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Abstract 

The implication of risks for justifying long-term investment remains a controversial 
issue. For example, how can we justify mitigation efforts for a 200-year flood that may, 
in fact, occur in one year or in 300 years? Discount rates obtained from capital markets 
are linked to assets with lifespans of a few decades and, as such, may significantly 
underestimate the results of long-term mitigations. In this paper, we show that the 
explicit treatment of extreme catastrophic events and related uncertain time horizons 
and risks induce dynamically adjusted discount rates, conditional on the degree of social 
commitment to mitigate risk. In particular, the standard time consistent geometric 
(exponential) discount factors are induced by an event with time horizons characterized 
by a “memoryless” geometric (exponential) probability distribution. A set of such 
events induces declining time inconsistent discount rates that are dominated by least 
probable extreme events. In general, risk affects discount rates, which alter the optimal 
mitigation efforts that in turn, change the risk. We show that the induced discount 
factors can be analyzed by solving stochastic optimization problems. Our simulation 
results indicate that the misperception of time inconsistency associated with induced 
discounting may dramatically effect ― delay or provoke ― the possibility of a 
catastrophic collapse. 
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Induced Discounting and Its Implications  
to Catastrophic Risk Management  
Tatiana Ermolieva, Yuri Ermoliev, Cameron Hepburn, 
Sten Nilsson and Michael Obersteiner 

1 Introduction 

The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report 
indicates the degree of extreme uncertainties underlying climate change policy 
assessment. In particular, uncertainties are inevitably large when policies involve very 
long time horizons of a century or more. Such time horizons pose serious challenges to 
standard ideas about investments and discounting.  

How can we justify investments into mitigation efforts, which may possibly turn into 
benefits over long and uncertain time horizons in the future? This is a key question in 
catastrophic risk management. The discounting is supposed to impose time preferences 
to answer this question. There are several possibilities for choosing discount rates (see, 
for example, the discussion in Akerlof (1991), Arrow and Lind (1970), Newell and 
Pizer (2001), and Portney and Weyant (1999)). One possibility is to use the rates 
obtained in capital markets, where investments are discounted with respect to both time 
and risk. The standard geometric discount factor )(td  is usually connected with a 

constant rate r  of returns from capital markets, i.e., rtt ertd −≈+= )1/(1)( . Since 
returns in capital markets are linked to assets with a lifespan of a few decades, this 
choice dramatically reduces the impacts that investments have beyond these intervals. 
Another serious problem (Newell and Pizer, 2001; Weitzman, 1999) arises from the use 
of the expected value Er  and the discount factor Erte−  that implies additional 
significant reduction of future values in contrast to the expected discount factor rtEe−  
since Ertrt eEe −− >> . 

Ramsey (1928) argued that to apply a positive rate to discount values across generations 
is “ethically indefensible”, which often leads to the tendency (see, e.g., the discussion in 
Ainslie (1992) and Newell and Pizer (2001)) of applying low “intergenerational 
discounting” over longer horizons. However, the use of discount factors other than 
geometric discount factors produces “time inconsistent” preferences affected by slowing 
down long-term projects. This inconsistency may lead to “unforeseen” collapses for a 
society (Hepburn, 2002) that does not anticipate time-inconsistent preferences.  

In this paper, we deal with discounting and time preferences that are induced by the 
explicit treatment of long-term goals, uncertainties, extreme events and risks. Namely, 
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we analyze the implication of uncertain time horizons.  The concept of random time 
horizons associated with the occurrence of the most distractive catastrophic event, so-
called stopping times, is a key feature of the catastrophic risk models proposed in 
(Ermolieva, 1997; Ermoliev et al., 2000a, b; Ermolieva et al., 2001). This concept is 
also strongly connected with “life chances” components of social time preferences 
(Akerlof, 1991), which attracted surprisingly little attention in recent research. For 
environmental problems, time horizons for balancing costs and benefits, i.e., the 
lifespans of investments are often linked to the lifespans of pollutants and related 
extreme events, e.g., such notions as 100-year, or 500-year floods exist. The explicit 
introduction of uncertainties associated with occurrences of extreme events implicitly 
induces a time preference, which may have a time inconsistent character defined by 
time dependent discount rates. Section 2 analyzes the implications of random time 
horizons on discounting. In particular, the standard geometric (exponential) discounting 
is induced by an event that is characterized by a random time horizon with a geometric 
(or exponential) “memoryless” probability distribution. The random time horizon 
associated with the first event from a set of possible events induces dynamically 
declining discount rates that are dominated by least probable extreme events. The 
explicit introduction of risk management decisions induces endogenous discounting that 
may, in a sense, equally emphasize the future and the present. Section 3 summarizes 
some implications of induced discounting and its time inconsistency on long-term 
strategic decisions. Section 4 describes a (stochastic optimization) catastrophic flood 
management model that is used to illustrate these implications by numerical 
experiments in Section 5. The long-term uncertain horizons of the model allow the 
evaluation of threats regarding misperceptions of the time inconsistency for three 
possible societies (“naïve”, “sophisticated” and “committed”) discussed in economic 
literature (Akerlof, 1991; Hepburn, 2002; Marglin, 1963). We illustrate how different 
types of societies effect ― delay or provoke ― the possibility of catastrophic collapse. 
The conclusions are presented in Section 6.  

2 Induced Discounting 

2.1 Standard Discounting 

First of all, let us consider the simplest situation. Assume that an extreme event, such as 
a flood or an earthquake, may occur in time intervals ,...1,0=t  with probability p . This 
is often defined as a ( p/1 )-year event, say, a 100-year flood. In fact, p/1  is the 
expected “waiting” time until the event occurs although the event, for example a 100-
year flood, may occur in two weeks or in 300 years. In this case we can speak of a 
random time horizon induced by the event. Besides the uncertainties concerning the 
occurrence time, there may also be uncertainties regarding the probability p , i.e., 
scenarios of other potential events. For example, for the case study in the upper Tisza 
river (Ermolieva et al., 2001) a catastrophe was associated with the break of one of nine 
existing dikes that may occur only after a 100-year, a 150-year, and a 1000-year flood 
situation characterized by different discharge curves.  
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Risk management decisions generate a stream of random values tv , ,...1,0=t , which 

may be composed of uncertain costs, benefits and risks indicators. Let τ  be the 
occurrence time of the first event (so-called stopping time, see Ermolieva, 1997; 
Ermoliev et al., 2000a, b), and let tV  be the expected (conditional) value function given 

that the event occurs at t . For a given probability p , pq −= 1 , the expected 
(unconditional) value function at random time τ  is: 

∑=+++==
∞

=
τ

0
2

2
10 ...:

t
t

tVqpVpqpqVpVEVV ,  (1) 

i.e., the explicit introduction of an uncertain time horizon induces standard geometric 
discounting. On the other hand, let tU  be another value function. The evaluation 
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∞

= 00
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1= ,  β=q , β−=1p ,  (2) 

with a geometric discounting 1, β , …, tβ , …, can be viewed as the expected value 

function τEV , tt U
p

V
1=  at the random stopping time τ  associated with the first 

occurrence of a ( )p/1 -year event, β−=1p . For example, it may be associated with the 

expected ( p/1 )-year lifespan of an economic agent or the ( )p/1 -year lifespan of assets 

linked to investments with the constant stream of returns tU , ,...1,0=t . 

If we know that the event cannot occur at the initial time interval, e.g., the evaluation 
takes place at the end of the initial time period, then equation (1) is transformed into: 

...3
2

210 ++++= VpqpqVpVVV   (3) 

i.e., the induced discounting is similar in character to quasi-hyperbolic discounting. The 
discount factors in equation (1) are further modified by adding details of possible 
extreme events. For example, assume that a ( )p/1 -year event may trigger more severe 
catastrophic scenarios. Say, a 100-year flood situation itself may not cause significant 
losses unless one of the existing dikes breaks. As a result, the discounting is now 
induced by the event of probability ptδ , where tδ  is the probability of triggering a 

severe catastrophe ― a dike break ― once the event occurs at t .  The probability tδ  

may depend on the decisions to increase the reliability of dikes, e.g., on different 
maintenance schedules. In this paper we do not analyze these types of induced 
discounting, as this requires a lengthy discussion of feasible decisions and their effects.  

Remark 1: Only geometric or exponential discounting, ttqt eeq λ−== )(ln , 
pq ≈−=λ ln , defines a homogeneous time consistent preference. This means that the 
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evaluation of a project today will have the same discount factors as the evaluation of the 
same project after any time interval in the future: 

[ ]...... 11
1
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0

++++++= +−
−
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t
t

t qVVqVqqVVVq .  (4) 

As our discussion illustrates, this is the direct consequence of the “memoryless” feature 
of geometric and exponential probability distributions. For other discount factors with 
time dependent rates, the so-called time inconsistency arises requiring appropriate 
adjustments of discount factors for projects undertaken later rather then earlier. The 
time inconsistency for stochastic models is understood in a rather natural way as the 
effects of learning. For stochastic models, therefore, we can call this phenomenon as 
temporal heterogeneity.  

An important case is when the random value tv  is defined as the sum of other random 

values 0f , 1f , …, tf  generated in periods tk ,...,1,0= , i.e., ∑
=

=
t

k
kt fv

0

. Consider τv , i.e., 

a random sum of random values. For example, τv  can represent the accumulated risk 

reserve of a catastrophe fund until the first catastrophe. The induced discount factor at 
time t  for the evaluation τEvV =  is now equal to the probability of “tails” ( )tP ≥τ :  

Proposition 1: Let τvE  exist and the event { }t≤τ  depends only on 0f , 1f , …, tf . 

Then 

( )∑
∞

=

≥=
0t

tEftPEv ττ , 

where tEf  is the conditional expectation given that the event occurs at t .   

The proof follows from the Kolmogorov-Prochorov theorem, i.e., from the following 
rearrangements: 
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where symbol ( )AE |⋅  denotes the conditional expectation under given event A . 

For geometric probability distribution ( ) tpqtP ==τ  we have  

( ) ttttt q
q

pqqqpqpqpqtP =
−

=+++=++=≥τ +
1

1
...)1(... 21 . 
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Thus, geometric (exponential) distribution of τ  induces again the standard geometric 

(exponential) discounting ∑=
∞

=
τ

0t
t

t fqEv . For other distributions the misperception of 

induced discounting defined by tails of distributions according to equation (4) may lead 
to significant underestimations. This is evident from the following important situation. 

2.2 Sets of Potential Events; Declining Discount Rates 

Consider the case when stopping time τ   is associated with a first event from a set of 
potential events, say floods, earthquakes, or windstorms, which may occur at different 
locations. Typically, extreme events are characterized by a finite set of scenarios, say, 
50, 100 or 1000-year floods. In a more general case, they may also be characterized by 
infinite sets of scenarios, e.g., similarly to the Guttenberg-Richter law connecting the 
probability distribution of magnitudes with expected occurrence times of earthquakes. 
In other words, we have a set of ( )p/1 -year earthquakes, where p  itself is 
characterized by scenarios with a given probability distribution.  

Assume that there is a set of not necessarily mutually exclusive events ni ,...,1= , and 

stopping times (time horizons) 1τ , …, nτ , associated with these events. Let τ  be the 

moment of the first event, i.e., i
i

ττ min= . Assume also that the event i  may occur for 

the first time at t  with probability )(tpi . For example, for the geometric distribution 
t
iii qptp =)( , ii pq −=1 , ,...1,0=t , where ip  is the probability for event i  to occur at 

any time t . If ip  depends on t , itp , then ititiii pppptp )1)...(1()1()( 110 −−−−= . 

Assuming the existence of i

t

k
ik pp

t
=∑

=
−

0
1

1
lim  for ∞→t , and that probabilities itp , 

,...1,0=t , are small enough, we can take approximately tp
iti

ieptp −=)(  for a large 

enough t  since  

∑−≈−−−
=

−−
t

k
ikitii pppp

1
1110 )1)...(1)(1ln( . 

For a finite number n  of events, the evaluation of equation (1) is transferred into  

∑ ∑ 





 τ<τ=

∞

= = ≠1 1
)(min

t

n

i
tij

ij
i VtpPV .  (5) 

Equation (5) essentially modifies the standard geometric discounting. Nevertheless, it is 
easy to show that the actual discounting tends to be defined by the smallest discount 
rates. The following proposition is similar to the main conclusions in (Weitzman, 1999). 

Proposition 2: Assume that t
ii

iettp λ−α= )()( , iii t α≤α≤α )( , iλ , 0>α i , e.g., for 

the geometric distribution t
i

t
iii

iepqptp λ−==)(  we have iii pq ≈−=λ ln  (for small 
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ip ). The induced discount factor ∑θ
=

n

i
ii tp

1
)( , 













τ≤τ=θ

≠ij
jii P min  in equation (5) tends 

(for ∞→t ) to the standard exponential discounting with the smallest discount factor 

defined by such an extreme event •i  that i
ii

λ=λ min* . For the geometric distribution 

( )1ln( ii p−−=λ ), the induced discount factor is dominated (for ∞→t ) by i
i

pmin . 

This fact follows simply from the equation  

( )∑ χ+∑ =
≠

λ−

=

•

*
)()(

1 ii
i
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i
i tNetp i , 

where 
( )t

ii

ii
i

ii
e

t

t
t

 

)(

)(
)(

**

•λ−λ−

αθ
αθ

=χ  and N  is the number of such i  that  *ii λ=λ . 

Indeed, from ii
λ<λ • , and 0)( >α≥α •• ii

t , it follows that 0)( →χ ti . Therefore, 

∑ →χ+
≠ *

))((
ii

i NtN , and thus the induced discount factor in equation (5) decreases for 

∞→t , i.e., for large enough t  it becomes close to exponential discounting defined by 
*i

λ . 

Remark 2: (Invariance of initial discounting.) The geometric discounting in equation (2) 
can be associated with )1/(1 β− -year event. If the evaluation (2) is adjusted to a new 

δ/1 -year event, then from the proposition, it follows that the long-term discount factor 
is defined by random time horizon associated with { }δβ− ),1(min -year event. If 

β−<δ 1 , then from the proposition, it follows that the evaluation (2) is dominated by 
δ -year extreme event, i.e., it is in a sense invariant with respect to the initial standard 

geometric discounting tβ .  

2.3 Endogenous Discounting 

The induced discounting becomes an especially complex issue when it is affected by 
decisions. We already briefly discussed this in Section 2.1 with respect to factors tδ , the 

probability of a dike break. Let us return again to equation (1). The random time 
horizon τ  often depends on the growth rate of different processes and the likelihood of 
these processes to abruptly pass certain thresholds. This is a typical situation for 
insurance, where the rate of growth is defined by the inflow of premiums and the 
thresholds are defined by uncertain losses. A similar situation arises in the analysis of 
environmental targets. Assume that a random process tπ  represents the growth process 

and the threshold is defined by a random tC . Let us define the stopping time τ  as the 

first time moment t  when tπ  is below tC . By introducing appropriate risk reduction 

decisions it is possible to regulate “survival” constraints, i.e., the probability  
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( )tt CP ≥π , ,...2,1,0=t , or the probability ( )TP >τ ,   (6) 

e.g., such that the collapse may occur once in a 10000 years within the fixed planning 
time horizon T , i.e., ( ) γ−≥≥π 1tt CP , Tt ,...,2,1,0= , 0001.0=γ . 

Let us now consider catastrophic event { }ttt CA <π= . Then equation (1) is 

transformed into: 

∑
∞

=
==

0

)|()(
t

ttt AvEAPEvV τ ,  (7) 

where )|( tt AvE  is the conditional value function given that tA  occurs, which can be 

called a survival function. As we can see from equation (7), the induced discount factor 
at time t  is the probability that the collapse occurs at time t . According to the goals 
defined by equation (6), this discounting can be regulated, e.g., within a constant level 
γ  during the time horizon T . We will use this fact in Section 5 to illustrate the 
advantage of the so-called committed society to be aware of the probability defined by 
equation (6) despite a seemingly small γ . 

3 Long-term Strategies: Implications 
of Induced Discounting 

The justification of a particular investment (saving) strategy has usually been addressed 
within the utility maximization framework. A social planner chooses a saving plan for a 
future period of time so as to maximize the utility evaluated at the present moment. The 
most crucial issue is that the social planner has to choose time preferences weights or 
discount factors. Samuelson (1937) assumed time consistent geometric (exponential) 
discount factors that were dependent only on the time distance between the present and 
the future, not on the particular points in time.  

The choice of discounting remains a controversial issue. As Section 2 illustrates, the key 
issue here is the explicit treatment of uncertainties and risks. In other words, instead of 
postulating exogenous time and risk preferences taken from capital markets, it is 
possible to impose implicit (induced) discounting by explicitly specifying goals, 
extreme events, and risks. This gives rise to a number of challenging problems, in 
particular, the need for the explicit treatment of catastrophic risks and long-term time 
preferences, which may go beyond the maturity of assets in existing capital markets. 
From Remark 2, it follows that the proper evaluation of a project may be dominated by 
time inconsistent discounting induced by extreme events, rather than initial standard 
geometric discounting. For example, a 4% discount rate can be linked in view of 
equation (2) to a 25-year event, i.e., to the time horizon, which is not matched with the 
lifespan of the investment that is linked, say to a 250-year flood. Therefore, in the long 
term the evaluation is dominated by the rate 0.004 rather than 0.04. The misperception 
of these effects may significantly underestimate the necessity of long-term mitigation 
efforts. As a result, it may provoke catastrophes (Section 6) and hence, lead to 
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increasing vulnerability of the society. The increasing catastrophic losses is an alarming 
global tendency (Munich Re, 1999), which is primarily due to the misperception of rare 
catastrophic events and hence, movements of capital and people in risk-prone areas. The 
adequate perception is a challenging task requiring models that enable the explicit 
evaluation of risk profiles, induced discounting, its time inconsistency, and related long-
term strategies. These models can be considered as a key mitigation measure to cope 
with increasing vulnerability. 

A number of authors already distinguish between various types of so-called “imperfect 
altruism” resulting in the lack of social commitment to mitigate risks. For example, 
Akerlof (1991) and Strotz (1956) alluded definitions of a naïve, a sophisticated and a 
committed society (thrift). The main differences between these three societies are 
summarized in (Hepburn, 2002). Thus, the naïve society does not anticipate its time 
inconsistent preferences and actual risk profiles; it plans to consume less than it actually 
does at the expense of investments in mitigation efforts. The sophisticated society is 
aware of the time inconsistency and therefore chooses the strategy that is a best 
response to its later generations best response. Thus, the two societies are not committed 
to the strategy for the overall long horizon. The reasons for such policies lay simply in 
the misperception of risks and society’s lack of power to lead a committed life. The 
third, committed society, has the ability to commit to mitigate risks. In Section 5 we 
discuss how different types of societies effect ― delay or provoke ― the possibility of a 
catastrophic collapse. The correct understanding of risk profiles and induced time 
inconsistent discounting, as we can see from Sections 4 and 5, requires appropriate 
stochastic optimization models. Consider a risk management model, which is used in 
Section 5 for numerical experiments. 

4 Model 

The model described in this Section has the structure outlined by equations (6) and (7). 
In fact, it is possible to formulate a simple analytical model, which incorporates the 
following three elements:  

1. The risk of a catastrophe induces discounting; 

2. The discount rate affects the optimal mitigation effort; and 

3. Mitigation efforts affect the risk of a catastrophe (return to point 1). 

This is evident from equation (7). In this way, we have a loop and the potential for 
positive feedback and branching (multiple equilibria).  It also means that the discount 
rate will be time varying, so the implications of the three types of society (naïve, 
sophisticated, committed) can be illustrated analytically. However, this requires lengthy 
computations of solutions for arising stochastic optimization problems with an infinite 
horizon. Therefore, in what follows, we illustrate the implications of three societies by 
numerical experiments using a simplified version of a catastrophic risk management 
model that was developed in (Ermolieva, 1997; Ermoliev et al., 2000a, b). Namely, we 
deal with long uncertain time horizons embedded into the model that has been 
calibrated for the analyses of catastrophic flood (Ermolieva et al., 2001) risks. The main 
purpose is to evaluate the amount of precautionary financial resources needed in order 



 9

to cope with a possible catastrophic flood. We assume that risk reserves are 
accumulated over years in a catastrophe fund through payments from the population 
through a mandatory insurance. 

In our experiments, the system is modeled until the first catastrophic flood, which 
occurs at random within a given fixed time horizon 100=T . We define this random 
moment as the stopping time. This event is associated with the break of one of nine 
existing dikes that may occur only after a 100, 150 or 1000-year flood. The timing of a 
first catastrophic flood significantly affects the accumulation of risk reserves by the 
insurance and total payments of individuals. For example, a 100-year flood with the 
break of a dike may occur in two years leading to considerable underpayments by 
individuals. 

Let τ  be a random (stopping) time of a first catastrophic flood within a time interval 

],0[ T . If no catastrophe occurs, then T=τ . Let τ
jL  be random losses at location j  at 

time τ=t . In the experiments we evaluate the capacity of the catastrophe insurance in 
the region only with respect to insurance decisions. Let jπ  be the premium rate paid by 

location j  to the mandatory insurance, then the accumulated mutual catastrophe fund at 

time τ  together with the proportional compensation ∑χ τ

j
jL  by the government is equal 

to ∑ϕ−∑χ+∑πτ ττ

j
jj

j
j

j
j LL , where 10 ≤ϕ≤ j , is the insurance coverage for cell j . 

Thus, in this model, we assume that the compensation to victims by the government is 
paid through the mandatory insurance. 

The sustainability of the insurance program depends on whether the accumulated 
mutual fund together with the governmental compensation is able to cover claims, i.e., 
on the probability of insolvency defined by the event: 

0<∑ϕ−∑χ+∑πτ ττ

j
jj

j
j

j
j LL  .   (8) 

The sustainability also depends on the willingness of individuals to accept premiums, 
i.e., on the probability of overpayments: 

0>ϕ−τπ τ
jjj L , mj ,...,1= .    (9) 

This requirement can be written in the form:  

jj aϕ≤π , mj ,...,1= ,   (10) 

where a  is the minimal number satisfying the following equation ( ) 04.0=τ≤τ aLP j , 

requiring that overpayment may occur only once in 25 years. 
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Inequalities (8) and (9) define events, which constrain the choice of the decision 
variables specifying the insurance program, i.e., the compensation rate χ  by the 

government, coverages by the insurance company jϕ  and premiums jπ . The likelihood 

of an event defined by equation (8), i.e., underpayments to the pool as well as equation 
(10), determine the resilience of the program. It can be expressed in terms of equation 
(10) and the probabilistic constraint: 

γ≤



















∑ ∑ ∑ <ϕ−χ+πτ ττ

j j j
jjjj LLP 0 ,  (11) 

where γ  is a specified probability of the program’s default, say a default that occurs 
only once in 1000 years, 001.0=γ . The constraint (11) is similar to the so-called 
insolvency constraint, a standard for regulations of the insurance business. In the 
stochastic optimization (Ermoliev and Wets, 1988), the constraint (11) is known as the 
so-called chance constraint. The main goal can now be formulated as the minimization 
of the expected total uncovered by insurance losses 

∑ ϕ−= τ

j
jj LExF )1()(    (12) 

subject to equations (10) and (11), where vector x  includes all decision variables. The 
solution procedure for this type of model can be found in Ermolieva (1997) and 
Ermoliev et al. (2000b). 

5 Numerical Experiments 

These experiments serve to demonstrate by how much the different (often erroneous and 
light-minded) risk perception, in other words, induced time inconsistency, may turn into 
a catastrophe.  

Our model, defined by the maximization of value (12) subject to equations (10) and 
(11), is similar to the model outlined by equations (6) and (7). From equation (7), it 
follows that the induced discount factors for the value function (12) is related to the 
probability of ruin given that a catastrophe occurs at time t . This discount factor is 
subject to regulations according to equations (10)-(12), i.e., we have endogenously 
generated discount factors.  

In what follows we use modified data from (Ermolieva et al., 2001). We assume that the 
dike system deteriorates over time, therefore after a passage of time the break may 
occur from less severe but more frequent rainfalls. The number of fast Monte Carlo 
simulations in a single experiment run equals 5000. The evaluation of risk management 
decisions accounts for only catastrophes that may occur within 100 years, i.e., 100=T . 
Hence, the stopping time 100≤τ . The time period t  of the model covers five 
overlapping generations and each generation acts as a social planner for 20 years. The 
parameter χ  in the experiments is fixed, and we only simulate 150-year floods. 
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We consider the fixed 100-year horizon in which three societies, the naïve, the 
sophisticated, and the committed, live and plan for mitigating and coping with the 
catastrophic losses that may occur. They are able to mitigate the risks by laying aside 
money to be able to cover the losses. But, depending on their perception of risks, i.e., 
induced time preferences, the results are different.  

5.1 The Naïve Society 

The current generation of social planners is aware of a possible catastrophe. It 
maximizes the value function (12) taking into account the potential need to save for the 
catastrophe by establishing a catastrophe fund and paying premiums. Unfortunately, the 
society postpones the implementation of decisions, i.e., let future generations take the 
lead. In this sense, the naïve society puts its preferences on consumption as the first 
priority, the first generation of the naïve society consumes at a higher rate than it 
actually plans. 

For the next generation, the time is shifted forward by 20 years and the second 
generation, similar to the first, plans but does not implement saving actions essential for 
the catastrophe fund to function. It also has a misleading view on the catastrophe, 
namely, if the catastrophe has not occurred in the later generation the society believes 
that it will not occur within the current generation with the same probability, i.e., it fails 
to take into account the time inconsistency induced by increasing the probability of a 
dike break. Thus, the risk profiles, time preferences, and the actions are not adjusted 
towards the real risks. In a similar way, we simulate the other three generations, each 
time calculating how much insurance premiums they naïvely plan to save. The plans are 
never implemented and the view on a catastrophe is time invariant. 

Now, what happens to the five generations of the society is shown in Table 1. The 
society believes that the ruin probability satisfies desirable level 0.05 calculated by 
using time consistent geometric discounting induced by 150-year flood. In fact, even if 
society implements its savings plan, the ruin would still increase (“Ruin probability 
under savings”) due to the misunderstanding of the actual risk profiles ― it keeps 
reducing the savings (premiums) despite the increasing actual threats in the remaining 
time intervals (“Ruin probability actual”).  

Table 1: Performance of the naïve society. 

Planning 
Horizon 

Probability 
of Ruin 

Premium Per 
Location 

Ruin Probability 
Under Savings 

Ruin Probability 
Actual 

0–100 0.05 1.61 0.05 0.32 
20–100 0.05 1.32 0.06 0.46 
40–100 0.05 0.97 0.07 0.61 
60–100 0.05 0.63 0.09 0.76 
80–100 0.05 0.35 0.12 0.89 
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5.2 The Sophisticated Society 

The simulation scheme for the sophisticated society is similar to that of the naïve 
society. In contrast though, it implies a correct understanding of the time-
inconsistencies induced by the deteriorating system of dikes. But in fact this society, 
similar to the naïve planners, also evaluates present consumption to be much higher than 
the future, i.e., they spend also more than plan. This leads to postponing the decisions 
made by each generation. If the catastrophe occurs, the procrastination may turn out to 
be very costly.  

Table 2 shows that since the sophisticated society correctly understands its time 
inconsistency, it is able to keep the “Ruin probability” at a constant level. To do this, the 
sophisticated society plans for premiums that increase over time (higher savings), but 
the decisions are postponed to the next generation. Due to these delays, the risk burden 
is increasingly shifted to the next generation (“Ruin probability actual”). In any case, if 
a catastrophe occurs this society will also be not prepared to meet threats, as premiums 
are not accumulated. 

Table 2: Performance of the sophisticated society. 

Planning 
Horizon 

Probability  
of Ruin 

Premium Per 
Location 

Ruin Probability 
Actual 

0–100 0.05 1.92 0.32 
20–100 0.05 2.49 0.46 
40–100 0.05 3.06 0.61 
60–100 0.05 3.63 0.76 
80–100 0.05 4.19 0.89 

The “pathologies” of the naïve and the sophisticated societies can be explained by their 
ignorance of risks, incorrect understanding of potential losses and, therefore, the lack of 
committed actions. The delays in actions may dramatically affect individuals and the 
growth of societies as a whole. Individuals could be better off if their consumption 
options were limited and their choices constrained by anticipating risks. 

5.3 The Committed Society 

The committed society evaluates savings plans by explicitly taking into account time 
dependent profiles of catastrophic risks and induced discounting. This society is able to 
implement decisions together with subsequent generations. As shown in Table 3, the 
premiums that the society saves for coping with catastrophes in 100 years time are much 
lower than those of the sophisticated, which is a direct consequence of their committed 
actions. 

Table 3. Performance of the committed society. 

Planning Horizon Probability of Ruin  Premium Per Location 

0–100 0.05 2.1 
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6 Concluding Remarks 

The explicit treatment of extreme events, uncertain time horizons, social goals and risks 
leads to induced discounting, which may be significantly different from the standard 
discounting obtained from capital markets. Risk management decisions affect this 
discounting with the potential for positive feedbacks and locked-in “equilibriums”. The 
misperception of time inconsistent induced discounting may provoke catastrophic 
collapse. Stochastic optimization models enable us to deal with induced time-
inconsistent discounting. It is important to analyze this with more analytical details. 
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