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PREFACE

Models with distributed-delay variables arise in many subjects of
interest to IIASA. They occur for example in economic planning as
the distributed-lag policy model, in time-series analysis as the ARIMA
process, and in population and agricultural planning as the age-dependent
regenerative process.  Derivation of optimal estimation and control
procedures for such models is the subject of this paper.
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Stochastic Control for Linear

Discrete-Time Distributed-Lag Models

1. INTRODUCTION

An important class of linear-quadratic Gaussian problems
has lagged variables in the dynamics or the observations: prob-
lems where process behavior depends on the past trajectory
for example, where control action is retarded, or where infor-
mation is delayed. For such problems in continuous time a
fairly comprehensive theory is available (see for example Koivo
(1974), Kwong and Willsky (1977), Arthur (1977)); for discrete
time no satisfactory comprehensive theory as yet exists, but
certain procedures are available for numerical solution (Chow

(1975), Aoki (1976)).

Both the Chow and the Aoki procedures redefine the state
vector to one of higher dimension to transform the original
lagged problem into an equivalent, but larger, non-lagged prob-
lem. Standard results then apply. While these methods are
convenient they suffer drawbacks. Transition matrices for the
equivalent problem are large and sparse, with side dimension
N determined by the duration of the longest lags. Calculation
of the Riccati sequence then requires operations of order N3 at
each step. Also, since results are expressed in terms of the
new, non-lagged problem, much of the special structure of the

time-lag controller and estimator is obscured.

It would be better from both computational and theoretical
points of view to derive results in terms of the original problem
and in non-sparse form. For continuous-time problems this is
possible, using the so-called Carathéodory and maximum-principle-
Fredholm techniques. These, however, are ill-suited to discrete
time and to problems with delays in the control: we cannot apply

them here. One way to derive non-sparse results for discrete-time



delay problems would be to use a direct dynamic programming argu-
ment (see Arthur (1977)). A second and yet more straightforward
derivation is proposed in this paper. We translate the problem
into equivalent non-lagged form and apply standard theory, then
use careful matrix partitioning to reexpress the solution in terms
of the variables and matrices of the original problem. The results
are then in the non-sparse form we want: the qualitative struc-
ture of the time-lag controller and estimator stands out clearly;
Riccati calculations are reduced to order ¥2; and the discrete-
time Riccati equations correspond almost term for term to those
for the known continuous-time case--the connection between the

two becomes clear.

The problem treated is general: distributed lags may occur
in dynamics and observations in both state and control variables.
Results apply not only to design of discrete-time filters and
controllers, but to numerical solution of continuous-time prob-

lems which are discretized at the outset.

2. THLC DISTRIBUTED-LAG PROBLEM

We study linear processes that evolve according to the dis-

tributed-lag dynamics:
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where a linear measurement of past states and controls is available:
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The distributed-lag dynamics of this process include single lags
as a special case, and the observations include pure informational
delay as a special case. The usual notation applies: x is an
n-dimensional vector describing the state, u an m-dimensional
vector of policy instruments, z a p-dimensional vector of obser-
vations. The parameter matrices are assumed known and nonrandom.

All disturbance or error vectors throughout the paper, unless



stated otherwise, are distributed normally, are independent of
each other, and have zero mean. Expectations E[ ] are taken over
appropriate states, observations, and, where necessary, controls.
I, will denote an identity matrix of dimension n. The process
disturbance wy and measurement error wi have variances Qi and Wi
(the latter matrix is assumed positive definite). 1Initial values
XorererX_ 1 and U_qre..,u_y, are assumed to be distributed
normally with given means and variances. Subsequent estimation

is conditioned on this initial information.

We wish to choose controls uy at times 0 to T-1 to minimize
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J = Eliz (xiQO.Xi + uiRiui) + xTQ0 XT] , (3)
i=0 1 T

where the expectation E is taken over all states and observations;

Qp is assumed positive semidefinite and R positive definite.

Z; will denote {zo,...,zi}, the information available at time 1i.

In most applications the implementation of controls is
imperfect. The aetual value of the controls uy will deviate

from the intended value u; as in
u. = u. + v. , (4)

where implementation error Vi has variance Ti. Usually there
is no need to consider this type of error separately--it can be
subsumed into general process error by substituting the intended
for the actual policy value in the dynamics. With lags in the
control, however, this procedure would cause sequential corre-
lation of process errors. Instead we substitute the intended

control only partially into the dynamics, by writing

k
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with A, = w, + Civ. . (6)



Composite error, Ai' now has mean zero and variance Qi-+CiTiCi.

We thus retain the advantages of sequentially uncorrelated

process noise, X and perfectly known control, u;, at the price

il
of including past controls which are not perfectly known. These
must be estimated, as must the state, at each step. (Note that
the problem is unchanged by substituting u; for u; in the

performance criterion. EI zuiRiui] + J Tr(R;T;) replaces

E[ ZuiRiui] and since the trace term is constant it does not

affect the solution.)

3. THE EQUIVALENT PROBLEM AND SOLUTION

To solve the problem, we first translate it to an equivalent
non-lagged form and apply standard results. Define y,;, the

history of the system at time i, to be
1 1 1 ) L}
[x3eeerxi_p | ui_qreeerug ] ,

the vector obtained by combining the state history (state lagged
variables) with the control history (control lagged variables}.

We take the history as the new "state" of the equivalent system.

The history evolves according to
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Writing the history vector as Y the problem is

the standard non-lagged form

YiH1

where Ei has variance Ei.

It remains to rewrite the criterion in this form.

Qi (positive semidefinite) to be

r -
Q9 0 0

0 0 0 J
where the partitions are taken to correspond to

i_1r---rx£_k l Ui_.l,.-.,ul!_h] .

The problem then becomes: choose ui(Zi) to minimize

now in
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Define



T-1
J = E| } (yjQiv; + ujRiu.) + yiOuv, . (11)
i=0 *
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Results for this problem are standard. They may be found
for example in Meier, Larson and Tether (1971). For our later

use we summarize them briefly here:

1. The optimal control policy is linear in the conditional

mean of the state, §i|i (= E [yjl: the " |, " notation means
2
i

conditioned on all information available at time i):

_  _p—1
u. = Pi

i Di¥i|i - t12)

The control gain matrices are

. .
Pi = (CiKi+1Ci + Ri) > 0 (13)

D. = C.K. .o

i 1% - (1)

where K. is the solution to the Riccati difference system
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2. The conditional mean evolves according to the Kalman
filter equation
where 9; is the measurement residual
93 T 2y T Hi¥y i a7

The prediction §i|i—1 is extrapolated from §i|i by
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The prediction-error covariance matrix,

Si = E[(yi - 1)(yi - yi|i_1)'], propagates according to

yi|i—

Ve o mrs .o A= o
i+ i5:%; &5 - 9;S;H; (H, S H, +¥.) 'H;S;0; . (19)

The optimal filter gain, Fi’ is given by

F. = S;H!(H;S;H! + ¥.) L (20)
We now have a solution in terms of variable Y and sparse
matrices ¢, C, etc. In principle the problem is "solved". Note
however that computation of Ki and Si would require sparse-matrix
multiplications of the form 3' K ¢ at each step (order (nk+mh+n)3
multiplications). 1In the next two sections we reduce such opera-
tions significantly and reexpress the above results in terms of

the original problem variables and matrices.

4. OPTIMAL CONTROL POLICY

In terms of the original problem, the conditional mean

v i Xpr d %! X: G a) '
yi|i 15 reexpressed as Xi|il---l i—kli i_1|il---lui_h|i]

where the notation X, is read as the estimate of Xi_g given

i-0|i
all information available at time i.

We now partition Ky and D,:

K, = ; D; = [Vv; [W;]

(The submatrices K and Vi correspond to the state history,

0i
XireoorXy i K2 and wi correspond to the control history,
i

ui—1""’ui—h’)
We may now obtain the optimal control law in terms of the

matrices of the original problem, by substituting for Dy and §i|i



in (12). This yields:

k h
. p—1 ~ A
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The optimal policy is a feedback law, linear in the current

estimates of the state and control histories.

By substituting the original problem matrices for ¢ and €
in (13) and (14) and multiplying out, we obtain the gain matrices

P,, V., and W,:
i i

1
P, = CiKOi(EQO)Ci + CiKH(Eﬁ” + K.'Ii(l%O)Ci + Kzi(l1,1) + Ry
Vo) = CiKOi(EQO)Ai(e) + CiKOi(Eﬁem + K;i(l;omi(e) + Kii(lieﬂ) (22)
W, () = C{K(0,00B; (8) + CIKy(0,6+1) + K '(1,00B, (6) + K,(1,6+1)

i+1 i+1 i+1 i+1

Finally the Riccati difference system (15) is expanded to yield

a recursion for the submatrices KO’ K1, K2:

=
o
@
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Ai(G)KO(O,O)Ai(¢) + Ai(e)K (0,4+1) + K (6+1,0)Ai(¢)

i i1 0541 0541
0y 8(8,0) + Ky (6+1,0+1) = vi(e)Pi'1 A0
1 i+1
K, (8,9) = Al (8)K,(0,0)B, ($) + A! (8)K, (0,0+1) + K. (6+1,0)B, (¢)
1i 1 0i+1 1 1 1i+‘l 0i+1 1 (23)

-1
+ K, (8+1,4+1) - V. (0)P. W, (¢)

i+ 1
K,(8,4) = B:(8)K,(0,0)B, (d) + B.(8)K, (0,4+1) + K! (8+1,0)B. (¢)
23 10 1 1 i+ 1

' -1
+ K + . P, .
2£S1 1,¢41) W, ()P, "W, ()
with end conditions Ko(8,9) = Q 60(6,¢); K = K = 0.
T T T T



(In the above results the indices 6,¢ are taken over 0 to k or
1 to h as appropriate. The symbol 60(6,¢) = 1 if 6 and ¢ are
zZero; 60(6,¢) = 0 otherwise. Where undefined matrices occur,

e.g., Ko(k+1,0), they are taken as zero.)

The control law parameters may be precomputed. Only the
estimates of the lagged variables need then be fed back in real

time to determine the optimal control.

In the case of state lags only (where B(8)=0), the results
simplify: W, Ky, K2 disappear. Where there are control lags

only (A(8)=0), V, K1, and K0 except for KO(O,O) disappear.

5. THE OPTIMAL FILTER-SMOOTHER

We now translate the filter results of Section 3 to a form

that fits the original lagged problem.
Partition F., and S. as
i i

MiL. Soi S1

where Li is defined as

_ 3 ady |
L, = [H;S;H. + ¥;] > 0

(The submatrix dimensions of M, and SOi correspond to the state

history, those of N, and Sp, to the control history.)

Now, substituting for 9i the Kalman filter of (16)

|1
becomes at each stage an estimator for the history:

Xi-g)i = Xi-p|i-1*My(O)Ly
(24)
Yicgli T Yi-g|i-1 FNi 9Dy 9y
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The history estimates are updated at each stage by combining the
previous-stage estimate with the new information gi-—they are
improved sequentially as new information comes in, where 9;

(the residual) is obtained from (17) as

k h
= - R . . : . 25
9i zi eoni(e)x1—8|1—1 +e£1G1(e)Gl—8|1-1 (25)
The prediction equation (18) reduces to

k h . .

Xi+1]4 Laj@x; g; + 1 Bi(0)a; g5 +Cyuy); 0 (26)
8=0 6=1
Yiji T %1 v

with initial conditions §—8|-1 = E[x_e], G_e|_1 = E[u_e] .

The above equations (24) to (26) make up a recursion system
for the estimates of the state and control histories. The filter
for the equivalent non-lagged problem has now become a filter-
smoother (an estimator of present and past values) for the
original lagged problem.

It remains to specify the filter-smoother gain matrices.
Equation (20) and the definitions of Fi and L, yield

= ! ' [} v '
Ly HiSo Hy + HyS, Gj + Gy8;7 Hj + G;8, Gj + ¥; > 0,
1 1 1 1
— L} 1
M; = S, Hi +5, G} , (27)
1 1
—_— L] 1
N, = S, H] +S,Gl .
1 1

We now expand (19) to arrive at a recursive system for the
submatrices of S;:
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-1 '
Sy (8+1,0+1) S,(0,0) - M ()L MI(s)

i+1 i
-1
S,(0+1,0+1) = S1§6,¢) - Mi(e)Li Ni(¢) ' (28)
i+1 1

-1 .
S, (8+1,0+1) §,(8,¢9) - Ni(e)Li Ni(¢)
i+1 i
(again with indices 0,¢ taken over the appropriate range 0 to k,

or 1 to h). Note that So(e+1,¢+1) and so(e,¢) are both the
i+1 i

estimate-error covariance matrices for x. , X . But S
i-6 i-¢ 0i+1

is conditioned on Zi’ while S is conditioned on Zi—1'

03

Equations (28) therefore update the covariance of the history
estimates. Since the negative term is positive semidefinite,
the covariances cannot increase as additional information is

brought in.

The equations (28) are used with the expanded form of (19)

to yield the error covariance matrices of the prediction §i+1|i

and aili with the other estimates:
k k k h
Sy (0,00 = ) ZAi(O)SO(6+1,¢+1)A;L(¢) ) ZAi(e)S1(8+1,¢+1)B]f_(¢)
i+1 6=0 ¢=0 i+1 8=0 ¢=1 i+1
Po3 P
+ B. (6)S! (8+1,4+1)A! (¢) + B. (8)S.,(6+1,¢+1)B! (¢) + A. ,
9=1 4=0 ©  1i+1 17 g e T 2 1 1
k h
SO(0,¢) = Z Ai(9)50(9+1,¢) + Z B-(G)Sa(6+1,¢) ' d=1,.40.,k
141 8=0 i+1 g=1 1t i+1
(29)
i j
S.(0,1) = ) A,(8)S,(841,1) + ) B. (8)S. (6+1,1) + C.T. .,
4 0=0 * i1 0=1 T 2j41 11
Kk h
$,(0,0) = ) A, (8)S,(6+1,4) + | B, (8)S,(841,0) , ¢ =2,...,h
i+1 6=0 i+1 8=1 i+1
82(1,1) = Ti ;  otherwise S1,S2 =0.

i+1
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Recursion of S is initialized by equating SO(B,¢), s1(e,¢),

S,(6,¢) at time 0 to Cov (x_grX_,), Cov(x_e,u_ ), Coviu_g,u_

).
9 9 ¢
Since filter gain and covariance equations do not depend on real-
time values, they may be computed in advance. Only the past-

history estimates need be computed on line.

The filter-smoother derived above specializes to that of
Mishra and Rajamani (1975) for the state-variable distributed-

lag case they consider.

6. REMARKS AND EXTENSIONS

We have obtained an optimal controller and estimator
expressed in terms of the original problem. The resulting gain
matrix expressions in (22), (23) and (27) to (29) sSeem more lengthy
than those for the equivalent problem, but they require multipli-

2

cations of order (nk + mh+ n)“ rather than (nk+mh+n)3 at each step.

The time-lag structure of the controller and estimator is
clear from (21) and (24) to (26). 1In contrast to the no-lag
case, the controller does not use a once-only estimate of each
variable; instead it exploits the fact that lagged variables
remain in the dynamics for some time, and during this time the
system can "learn" by mixing in new information. For this reason,
if estimation lags are shorter than dynamics lags, estimation
must still proceed back to the dynamics lag-limits. The
controller acts on changing but constantly improving lagged-
variable estimates. Note that in cases of informational delay
the estimator is constructed to "predict" those lagged variables
that have not yet entered direct observation. These "predictions”

improve as time progresses.

The discrete-time matrix Riccati results above correspond
almost term by term to those for the continuous-time case.
Extra terms are present however due to the discrete time interval.
It is therefore not possible to obtain the discrete results by

discretization of the continuous results; it is possible, however,
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to go in the other direction. The discrete results can yield
the continuous ones by appropriate passage to the limit (see
Arthur (1977)).

Some extensions of the problem are worth noting briefly.
For example the results are easily modified to the case of a
time-lagged criterion. Also, varying lag-limits may be accommo-
dated by replacing k and h by k(i) and h{i), provided k(i) and
h(i) do not lengthen by more than one unit per unit time.

Otherwise the maximum lag duration can serve as k or h.

The above results carry over to the infinite-horizon, time-
invariant regulator case as long as the properties strong
econtrollability and strong observability are met. That is, we

must be able to simultaneously control and consistently estimate

not just the present state X but the entire history, Kireoor Xy o
U, _qresesYy - (CE, for example Thowsen (1977), or Delfour and
Mitter (1972).) These properties then guarantee (a) existence

of optimal controls and optimal estimator given an infinite
horizon, (b) asymptotic stability of the closed estimator-
feedback controller system, (c) convergence of the gain matrices

to stationary values.

7. CONCLUSIONS

Discrete-time stochastic control results were presented
for LQG problems with distributed lags in dynamics and obser-
vations. Optimal controls are linear in the estimates of past
states and controls, and an optimal filter-smoother obtains
and updates these estimates in linear fashion. Gain-matrix
calculations are faster than in the usual high-dimensional
methods, and the discrete-time results show close correspondence

to those for the continuous-time case.
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