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Abstract

Most studies of evolutionarily stable strategies (ESSes) assume clonal reproduction. At
least in the simplest cases, more realistic genetic models yield results compatible with the
clonal results. In this paper we study a case where the diploid and clonal results are not
expected to be similar: evolution in a metapopulation with small local population sizes. It
turns out, that although there are differences between the clonal and diploid ESS dispersal
rates, the trait under consideration, the discrepancy is irrelevant for all practical purposes
(less than 2%).
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On diploid versus clonal ESSes in
metapopulations

Kalle Parvinen
Johan AJ Metz

1 Introduction

For many years ESS theory (Maynard Smith and Price, 1973; Maynard Smith, 1976;
Lawlor and Maynard Smith, 1976) and its more recent dynamic extension adaptive dy-
namics (Metz et al., 1996; Dieckmann and Law, 1996; Geritz et al., 1997, 1998) has been
used as a general tool for studying evolution in realistic ecological models with environmen-
tal feedback. ESS and adaptive dynamics studies generally assume clonal reproduction.
However, there are many results showing that, at least in the simplest cases, more re-
alistic genetic models yield results compatible with the clonal ones (Eshel and Feldman,
1984; Eshel, 1996; Hammerstein, 1996). However, the situation may be expected to differ
when we consider trait evolution in metapopulations with small local population sizes, or
haystack models for that matter, as there mutants may form an appreciable fraction of
the inhabitants of any patches containing them, even when the mutant population is still
globally small. So we cannot just neglect mutant homozygotes, while it is the feasibility
of this approximation that lies at the basis of the correspondence of the clonal and diploid
ESSs. In this paper we study the size of the resulting discrepancies for a set of metapopu-
lation models in continuous time for which we have available a relatively easily calculated
measure of invasion fitness (Metz et al., 1992; Rand et al., 1994) based on first principles,
both for the clonal (Metz and Gyllenberg, 2001) and the diploid case (developed in this
paper). The particular metapopulation model under study was presented in clonal form by
Parvinen et al. (2002). The, to us, surprising conclusion is that although there indeed are
differences between the calculated clonal and diploid ESS dispersal rates, for this model
at least the discrepancy is so minor as to be irrelevant for all practical purposes.

2 The population model

The model that we use consists of an infinite number of patches. Each patch can support
a local population, subject to the events illustrated in Figure 1.

Given a local population size of n individuals within a patch, the per capita birth and
death rates are given by b, and d,, respectively. At carrying capacity k, birth and death
rates are equal, by = di. The maximum population size within a patch is K. Individuals
migrate out of their patches at a rate m, entering the disperser pool of the metapopulation.
Below this dispersal rate is assumed to be the parameter under evolutionary control.
While in the disperser pool, individuals experience mortality at rate d. They leave the
disperser pool by settling into a new patch at rate s. An individual thus has the probability
p=d/(s+d) of dying during dispersal. The probability to survive dispersal is 7 = 1 — p.
Occasionally a local catastrophe kills the local population. The patch remains habitable
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Figure 1: Transition diagram for a single patch. Arrows describe the possible transitions in
the state of the patch. Local population size is increased by one by birth and immigration
events and decreases by one when a death or emigration event occurs. Local extinction
events can kill all individuals in a patch, thus resetting its population size to zero. At
carrying capacity k, birth and death rates are equal. (Source: Parvinen et al. 2002)

and can be recolonized by dispersers from the disperser pool. These extinctions of a local
population due to external disturbances occur at rate e.

At the metapopulation level we study the local population size distribution p,,, where
Pr, is the probability that a randomly selected patch has a local population with population
size n. The combination of local population size distribution p,, and the size of the dispersal
pool D experience the following dynamics:

%po = —sDpo + (d1 +m)p1 + e(1 — po) ,

atPn = [SD + (n - l)bn—l]pn—l - [n(bn +m+ dn) +sD + e]pn (1)
+(n+1)(dpt1 + m)pps1 forn >0,

4D = —sD+m3 % np, — dD .

2.1 Clonal fitness

The calculation of fitness in the clonal model has been explained in Metz and Gyllenberg
(2001) and Parvinen et al. (2002). For the sake of completeness, we give a brief summary,
as it forms the basis for the fitness calculation in the diploid case.

The method for determining values of invasion fitness is based on first solving for the
equilibrium p, of (1) for a given resident strategy. A mutant disperser has probability
Pns/(s+ d) to end up in an (n, 0)-patch, turning it into an (n, 1)-patch. The newly founded
colony then undergoes a Markovian stochastic population process until extinction (See
Fig. 2a). Extinction of such a colony can result from a catastrophe killing the whole
local population, or from demographic stochasticity bringing the number of mutants to
zero. The rate at which a patch with size (n, n’) becomes a patch with size (n,n’ + 1) we
denote as cg’:/ etc. The subscript (n, n') refers to a patch that initially has n resident and
n' mutant iﬁdividuals, while the superscript (0, —) indicates that the number of resident
individuals resulting from the considered type of event remains unchanged whereas the
number of mutant individuals is decreased by 1. For n > 0 and n’ > 1, because a mutant
colony has at least one mutant, we have

0,+ _ /

Cp = T bt
0,— _ / /

cnﬂl/ = n (dn—i—n/ +m ) (2)
+70 J—

Cn! = $D + nby

c’r_L;n/ = n(dnyn +m)



In addition we define

0,0 0,+ 0,—
Cn7n/ - Cn7n/ + Cn7n/ + C / + C / +e (3)

= (n+n")dyiw —|— nm +n'm’' +sD + (n+n)bp i +e

Let ©,, v be the average number of times that a local mutant colony passes trough state
(n,n’) before going extinct. By combining results from Markov chain theory (Kemeny and
Snell, 1960) and techniques for numerical mathematics (Faddeev and Faddeeva, 1963) it
can be shown that v, , can be calculated as the limit v, ;7 (c0) from the recurrence

O o 0
vn,n/(t+1) - cg(;l+ vn,n/—l—l( )+ OO vn ln(t)
nbn /41 On+ 1,n/ (4)
)
S (1) + B v (1)
n+1,n/ n,n/—1

forn > 0,n' > 1, n+n' < K with the boundary conditions v, o = pns/(s + CZ), Vo1 =0
and v; k4+1—; = 0, together with the convention C?LBL 1 and cgg = 1, for any initial
condition. We used the Gauss-Seidel version (Faddeev and Faddeeva, 1963) of the above
Jacobi iteration to speed up the computation.

The quantity cO’O/ is the rate at which the colony leaves the state n,n’. Therefore the
average time spent there each time is 1 / c ,, and the average total time that a mutant
colony will spend in state (n, n') is Oy, / cn - The expected number of mutant dispersers

sent out when the colony is in state (n,n’) is m/n/v,,// cg’(r)ﬂ. When we sum over all
possible states for the colony, we get the expected number of mutant dispersers

K-1K-n s

Ry=m'y 3 Hgnr (5)

n=0 n'=1 nn

which is the metapopulation-equivalent of the basic reproduction ratio of the mutant, as
it is familiar from ordinary population dynamics. Notice, however, that Rj, measures the
increase in the mutant population size between dispersal events, as opposed to between
birth events. If, as usual, we define the invasion fitness as the average long-term per
capita growth rate of the small mutant population in the fixed biotic environment set by
the resident, then, for given dispersal rates of resident and mutant, m and m’, the invasion
fitness s,,(m') is sign-equivalent with log Ry,.

2.2 Diploid fitness

In the diploid version of the model, a mutant can be either a heterozygote or a homozy-
gote. This applies both to mutant dispersers and the mutants inside a patch. We denote
as (n,n/,n*) a situation with n resident homozygotes, n’ heterozygotes and n* mutant
homozygotes (See Fig. 2b). When a mutant arrives in a patch with a resident population
size n, denoted as (n, 0, 0) this population is turned either to (n, 1,0) or (n, 0, 1), depending
on the type of the mutant.

As in the clonal case, the newly founded mutant colony undergoes a Markovian stochas-
tic population process until extinction. The corresponding rates are, for the special case
where inheritance is intermediate, that is, the phenotype of a heterozygote is the average
of the phenotypes of a resident homozygote and a mutant homozygote,
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Figure 2: Sketch of the possible states of a mutant colony in the (A) clonal model and (B)
diploid model.
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The birth rates take account of the possible genetic combinations produced with the
assumption of random mating, and otherwise these quantities are analogous to the clonal
case. Take as an example the case when a resident is born, the rate of which is in
the quantity c;:”r?;?n*. A resident homozygote mates with a resident homozygote with
probability n/N, in which case the offspring is a resident homozygote. It mates with a
heterozygote with probability n’/N, in which case the offspring is a resident homozygote
with probability 1/2. A resident homozygote and mutant homozygote cannot get a resident
homozygote offspring. This results in the term %ﬁﬂnbnjLn/jLn*. Other birth rates are
obtained in a similar way.

In the clonal version of the model, the basic reproduction ratio was simply the expected
number of dispersers produced by one disperser. In the diploid model, we have to take
into account that there are two types of dispersers. The diploid version of the recurrence

is
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1 cn+1,n/,n* n—1,n' n*
Un,n/ ,n* (t + ) — 000 Un+1,n/ ,n* (t) + 000 Un—1,n/ ,n* (t)
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forn>0,n >0,n*>0 n+n">1 n+n +n* <K with the boundary conditions

Un0,0 = Pns/(8+d), V_1nnr = Un—1n* = Upp,—1 = 0 and v; jky1—i—; = 0, together
with the convention 02’37’00 = Dhetero, 02’7%’3 = 1 — Phetero and 02’7%70 =1.

Using this recurrence method, we compute the number of times ﬁgeﬁ?rg that a colony
spends in state (n,n’, n*) when all arriving mutants are heterozygotes by setting phetero =
1. Correspondingly, by setting phetero = 0 we compute the number of times ﬁﬁg??ﬁf that a
colony spends in state (n, n’, n*) when all arriving mutants are homozygotes. The expected
number of heterozygote dispersers produced by a colony initiated by a mutant homozygote

1S

~mutant

!

a _ m+ m’ NV, ! n* (8)

hetero mutant — 9 E 0,0,0 ;
n7n/7n* n7n/7n*

and the other quantities apetero hetero, @mutant hetero a0d Gmutant mutant are defined analo-

gously. Now define the matrix M as

ap a
M = ( etero hetero hetero mutant) ) (9)

Gmutant hetero  @mutant mutant

The average number of heterozygotes nj .., and mutant homozygotes n .n: in the
disperser generation ¢ will be obtained from

t 0
Nhetero — Mt Npetero (10)
nt n?
mutant mutant
So the mutant population will increase over the generations if and only if the dominant
eigenvalue of the matrix M is greater than one. Therefore, for the fitness in the form
of a basic reproduction ratio (Diekmann et al., 1990, 1998) we may take the dominant

eigenvalue of the matrix M. The fraction of heterozygotes and mutant homozygotes is
obtained from the normalized eigenvector corresponding to the dominant eigenvalue.

3 Results

In order to evaluate the difference between the diploid and clonal evolutionarily stable
strategies, we did a variety of numerical explorations. For simplicity, we assume that per
capita birth rates are unaffected by density, b, = r, while per capita death rates increase
linearly with local population size, d,, = rn/k, where r is the intrinsic growth rate of local
populations and k determines the local carrying capacity of patches. Consequently local
growth is logistic, f, = b, — d, = 7r(1 —n/k).
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Figure 3: A) Clonal and B) diploid pairwise invasibility plots (PIP). Parameters: m =
0.995, u=01,r=1,k=25 K =5.

The general impression from our exploration is that there is some difference in the
resulting evolutionarily stable strategies, but the difference is quite small (See Fig. 3).
We shall further illustrate this by considering the dependence of the ESS on the carrying
capacity k. The natural intuition is that the difference will be largest for small k, as then
the probability that mutant come as homozygotes is largest. The clonal and diploid model
give us the same qualitative result that increasing the carrying capacity decreases dispersal
(Fig. 4a). Even better, as Figure 4b shows, the difference between the two cases turn out
to be minor on the full range of parameter values. However, contrary to naive expectation,
no clear pattern appears for the effect of the carrying capacity on the difference between the
diploid and clonal model. The appearance of both heterozygotes and mutant homozygotes
seems to be one force that makes the evolutionarily stable strategies different.

As another comparison we look at the dependence of the ESS on the catastrophe rate
e. Parvinen et al. (2002) found that increasing the catastrophe rate can result in several
responses in the clonal model: Dispersal can be monotonically increasing or decreasing, or
there may be an intermediate minimum or maximum. In Figure ba dispersal rate increases
with the catastrophe rate both in the clonal and diploid model. Again the difference
between the two cases is very small, and becomes even smaller for large catastrophe rates
(Fig. 5b). Our heuristic explanation for this is that increasing the catastrophe rate
decreases the resident population size and increases the amount of empty patches. In
such a situation, mutants and residents rarely see each other and the situation is close to
the clonal case. One sign of this is that the probability of being a heterozygote disperser
decreases with increasing catastrophe rate: dispersing mutant homozygotes can find empty
patches and produce mutant homozygotes for a long time before the first resident disperser
arrives.

4 Discussion

In most studies of evolutionarily stable strategies clonal reproduction is assumed. More
realistic genetic models, at least in the simplest cases, have been shown to yield results
compatible with the clonal results. The clonal and diploid results are expected to differ
in models for viscous populations, or in the case of metapopulation models, where the
local population sizes are small. However, luckily the situation seems less dire than might
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Figure 4: Effect of the carrying capacity k. A) Clonal ESS plotted with a solid curve
and diploid ESS (DSS) with a dotted curve. B) The fraction DSS/ESS. The domain of
uncertainty is plotted with dotted curves. C) The probability that a mutant disperser is
a heterozygote. The metapopulation is not viable for k£ < 1.5. Parameters: m = 0.995,
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be expected, at least for the demographic variable studied by us, namely dispersal rates.
Here we found that the difference in ESS is actually so small as to be irrelevant for all

practical purposes (less than 2%).
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Figure 5: Effect of the catastrophe rate. A) Clonal ESS plotted with a solid curve and
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tainty is plotted with dotted curves. C) The probability that a mutant disperser is a het-
erozygote. The metapopulation is not viable for catastrophe rates larger than eq,; ~ 0.5.
Parameters: # =0.995,r =1, k = 2.5, K = 5.
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