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Abstract

We introduce a notion of attractor adapted to community-dynamical processes as they

are studied in biological models and their computer simulations. This attractor concept

is modeled after the Conley-Ruelle attractor. It incorporates the fact that in an

immigration-free community-dynamical process populations can go extinct at low

values of their densities.
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On the Concept of Attractor in
Community-Dynamical Processes
Frans J.A. Jacobs
Johan A.J. Metz

1 Introduction

The aim of this paper is to introduce a modification of Conley-Ruelle attractors, as

introduced in [6] and [7], that is adapted to the asymptotic behaviour of the dynamical

systems studied in community ecology. The construction of Conley-Ruelle attractors is

based on the idea that any mathematical system is but an idealization of reality and that

neither physical nor numerical experiments produce the precise orbits of the theoretical

system under consideration, but rather so-called pseudoorbits that occur as a

consequence of small disturbances or roundoff errors. Below we shall give a short

review of this construction and some of its properties (Section 2). In addition we some

useful new terms such as pseudoreachability and basin of introduce pseudoattraction

that do not figure in [6] and [7]. Next we propose the modification (Section 3), followed

by two examples (Section 4) and a discussion (Section 5). This modification is

necessary in order to deal with the feature of extinction of a population as it may occur

in community-dynamics: a pseudoorbit that reaches a boundary plane of the community

state space spanned by the densities of the populations involved, will proceed in this

boundary plane and cannot enter again into the interior of the community state space.

This condition is not imposed in the construction of the Conley-Ruelle attractors, which

in essence have their motivation in physics rather than biology.

2 Conley-Ruelle Attractors, Pseudoreachability and Basins of
Pseudoattraction

No model of an empirical process in the form of a smooth deterministic dynamical

system is ever exact. At best the empirical process matches its theoretical model up to
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some continual small perturbations of its states (due to externally imposed or internally

generated noise in the case of physical, chemical or biological processes, or cut-off

errors in the case of numerical processes). One way of formalizing the ubiquitous

presence of small perturbations is in terms of pseudoorbits, to be defined below, leading

to a characterization of their asymptotic behaviour by means of Conley-Ruelle

attractors, which are constructed in terms of those pseudoorbits. In this section we

summarize this construction as presented in [6] and Section 8 of [7]. We concentrate on

those results that are of importance with regard to the modification that we propose in

the next section; for a more extensive exposition of the various concepts the reader is

referred to [1].

Let M be a compact and metrizable manifold, with a metric d and the topology

derived from it. Let 0: M M≥φ × →R be continuous, and let (φt) t≥ 0 denote the induced

semiflow on M.

An ε -pseudoorbit in M is by definition a (not necessarily continuous) curve, i.e., a

family (nt )t∈ [ t0 , t1 ] with t1 ≥ t0 , of points in M such that d φβ(nt +α ),φα+β(nt )( )< ε

whenever α ,β ≥ 0 , α + β ≤ 1, and t,t + α ∈ [t0 ,t1] . The ε -pseudoorbit then goes from

nt0
to nt1

and has length t1 − t0 . By concatenation of two ε -pseudoorbits, one going

from a to b and of length T, the second one going from b to c and of length ′ T , we

obtain a 2ε -pseudoorbit of length T + ′ T going from a to c.

A point n is chain-recurrent if, for every ε , T > 0 , there is an ε -pseudoorbit of

length ≥ T going from n to n. Chain-recurrency captures the notion of recurrency under

arbitrarily small perturbations by means of (a sequence of) pseudoorbits. The set of

chain-recurrent points is the chain-recurrent set.

On M the following relation   f , to be called pseudoreachability, is defined:   a f b ('b

is pseudoreachable from a') if for every ε > 0 there exists an ε -pseudoorbit going from

a to b. (Roughly stated   a f b means that there is an orbit or an arbitrarily little

perturbed orbit on M going from a to b.) The relation  f is reflexive (  a f a , trivially by

means of an ε -pseudoorbit of length 0) and transitive (  a f b and  b f c imply   a f c ),

and thus is a preorder on M. The relation  f is also closed: if  x f y and x → a , y → b ,

then   a f b . (For a proof of this statement see [1], Chapter 1 Proposition 8.) As a

consequence, the chain-recurrent set is closed.
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The following Proposition is straightforward (see also [1], Chapter 1 Proposition 11):

Proposition. Let a,b ∈ M .  a f b if and only if there is a t ≥ 0 such that

φt(a) = b or for all t ≥ 0 :   φ
t(a) f b .

The relation ~ on M is defined in the following way: a ~ b if  a f b and   b f a . Since   f

is a preorder, ~ is an equivalence relation on M, to be called mutual pseudoreachability.

[a] denotes the equivalence class of a under ~. Clearly ~ is a closed relation, and

therefore every equivalence class is closed.

[a] is called a basic class if a (and consequently every x ∈ [a]) is chain-recurrent,

and the chain-recurrent set then is the union of all basic classes. By means of the

Proposition above the following three statements are equivalent:

1. [a] is a basic class;

2. a is a fixed point or [a] contains more than one point;

3. for all t ≥ 0 : φt [a]( )= [a] .

On the set of equivalence classes M/ ~ the relation ≥ is defined by: [a] ≥ [b] if

  a f b . This relation is reflexive and transitive. In addition, [a] ≥ [b] and [b] ≥ [a]

together imply that [a] = [b] . ≥ thus imposes a partial ordering on M/ ~ . A Conley-

Ruelle attractor is a minimal element in M/ ~ under ≥ , and consequently is a basic

class. (The name Conley-Ruelle attractor is adopted from [2]).

In addition to the above review of the idea of Conley-Ruelle attractors we introduce

the sometimes useful terms basin of pseudoreachability and basin of pseudoattraction.

Definition. Let a ∈ M .

(i) The basin of pseudoreachability of a, denoted  Bf (a) , is the collection of
points b ∈ M such that for every ε > 0 there exists an ε -pseudoorbit going from
b to a:   Bf (a) = {b ∈ M | b f a}.

(ii) The basin of pseudoreachability of the equivalence class [a], denoted

  Bf ([a]) , is:  Bf ([a]) = Bf(a).

(iii) If [a] is a Conley-Ruelle attractor, we refer to its basin of
pseudoreachability as its basin of pseudoattraction, and shall denote it as
Att([a]).

Note that for each a ∈ M ,   Bf (a) ≠ ∅ (since  a ∈ Bf (a) ). An element of M can belong

to several basins of pseudoreachability, and each element of M belongs to the basin of

pseudoattraction of at least one Conley-Ruelle attractor. Therefore the different

asymptotic regimes of a dynamical system, described by a semiflow on M, that is

subject to (very) small perturbations are captured by its Conley-Ruelle attractors.
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3 Strong Conley-Ruelle Attractors for Community-Dynamical
Processes

We now restrict our attention to point-dissipative community-dynamical processes

for closed communities (i.e., communities without immigration). We recall that a

dynamical system is point-dissipative if there exists a bounded set such that each orbit

eventually enters this set and remains in it. The compact and metrizable manifold M of

the previous section here is understood to be the community state space spanned by the

densities of the populations involved in the community-dynamical process under

consideration. For k ≥1 populations 1,…,k, with respective densities n1, ...,nk , M is the

intersection of 0
k k
≥ ⊂R R with the closure of a simply connected neighbourhood of 0 in

kR . M is supposed to be provided with the standard (Euclidean) metric and topology.

For l ∈ N , with 1 ≤ l ≤ k , and for i1, ...,il ∈ {1,...,k} such that 1 ≤ i1 < ... < il ≤ k ,

( )
1 ,..., 0l

k
i ibd ≥R denotes the boundary set { }

11 0( ,..., ) : ... 0
l

k
k i in n n n≥∈ = = =R of 0

k
≥R , and

( )0
kbd ≥R denotes the union of the boundary sets of 0

k
≥R ; furthermore, we write

bdi1,..., il
(M) for ( )

1 ,..., 0l

k
i ibd M≥ ∩R .

The assumption of no immigration translates into the invariance of the bdi1,..., il
(M)

under the semiflow (φt) t≥ 0 . For a ∈ bdi1,..., il
(M) the equivalence class generated by the

relation of mutual pseudoreachability connected to the semiflow φt

bdi1,...,il
(M )

� 
� 

� 
� 

t ≥ 0

will be

denoted as [a]i1 ,...,il
.

In the theory reviewed in Section 2, an ε -pseudoorbit which has a point in common

with (or, more generally, comes arbitrarily close to) a boundary set bdi1,..., il
(M) of M,

may again get away from this boundary set and proceed in the interior ( )int M of the

community state space. This is unrealistic in the case of community-dynamical

processes, in which populations that attain almost zero densities are bound to go

irreversibly extinct by demographic stochasticity. To incorporate this biological

restriction into our considerations we introduce the following notion:
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Definition. An ε -pseudoorbit (nt )t∈ [ t0 , t1 ] in M is called strong if it satisfies the

following property: if tα ∈ [t0,t1] is such that ntα
∈ bdi1 ,...,il

(M) or

1,...,lim ( )
lt i i

t t
n bd M

α→
⊂ , then for all t ∈ [tα ,t1]: nt ∈ bdi1,..., il

(M) .

In addition we define:

Definition. A point n is strongly chain-recurrent if for every ε , T > 0 there is a

strong ε -pseudoorbit of length ≥ T going from n to n. The set of strongly chain-

recurrent points is the strongly chain-recurrent set.

Note that a strongly chain-recurrent point n ∈ M satisfies either one of the following

two mutually exclusive conditions:

1. n as well as every strong ε -pseudoorbit going from n to n belongs to ( )0
kint ≥R ;

2. n as well as every strong ε -pseudoorbit going from n to n belongs to the interior of a
unique boundary set bdi1... il

(M) (with the interior here with regard to the relative
topology on bdi1... il

(M)).

Furthermore, the strongly chain-recurrent set is a subset of the chain-recurrent set.

In accordance with the previous section we define an equivalence relation on M and

a partial ordering on the corresponding equivalence classes, now however in terms of

strong ε -pseudoorbits.

Definition. Let a,b ∈ M .   a fs b ('b is strongly pseudoreachable from a') if for

every ε > 0 there exists a strong ε -pseudoorbit going from a to b.

The relation   fs (to be called strong pseudoreachability) is a preorder on M. It is not

necessarily closed: if  x fs y and x → a , y → b , then not always  a fs b (take e.g. a and

b in different boundary sets of M and not in their intersection).

Definition. Let a,b ∈ M . a ~ s b if  a fs b and  b fs a .

Since   fs is a preorder, ~s is an equivalence relation on M, to be called mutual strong

pseudoreachability. [a]s denotes the equivalence class of a under ~s , and M / ~s the set

of equivalence classes in M under ~s . Note that the relation ~s is not closed. a ~ s b ('a

and b are mutually strongly pseudoreachable') implies that either both a and b belong to

( )0
kint ≥R , or that a and b both belong to the interior of a unique boundary set

bdi1,..., il
(M) .

Notation. For U ⊆ M , let U denote the closure of U in M.
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Proposition. If [ ] ( )sa int M⊂ , then [a]s = [a]; if ( ),...,[ ] ( )
1 ls i ia int bd M⊂ (with

regard to the relative topology on
1,..., ( )

li ibd M ), then [a]s = [a]i1,...,il
.

Consequently, in both cases [a]s is closed.

Proof. M is a normal space, and so are the bdi1,..., il
(M) . Therefore, under the constraints

of the proposition, if b ∈ [a]s there exists a δ > 0 such that for every ε < δ all ε -

pseudoorbits between b and a are confined to ( )int M or to ( ),..., ( )
1 li iint bd M .

Consequently, all of these ε -pseudoorbits are strong ε -pseudoorbits.

Definition. [a]s is called a strong basic class if a (and consequently every

x ∈ [a]s ) is strongly chain-recurrent.

The strongly chain-recurrent set is the union of all strong basic classes. Three equivalent

statements similar to the characterization of basic classes in Section 2 can be made for

strong basic classes:

1. [a]s is a strong basic class;

2. a is a fixed point or [a]s contains more than one point;

3. for all t ≥ 0 : φt([a]s ) =[a]s .

Definition. Let [a]s , [b]s ∈ M / ~s . [a]s ≥s [b]s if  a fs b .

≥s is a partial ordering on the set of equivalence classes of ~s .

Definition. [a]s is a strong Conley-Ruelle attractor if it is a minimal element of

the ordering ≥s .

Proposition. A strong Conley-Ruelle attractor is closed.

Proof. If not ([ ] ( )sa int M⊂ or ( ),...,[ ] ( )
1 ls i ia int bd M⊂ for some i1,…,il), then [a]s is not

a minimal element of s≥ . The result now follows from the previous Proposition.

In addition to the modification of the Conley-Ruelle attractor we adapt the definition of

the basin of pseudoreachability.

Definition. Let a ∈ M .

(i) The basin of strong pseudoreachability of a, denoted  Bfs
(a) , is the collection

of points b ∈ M such that for every ε > 0 there exists a strong ε -pseudoorbit

going from b to a:   Bfs
(a) = {b ∈ M | b fs a}.
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(ii) The basin of strong pseudoreachability of the equivalence class [a]s , denoted

  Bfs
([a]s ) , is:  Bfs

([a]s ) = Bfs
(a) .

(iii) If [a]s is a strong Conley-Ruelle attractor, we refer to its basin of strong

pseudoreachability as its basin of strong pseudoattraction, and shall denote it as

Atts ([a]s ).

The basins of strong pseudoreachability have properties similar to the ones for the

basins of pseudoreachability. That is: for each a ∈ M ,  Bfs
(a) ≠ ∅ ; also, an element of

M can belong to several basins of strong pseudoreachability, and each element of M

belongs to the basin of strong pseudoattraction of at least one strong Conley-Ruelle

attractor.

4 Two Examples

Example 1. In the May-Leonard system as described in [4], the community state moves

towards a Conley-Ruelle attractor in the form of a heteroclinic cycle in 3
0( )bd ≥R ,

connecting three single species equilibria; see Figure 1. These three equilibria are the

strong Conley-Ruelle attractors of the system.

Figure 1

Example 2. Figure 2 depicts a dynamical system consisting of two populations, the

members of which differ only in some neutral marker, and are population-dynamically

equivalent.
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Figure 2

The dynamics is degenerate, in the sense that there exists a line AB of neutrally stable

equilibria. Each equilibrium on this line is a global attractor for the dynamics confined

to the straight line through this equilibrium and the origin (except for the origin itself,

which is an unstable equilibrium on each line). Especially, A and B are globally stable

equilibria for the two single populations.

For each pair E1, E2 of neutrally stable equilibria on AB we have that E1 ~ E2, as E1

and E2 are connected for all ε > 0 by back and forth ε-pseudoorbits consisting of

movement at a fixed speed ε/2 along the line AB. Consequently, the line AB is the

(unique) Conley-Ruelle attractor for the dynamics depicted in figure 2. The strong

Conley-Ruelle attractors are given by equilibria A and B.

5 Discussion

Eventually the populations in a closed community-dynamical system will end up close

to a strong Conley-Ruelle attractor in the interior of an 0
l
≥R (for an appropriate l ≤ k ,

with k the number of populations initially present in the community). The actual

attractor that will be reached may depend on the perturbations that the community is

exposed to.

A word of warning may be in order: Along its way towards a (strong) Conley-Ruelle

attractor, a community may pass through a cascade of (strong) basic classes to which it

initially is attracted but from which it subsequently moves away. These phases each

have their own specific time scale, expressed by a relaxation and excitation time. Since

these times can be of the same order of magnitude as the eventual relaxation time to the

(strong) Conley-Ruelle attractor, it may in empirical practice sometimes be hard to

decide whether or not a community is already approaching one of its (strong) Conley-

Ruelle attractors.
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In the context of phenotypic trait evolution as studied in adaptive dynamics (e.g. [3],

[5]), it is assumed that a mutant population emerges from a resident community on an

attractor. This assumption is based on the notion that the time needed for a community

to reach its attractor is shorter than the timespan between the occurrences of successful

mutant populations (successful in the sense that they invade the resident community and

increase their density, causing a change from residential community dynamics into a

dynamics of the resident populations with the mutant population; as regards the

justification of the assumption of time scale separation the proof of the pudding is in the

eating.). However, it never was made very clear what was meant with an attractor.

Basically the theory was developed only for systems having classical attractors with

pretty strong properties, such as equilibria or limit cycles. The concept of strong

Conley-Ruelle attractors provides one possible step towards a further extension of the

reach of adaptive dynamics theory. In the special case of Lotka-Volterra community

dynamics, it is more or less clear how one can build a theory starting from this attractor

concept only (see [3]). In order to arrive at a well-structured theory of adaptive

dynamics for more general types of community dynamics, at least some restrictions will

be necessary on the properties of the attractors that can occur. In any case, strong

Conley-Ruelle attractors appear to be the minimal ingredients from which to start.
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