 + 2v(lnyb − p))1/2

=

(1− q̇

v
)(1− q

(q2 + 2v(lnyb − p))1/2
) ≥ 0, −v ≤ q̇ ≤ v (10.33)

(t2b)
′
v = −2(lnyb − p)(q2 + 2v(lnyb − p))1/2

(q+ (q2 + 2v(lnyb − p))1/2)2
=

−1

2
(t2b − τ)2(q2 + 2v(lnyb − p))−1/2 ≤ 0 (10.34)

Taking into account signs (10.33), (10.34) of the first derivatives we deduce that the
second term −(λ−µ)(t2b)

′
τ(t

2
b)
′
v in relation (10.32) for the second derivative r′′τv is nonneg-

ative.
Let us calculate the second derivative (t2b)

′′
τv

(t2b)
′′
τv =

q̇

v2
(1− q

(q2 + 2v(lnyb − p))1/2
) + (1− q̇

v
)

q(lnyb − p)
(q2 + 2v(lnyb − p))3/2

(10.35)

Taking into account relation

lnyb − p =
v

2
(t2b − τ)2 + q(t2b − τ)
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we rewrite expression in denominators of the second derivative (t2b)
′′
τv (10.35) as follows

q2 + 2v(lnyb − p) = q2 + 2v(
v

2
(t2b − τ)2 + q(t2b − τ)) = (q+ v(t2b − τ))2

Substituting these expressions into formula (10.35) we obtain the following chain of
relations

(t2b)
′′
τv =

q̇(t2b − τ)
v(q+ v(t2b − τ))

+ (1− q̇

v
)
q(t2b − τ)(v(t2b − τ)/2 + q)

(q+ v(t2b − τ))3
=

(t2b − τ)
(q + v(t2b − τ))

(
q̇

v
+ (1− q̇

v
)
q(v(t2b − τ)/2 + q)

(q + v(t2b − τ))2

)
=

(t2b − τ)
(q + v(t2b − τ))3

(q(q+
v

2
(t2b − τ)) + q̇(t2b − τ)(v(t2b − τ) +

3

2
q)) (10.36)

Since acceleration q̇ satisfies restrictions −v ≤ q̇ ≤ v then minimum of the last expres-
sion (10.36) for the second derivative (t2b)

′′
τv is reached at the negative value - deceleration

q̇ = −v, and we can write the estimate

(t2b)
′′
τv ≥

(t2b − τ)
(q + v(t2b − τ))3

(q2 − qv(t2b − τ)− v2(t2b − τ)2) (10.37)

It is clear that the last expression is nonnegative if acceleration level v satisfies in-
equalities

0 ≤ v ≤ (
√

5− 1)

2

q

(t2b − τ)
(10.38)

with the “golden section” constant (
√

5− 1)/2.
Let us note that inequalities (10.38) are fulfilled if condition (10.25) holds. It means

that condition (10.25) implies the necessary nonnegative sign of the second derivative

(t2b)
′′
τv ≥ 0 (10.39)

Combining relation for the difference (f2 − f0) (10.30) with formula for the second
derivative r′′τv (10.32) and signs of the first and second derivatives (t2b)

′
τ (10.33), (t2b)

′
v

(10.34), (t2b)
′′
τv (10.39) we come to the conclusion that optimal strategy tea(v1) (10.11)

provides the dynamic programming property (f2 − f0) ≥ 0 even in the case it meets the
high level v2, v2 ≥ v1 ≥ 0 of the market acceleration. 2

Finally let us make an accent on the case of zero acceleration v1 = 0 in the optimal
strategy tea(v1) (10.11).

Remark 10.2 In the case when the optimal strategy tea(v1) (10.11) exploits the zero accel-
eration v1 = 0 the expected market commercialization time t2b(v1) coincides with the normal
acceleration time t0b which is calculated by the simple formula t0b = (ẏ/y)−1(lnyb − lny)
without any information about acceleration v. This strategy can be naturally interpreted as
the look-ahead behavior based only on the information about the current market position
of technology stock y and technology rate ẏ/y.
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Conclusion

In this paper we propose a dynamic model of optimal innovation policy which is con-
structed on the feedback principle. The innovator can make a decision on selection of
the innovation scenario optimizing the commercialization time and the investment level in
the dynamic procedure of evaluating market technology stock and technology rate. It is
assumed that the innovator can energetically react on the situation at the market of tech-
nologies. The dynamics of the technology stock of the innovator is modeled by a pattern
of a firm’s R&D investment with the time-delay and obsolescence effects. Its trajectories
can be controlled by the level of R&D investment which affects directly on the technology
rate (the first derivative) of the innovator and in this sense represent the “light” dynamics.
Since the market environment constitutes the large group of agents with different interests
it is reasonable to describe its trajectories by the “heavy” dynamics in which the acceler-
ation (the second derivative) is a small quantity. The dynamic econometric information
about the market technology stock (the state) and the market technology rate (the first
derivative) under expectation of the small technology acceleration (the second derivative)
allows to estimate the ensemble of the market trajectories, to predict the market com-
mercialization time and analyze its sensitivity. The profit function of the innovator is
presented by the balance of its benefit from the commercialization of the new technol-
ogy and the expenditures to the technology investment. The benefit part depends on
the possible amount of sales which supposes two alternatives: the usual level of sales and
the bonus level of sales due to the earlier technology innovation and market overtaking.
Analyzing the market commercialization time in the dynamic identification process the
innovator may select the ”fast” or ”slow” innovation scenario. For the selected scenario
the innovator can optimize its investment level minimizing expenditures using the dynamic
optimality principles. The distinctive feature of the model consists in the dynamic feed-
back interaction of three problems: (i) identification of the market technology trajectory;
(ii) selection of the innovation scenario and optimization of the commercialization time;
(iii) feedback optimization of the investment level. In this game interaction between the
innovator and the market the optimal feedback strategy of innovation is constructed as a
part of the saddle type equilibrium. Sensitivity and robustness properties of the optimal
profit result and the optimal strategy for scenarios selection are studied.
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