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PREFACE

As new Llechniques for the use of water evolve and as human necds
increase, the management of walter resources is becoming a task of growing
importance.  The primary purpose of surface-water rescrvoirs is to provide
a means of regulating the distribution, with respect to time, of surface-water
flows and volumes. Stochastic reservoir theory is concerned with the design
and operation of storage reservoirs fed by river flows which are considered
as stochastic provesses,

I'rom 1974 to 1976. stochastic reservoir theory was one of the major
rescarch ficlds of the HHASA Water Project (now the Water Group of the
Resources and Environment Arca). A number of research papers were pub-
lished on different aspects of this problem. The present paper by one of the
leading authoritics on stochastic reservoir theory deals with problems related
to the scasonal variability of reservoir inflows.
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SUMMARY

In building a realistic mathematical model of a reservoir, one of the
most important components is thal which describes the time-dependence of
the inflowing waler.  This must exhibit the scasonal variations, as well as
the chance (Muctuations and the “persistence™ structure, that are observed
in natural geophysical phenomena, I the present rescarch we work in
terms of diserete time units of arbitrary brevity, comventionally called
“scasons”, and discrete wnits of waler quantity; and we approximale the
scasonally varying stochastic and autocorrelation behaviour of the inflow
by representing it as a seasonal lag-one Markov chain, i.e. one in which the

probability distribution vector v o in the r-th scason of year m (r=001 0 K.

m.r
say) is related to the corresponding vector in the preceding season by

the difference equations

Ym0 = Qo¥m-1.k
and

Yo~ Ot -
where QpQy.....Qp  are the k+| scason-lo-season transition probability

matrices.

The properties of such chains are deseribed. and examples are pro-
vided of explicitly formulated matrix models which enable the Q1o be
expressed directly in terms of flow distribution aud autocorrelations. (11
should be stressed that the methods employed do not involve the concept
of autoregression.) The major part of the paper is desoted 1o the problem
of obtaining the probability distributions ol recurrence times and first
passage times in chains of thix kind. By a recurrence time is meant the
wailing lime between consecutive occurrenees of given flow valuessand by

a first passage time. the wailing lime between the ocenrrence of a given

-—v-



flow value j and the next following occurrence of another flow value i. We
also consider recurrences of sets of flow values. and first passage times from
a given such set to another. Results are obtained both explicitly and in
terms ol probability generating functions; thereby generalizing to a scasonal
situation a problem whose solution is already known in the non-seasonal

case.

The methods used are gencralizations of the classical renewal theory.
on the one hand, and, on the other, of a technique known in random walk

theory as the absorbing state method.

The paper closes with a brief resume of stochastic reservoir theory
which indicates the relevance to this of the earlier part of the paper. In
particular it is shown that, when the inflow process {X;} is a seasonal
Markov chain of the kind described, then. subject to reasonable restrictions
on the management policy, the sequenee of pairs { Zl,Xt } . where Zt
dcnotes the reservoir contents at time t. forms a seasonal lag-one vector
Markov chain Lo which the main results of the paper may be applied to

obtain recurrence times and first passage times for the reservoir contents.

—vi-



1. INTRODUCTION

A real reservoir is a finite container fed by inflows which
in general form a non-stationary continuous-valued multivariate
stochastic process in continuous time, subject to withdrawals
which depend on current and past contents and inflows as well as
on seasonally fluctuating demands of a partly determinate and
partly stochastic nature, these having in general some correla-
tion with current and past inflows. The reservoir also loses
water by evaporation and seepage, and may be subject to silting
which progressively reduces its capacity.

In its present form, "stochastic reservoir theory", as
initiated by Moran and extended by Lloyd, neglects evaporation,
seepage and silting, and models the inflow-outflow-storage re-
lationship by a discrete-volume process operation in discrete
time. Successive values of the storage variable are related to
each other by a difference equation expressing the conservation
of volume, and the corresponding distribution vectors are de-
termined in terms of the characteristics of the inflow process
and the withdrawal policy, the auto- and cross-correlation
structure of the (multivariate) inflow process being represented
by a (possibly non-homogeneous) multivariate multilag Markov
chain, with the object of developing a model with optimal "power-
to-weight ratio", that is, one with the best degree of realism
that is consistent with a not unduly complicated theory. It
appears that a reasonable degree of realism can in fact be
achieved.

The present paper is devoted mainly to the theory and pro-
perties of finite univariate lag-1 seasonal Markov chains, with
special reference to the distribution of the waiting time, from
a given configuration, to the next occurrence of a specified
configuration. Thus the emphasis is mainly on the properties
of the inflow process; but we indicate in general terms how
this theory extends to the storage and outflow processes, a de-

tailed discussion of which will be given in a later publication.



2. SEASONAL MARKOV CHAINS

2.1 Notation for Matrices and Vectors

The matrices that occur in the following account will all
be square, and will be denoted by capital letters such as A,B,Q,
R. It is convenient to label the rows and columns with the
indices 0,1,2,...,k rather than with the index set 1,2,...,k+1
that is usually employed in matrix algebra. Typically we denote

the (i,j) element of a matrix A by aij and write

A = (aij)

It is sometimes more convenient to write af(i,j) instead of aij'
We also use the convention that, for any matrix A, the
symbol (A)ij denotes the (i,j) element of A. Thus (AB)ij denotes

the (i,j) element of the matrix product AB. The fully displayed

version of a matrix A = (aij) with k41 rows and k+1 columns (that
is a " (k+1)x(k+1)" matrix) 1is

Faoo 491 %2 77 aoﬂ

g0 11 %2 T %k

A "vector" in our convention means a column vector. This

will typically be denoted by a small letter, for example

where the elements X, may for typographic convenience be alter-

natively denoted by x(r). Transposition is indicated by a prime,



so that the row vector obtained by transposing the vector x

described above is

x' = (xo,x1,...,x )

p
equivalently,

—_ 1]
X = (XO'X1""'Xp)

Thus the first column of the matrix A displayed above would be

written in the form
(@ggraqqr---ragp)

To avoid the awkwardness of having to describe the row vector
(@5078597 -+ r35))

as the (i+1)-th row, we refer to it simply as the i-row; and

similarly for columns.

A particular vector which we use frequently is

1= (1,1,...,1)"

Note that

1'x = Z x{(r)

etc.

2.2 Nonhomogeneous Markov Chains

Let each of the random variables YO,Y1,Y2,... of the se-
quence {Yt} be capable of assuming the values 0,1,...,p. When
YT = r we say that the system is in state é; at epoch T.
Suppose that



P(Yt+1_r|Yt=s’Yt—1 s',Yt_2=s", )
=P(Y,  4=r|¥ =s) , t=0,1,...,
r,s,s',s",. =0,1, P
This makes the sequence {Yt} a lag-one ("lag-1") Markov chain.
Define the matrices
Qt = (qt(r,s)) , t=0,1,...; r,5s =0,1,...,p ,

of order (p+1) x(p+1). The time-dependence of these transition
matrices makes the chain non-homogeneous. (If the Qt were all
equal, with common value Q, say, the chain would be called homo-
geneous. )

Little of interest can be said about a completely general
nonhomogeneous chain, i.e. one in which the matrices Qt are
unrelated to one another. 1In geophysical application we en-
counter a special kind of nonhomogeneity called seasonality
which we investigate in the sequel.

It will be convenient to precede that discussion by a brief

resume of some properties of finite homogeneous Markov chains.

2.3 First Passages and Recurrence Theory

for Homogeneous Markov Chains

Let the sequence of random variables {Yt}, defined on

(0,1,...,p), be a homogeneous lag-1 Markov chain with transition
matrix Q = (qij) where

a4 = P(Y ,,=i|v,=3) , t=0,1,..., i,3=0,1,...,p .
Let £ (i,4), r=1,2,... denote the probability that a first

passage to 6; from é} requires r jumps, that is

£ (4,5)=p(y,, =i Y., #i, s=1.2,...,0-1|¥, =) .



This situation will have come about if

either the first arrival at 51 requires r jumps

(the probability of which is f(r

or the first arrival at 61 requires s jumps
(for s=1 or 2 or

system then returns to 5;

We thus derive the renewal equation:

q

(r)

or, more compactly,

where we define

and

q

(r)

or r-1}),

)

(i,31)

and the

(not necessarily

for the first time) after a further (r-s)
jumps (the probability of which is
£05) 1,9y 57 (4,1))y.
(r) st (s (r,s)
(1,3) = £77(i,3) + I £77(4,3) @77 (4,1
s=1
r
(i,9) = ¥ £, ¢S i,0) , £=1,2,..
s=1
(i,3) =1 , i,3=0,1,...,p ,
(i,3) = P(Yt+r=i|Yt=j) y T=1,2,.0.. »

(2.1)

The latter quantity is the probability that the system will

be in state é}, not necessarily for the first time, after making

r jumps, starting from Sj.

If we take r=1,2,..

a recursive solution for f

and the g

g1
£(2)
3)

£

(s)

(

r)

in terms of f

, so that one may obtain successively

in terms of q(1)

in terms of f(1)

,

and q

(2)

.the successive versions of
(r-1)
!,

f

(2.1
(r-2)

)

R

provide

=
.,

(M



More elegantly we may derive from (2.1) a relation between

the generating functions

F(i,9:0 = § £ (1,908
s=1
and
. _ bt (r) ,. .,.r _ bt (r),. .,.r
K(i,3;0) = § g 7 /(i,j)e =1+ ) q' ' (i,j)e
r=0 r=1
We have
TOF L(s) (r-s) r
K(i,j:0)-1 = 7 7 £9%(,9) q'F % 4,00
r=1 s=1
= 7 £%G,pe® 7 qFS) (i,1)e778
s=1 r=s
= F(i,9;0) K(i,i;0)
whence
(L300 = Kdiel (2.2

(Equation (2.1) may be compared with the corresponding equation for a
simple renewal process in which events of only one kind occur;

the equation in that case is

r
q(r) _ 21 £ () q(r-S)

r=1,2,... R
s
in an obvious notation, and equation (2.2) may be compared with
the corresponding generating function equation
K(6)=-1

KO = w7

This very nice relationship is not as immediately available
for applications as it might appear. Consider for example the

question whether the first passage distribution to 5} from é% is



a non-defective probability distribution, i.e. whether

RIS
sS=

(whether F(i,j;1) = 1). Simply setting 6=1 in (2.2) will not

do; it must be remembered that the events

Yoir = ilyt =3 , r=1,2,... ,

(which correspond to arrivals at(%'not necessarily for the first

time) are not mutually exclusive, so that the probabilities

a L, L =12,
do not form a probability distribution, and so

T oaT i, £

whence the value of K(i,Jj;1) is not obvious.

To investigate this further, note that

(r)(

|
)

i,
so that

K(i,j;8) =1+ [ ] Q'8 1,

-1

1+ [08(T-08) '1.. .,

1]
provided |6| is sufficiently small. When i=j, this simplifies to

[ 7 o%6%l,. (since @° = 1)
r=0

K(i,i;6) ii

[(1-06) ']

ii



Thus (2.2) becomes

[0(1-08) " '1, 0
F(i,ji0) = —3 ., (i,3=0,1,...,p) (2.3)
[(1-08)7 1,

11

To attempt a direct evaluation of F{(i,j;1) from this is catastro-

phic, since, when Q is a stochastic matrix, I-Q is singular, and

so (1-0)7"
We can surmount this difficulty however with the aid of

does not exist.

the following lemma.
Lemma Suppose Q is the transition matrix of a finite

Markov chain, with stationary distribution

vector x = (xo,x1,...,xp)', x > 0. Then
lim _ - -1 _ '
61 (1-6) (I-Q0) = x1 . (2.4)

Proof: O has at least one latent root (eigenvalue) equal
to unity, and all other roots are < 1. Without
any real loss of generality, we assume that

the roots are distinct. Denote them by

Ap = 1, A1,A2,...,Ap (Ai#1 when i#0)

Let the associated normalized latent vectors (eigenvectors)

be (ur,vé), r=0,1,...,p, so that
= ' = ’ 3 v - .
Qu A_u_, v.Q Arvr' with viug Gr

S

Then

and



whence
b 1
(1-g8) "' = 7§ u_v'
r=0\1-r 08/ T T
r
= Lt z( 1 >urv'r
1-6 r=1 1—Ar6
since ug = X and vé = 1'. Thus finally,

(1-8) (1-00) " = x1' + 128 Ny _v!
r=1

1-1_6
r

whence the result follows.
Corollary (a) Under the same conditions,
P
(1-8)"(1-00) ™" = x1' + 7§ ( 1-6
r=1

1-x_6
r

and (b) for s = +1,+2,...,

p
QS (1-9)" (1-00) ™™ = x1' + ] 2% ( 1-8
=1

rr

(since Qx = x and Qur = Aru ).

If we now write (2.3) in the form
(1-) [0 (1-g®) '] 4
F(i,j;8) = =7
(1-0) [(1-08) ']

ii

we may employ the lemma tc obtain

lim
6+ 1

F(i,3:0) (Qx")ij/()ﬂ')ii

17

(x1')ij/(x1')ii since Qx =

n
1]
) uve n=1,2,...

X

PR o
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It follows that f(r)

(i,3), (x=1,2,...) is a non-defective
probability distribution: the transition é% ——+—é§ is, ultimate-
ly bound to occur, i.e., is a recurrent event.

It is also fairly simple to obtain the expected value of

F(i,j,) when i=j: this is the mean recurrence time E{F(i, i)}

of the state 5;_ We have

F(i,130) = 1 - — 1 by (2.2)

K(i,1i;6)
whence, differentiating with respect to 0,

F'(i,i;6) = lim[K'(i,i;8) {K(i,1:6)}%]

8-+1
Now
K(i,i:9) = [EQrer]ii = [(I—Qe)-1]ii
and so
K'(i,150) = [0Jro" 67y, = [o(1-0e) %1,
whence
.. (1-6) %K' (i,1:6)
F'(l,l;1) = llm r H 2
{(1-8)K(i,1:90)}
= (k1)L /U Y =k,
ii 11 1

by the lemma. Thus
E{F(i,1)} = 1/xi, i=0,1,...,p,

where X, is the i-element of the stationary distribution vector:
the expected interval between successive occurrences of 51 equals
the reciprocal of the probability of being in state él (compare

the Poisson process).
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The variance and higher moments of F(i,i) are less simple.
For example
p

s s
r£1(1 Ad vl X v Xy

var{F(i,i)} = 2x;2

In particular cases of course it might be possible to evaluate
this explicitly without too much difficulty.
Example Suppose

Q= pI + (1-p)x1"

where 0 < p < 1, and where x is a positive
distribution vector. It is easily verified
that x is in fact the stationary distribution
vector of the chain, since Qx = x, and it
will be shown later that p is the lag-1 cor-

relation coefficient of the chain.

Then

(1-08) "1 = {(1-0)T + (1-p)6x1'}/(1-8) (1-pB)
and

0(1-08) "1 = {0(1-0)T + (1-p)x1'}/(1-8) (1-08) ;
so that

i i50) - 0(1-0) 8, + (1-p)x,;}6 ’

(1-8) + (1-p)6x,

whence

F(i,j;1) = 1

as required.



-12-

The mean recurrence time of the state éi is
F'(i,i;1) = 1/xi , i=0,1,...,p,

and the mean passage times to 51 from é} (i#3) 1is
F'(i,3:1) = 1/01-p)x;

a result which, for this chain, depends on i but not

on j. The value of F"(i,i;1) is

1 1 1
— Ju vy, = — {I-x1"}.. = — (1-x.)
1-p r r'ii 1-p ii 1-p i
so that
var {F(i,1)} = % S
X3 1-p Xy

In the case of this particular example it is easy to obtain
the passage times distributions explicitly. The generating

function for F(i,j) is
F(i,3;8) = (1=p)x;8/{1-2,8) , A; = 1-(1-p)x

whence

PIF(L,3)=r} = (1-p)x A, . ¢ =1,2,.

a geometric distribution.

Similarly for the recurrence time distribution of é;, we have

F(i,1i;6) = p(1-6)6 + (1—p)xi6

F(i,1;0) = (B;0-p87)/(1-1,8) , B, = p+(1=p)x = p+1-};

B8 + (1-1) (A=p) {82420°+...} ,
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a geometric distribution with modified first term:

P{F(i,i)=1} = p+(1-p)x,

r-2

PLF(i,i)=r} = (1-p) *x; (1-x;) {1- (1=p)x;} . T=2,3,...

il

2.4 Seasonal Markov Chains

A seasonal Markov chain, with k+1 seasons, is a nonhomogen-
eous chain in which the successive transition matrices form a
periodic sequence of period k+1.

We call the seasons the 0O-season, the 1-season, etc., and

denote the corresponding random variables in the m-th year by

respectively. Let Yo r denote the distribution vector of Yo rr
7 17

r=0,1,...,k. Assuming the season-to-season dependence is lag-1

Markovian, the seasonal Structure implies that

Ym0 = Qo¥m-1,k )

ym,1 = Q1ym,0

Ym,2 = QY1

Ym,k = %Ym, k-1

- (2.5)

Yme1,0 Q0¥m, x
Yme1,1 = Q1¥pm41,0
Yot1,k = %Yme1, k-1
Ym+2,0 = Qo¥me1,k

etc. ,/
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Such a chain is called a seasonal Markov chain, more specifically

in our case a (k+1)-seasonal lag-1 Markov chain.

(The temptation to use the alternative designation "periodic"
for such a chain must be resisted, since the work "periodic" has
already passed into the technical language of Markov chains,
with a completely different meaning. Periodic chains may be
seasonal but are not necessarily so. A state €. is aperiodic
if the transition from €j to 6} in one jump has]positive pro-

bability, in other words, if
P{Yt+1=j|Yt=j} >0 , t=20,1,...
If on the other hand, the é}—to-é} transition may only be
made in 2 (and therefore also in 4,6,...) jumps, the state é}

is periodic, with period 2. For such a state

SRR

and
P{Yt+2=j|Yt=j} >0 , t=0,1,... .
Periodicity is perhaps theoretically interesting, but in
applications it is a nuisance. In our matrices all states will

be aperiodic.
Note that, for each j (=0,1,2,...,k), the imbedded sequence
Yo ., Y. ., ¥  .,... of the "season j" variables is a homogeneous
0,3 1,3 2,3

Markov chain, with transition matrix

P37 93%-1 Q0 %1095 (2.6)
so that
= m = H ) =
ym,j Pj yO,j , m 1,2,... | 0,7,...,k .
If Pj is ergodic (i.e., aperiodic and ireducible: a return to

each state is possible in one transition, and each state can be
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reached from each other state in a finite number of transitions)

then the vector y_ . converges to a fixed limiting "stationary"”
, X

distribution vector y(J) = {y(J)(O), y(J)(1),...,y(J)(p)}', de-
fined by the homogeneous linear algebraic equations represented
by

together with the normalization condition
1'y(3) =1

We then have

and

0
y( ) (k)

I

Q
<

~

as in (2.5).

2.5 Correlation in a Seasonal Lag-1 Markov Chain

In a 2-season year the system (2.5) reduces to the two

vector equations

Ym, 1 T @1¥m,0 7 Ym0 T @o¥m-1,0

We speak of the two seasons as the 0O-season and the 1-season.
The (homogeneous) chain of 0O-season variables satisfies the

difference equation

ym,O = Q0Q1ym—1,0 pom=1,2,. .. !

with stationary distribution vector y(o) = Q0Q1y(0) ; and

correspondingly for the l1-season variables we have
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ym,1 =Q1Q0ym—1,1 14 m = 1121-" 14
1
with stationary distribution vector y(1) = Q1Qoy( ) ; and
we have
1 0 0 1
y( ) - Q1y( ) , y( ) _ Qoy( ) .

We require two lag-1 interseason correlation coefficients,

namely
corr (Yp g+¥g, 1) = Poy
and
corr (Ym,1'Ym+1,0) = P10
where
’

denotes the correlation between a 0O-season and the following
1-season (under stationary conditions) and
{E(Y

) - E(Y ) E(Ym+1,o)}/°o°1

P10 m,1Ym+1,0 m, 1

the correlation between a 1-season and the following O-season,

the ¢'s denoting appropriate seasonal standard deviations:

2 2 2 B
o = E(Yp ) - E(y ) , r=0,1.

We may conveniently express these in terms of the vector
v' = (0,1,2,...,p)

we have
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B 0Vm, 1) T § § L3P 0y 473 Yy, 071 P gy o7
= v'Q1y(0)6v ’
— i, (0) (1)
E(Ym’o) = Vv'y . E(Ym’—]) Y AY 7
and
g2 = v.y(r)dv - (v.y(r))Z

= v‘(I-y(r)1‘)y(r)6v , r=20,1.

(Here y(r)(S is the diagonal matrix whose i-th diagonal element

is the i-th element of y(r), i=26,1,...,p, so that

y(r)(S = diaq{y(r)(O), y(r)(1),..., y(r)(p)} , r=0,1.)
Thus
v'(Q1—y(1)1')y(0)6v
p =
01 /{v‘(I—y(0)1')y(0)gv}{v‘(I—y(1)1')y(1)6v}
(\)'(Q1—y(1)1')y(0)6v}/0001
and (2.8)
' ' 1
P10 = {v(Qo—y(O)1 )y( )6\)}/0001

For the imbedded homogeneous chain ..., Ym,O’Ym+1,0’Ym+2,0"“

of O-season variables we have

ym'0 = P0ym_1’0 , m=1,2,...

where Py = QpQy - and, under stationary conditions, the correlation

coefficient g between consecutive 0-seasons 1is
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Pg = corr(Ym_1’O, Ym,O)
= V'(PO‘Y(O)1‘)Y(O)6v/v'(I—y(o)1')y(o)6v ;
similarly (2.9)
Py = corr(Ym_1,1, Ym,1)
= v'(P1-y(1>1‘)y(1)6v/v'(I—y(1>1')y(1)5v

2.6 A Tractable Family of Seasonal Transition Matrices

Consider the matrices
.= o.I + (1-a. 1! , i = 0,1,...,k 2.10
QJ oy ( aj)uJ j ( )

where 0 < qj <1 , and uj is a distribution vector;

that is, uj >0 , and 1'uj = 1 . Then the Qj satisfy all

the requirements of transition matrices, namely
1'"g. =1 , Q. >0 (3 = 0,1,...,k)

These matrices have the following convenient properties:

(1) o} = a’J:'I *O-aduglt o, r =1, 42,0 (2.11)
(ii) Qij = Bjkl + (1-Bjk)ij1'
where Bjk = ajak , and
(1-Bjk)vjk = (1-<1j)uj + aj(1—ak)uk . (2.12)
(iii) 00,0, = 8, T + “‘Bij)ijﬂ'
where Sjkf = ajakaR , and

(1—Bjk£)vjki = (1-aj)uj+aj(1—ak)uk+ajak(1—al)u£ R

etc.
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If we take the Qj defined in (2.10) to be the inter-season
transition matrices in (2.5) we find that the transition matrix
P. of the imbedded homogeneous "annual" chains YO,j’ Y1,j
(j = 0,1,...,k) become

(3) 44
P. = p.I + (1-p. 1
3 o3 ( oj)y

where
Pi = Oglqe-0y (3 =0,1,...,k)

is the correlation between season j in one year and season j in

the preceding year. We note that Oj is independent of j; and

(3) -
+ taias_ g a1(1 ao)u0

1-0. = (1-a.)u.+a. (1-a. u.

(1=o4)y (Tmay)ugtay (1-ay_q)uy_y 7%3
+ ajaj_1---a0(1—ak)uk+ e
Foageg_qrerageoy qttt terag (Tmag g dug g -

For a 2-season year it follows that

- _ (0) .,
P0 = a0a1I + (1 aoa1)y 1

and
P. = a,a.I + (1-a.a.) (1)1'
1 0%1 0%1’Y
where
(1-a,a )y(o) (1-ay)u, + a,(1-a,)u
01 0’0 0 1 1
and
(1-apa )y = (1=a)u, + a. (1-a.)
0%9’Y 1 1 o 04 u,
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so that
(0 (1
(1—a0)u0 =y . ayY )
and (2.13)
(1) 0
(1—a1)u1 =y - a1y( )
SR & B A _,(0) 4
It follows that P, y 1" = a0a1(1 y 1'), whence, by

(2.9), the correlation coefficient between consecutive 0-seasons
is

Po = G0y (=p, say);

We may therefore write P, and P

0 1 in the form

P= ol + (1-p)y ™1, r=o,1,

(0) (1)

where y and y are the stationary distribution vectors of
the 0-season and the 1-season, respectively, and p is the cor-
relation coefficient between corresponding dates in consecutive
years. (Thus p is the lag-1 "annual" correlation coefficient.
It is easily shown that the lag-h annual correlation coefficient
. h

is p, h=1,2,... .)

Similarly we may write Q0 and Q1 in the forms

0 = a1+ (¥ ay(M)r
(2.14)
Q= a1+ (v Moay @)1

Thus, in computing the inter-season correlation coefficients
(2.8) we have
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so that
(0)1I (O)Gv

w/ V1 (I-y )Y }
p = a
01 "V or 2oy W10y 5 (D,

= a100/01

and similarly
P10 T %%1/%
so that

Po1P10 = %% = ° (2.15)

Finally, then, we may write the season-to-season transition
matrices directly in terms of the stationary distribution vectors

y(0) (1

and y , the standard deviations 9o and 94 corresponding to

these distributions, and the correlation coefficients Po1 and

P10} thus
0nC
Qp = =22 1y M1y + y 00,
o (2.16)
01 0 1.,
Q = 001 (1-y D10y + Mg

The extension of these results to a k-season year is
straightforward.
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3. PASSAGE TIMES IN A SEASONAL MARKOV CHAIN

3.1 The Method of Renewals

To illustrate the method without introducing excessive
notational complexities we work with a 2-season year, each year
containing a "0-season" and a "1-season". The successive var-

iables in the chain are then

Tt Yr,O’ Yr,1’ Yr+1,0’ Yr+1,1’ Yr+2,0’ e
We shall describe the event “Yr 0" j" as the occurrence of the
’
state €. in a 0O-season, j=0,1,...,p; and similarly for a l1-season.

We have

Yr+1,1 = @1Yr41,0

(3.1)

Y r=20,1,...

r+1,0 ~ Q0Yr,1
We shall be interested in the first passage times F(i,j;s)

to 5} from an occurrence of é} in an s-season (s=0,1), for

i,j=0,1,...,p. This includes as a special case (i=j) the

recurrence time F(i,i;s) of state 51, starting from an initial

occurrence of @} in an s—-season.

Thus for example the statement "F(i,j;0)=3" means that,
starting from é% in a O-season, the first passage to 51 required
3 transitions {(or "took 3 units of time" = 3 seasons, at the rate
of one jump per unit of time), the arrival at @1 occurring,
naturally, in a 1-season. This is illustrated in the following
table.

Year m m+1 m+ 2

Season

Initially

u®|o

not
State After 1 jump
occupied After 2 jumps

After 3 jumps €

(Illustrating "F(i,j;0) = 3").
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Consider the first passage time F{i,J;0), assuming that the
"initial" occurrence of é} belonged to year m (the actual value

of m does not matter). Then

P{F(i,3:0)=2n} = P{Y_ 1#1, Y q oFirevns Yisno1, 17717 Ym+n,0=lIYm,0=]}

ilj=011l'--lP7 n=1,2,3,...,
£ 50, (3.2)

say, and

P{F(i,j;0) = 2n+1}

1§

P{le1}£l,Ym+1 ’0#11 .. .'YITH’D,O#J_'YHH'I],]:l‘leozj}

i,3=0,1,...,p; n=0,1,2,...
20+ (5 5.0) (3.3)
The problem is to evaluate these probabilities in terms of

the seasonal matrices Q0 and Q1. Define the random variables

T(i,j;s) as follows:

T(i,j;s) = n if the chain is in state @1 (not necessarily
for the first time) after n transitions from
an "initial" occurrence of €. in an s-season;

s=0,1;n=1,2,... , (i, j=20,1,...,p)-

Here again the season containing the terminal state £, is not
prescribed; and the statement "T(i,3J;s) = n" is consistent with
the system's being brought to €i at the n-th transition, regard-
less of the number of previous visits to 51 since leaving the
initial state @3. Let

P{T(i,j;s).-_n}:q(n)(i'j;s) , s=20,1; n 1,2,... .
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We have

q(zn)(i,j;O)

t
o
—~
<

|
—_
©Q
o
[@]
N
=]
o
'_J.
.
~
=]
1}
-
~
()

(3.4)

Likewise

a2 (5,55 0)

[Q (e "1y » mn=10,1,2,... .(3.5

1]

Similarly one £finds

a®™ 1,551 = 1o, ™

1
-
~
(S
~

’ n

i3 (3.6)

and

a?™ MV G,5:0 = 100409 My 4 m

0,1,... . (3.7)

The required relation between the f's and the g's is the

renewal equation. For homogeneous Markov chains this equation

is well known (see Section 2.2). In the seasonal version,

for our 2-season year, the appropriate generalization of this is:

r
a0 = 7865005 G0, @oe
s=1
I=1,2, . ' l:j=0:1r P
where
0 when s is even
n =
S 1 when s is odd

and q(o)(i,j;wr) = 1 for each r.
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Similarly, if the initial state é} is taken as occurring in a

1-season we find

Y. (3.9)

r
q(r)(i,j;1) =3 f(S)(i,j;1)q(r_S)(i,i;nS+1

Equation (3.8) states that, starting from 63 in a O-season,
an occupation of 6& after r transitions must either be the first
occupation of El (s=r in (3.8)), or else the first occupation of
Si occurred after s jumps (and therefore in a ﬂs—season), with
s=1 or 2 or -+« or r-1, and that, after a further r-s transitions
the system must have returned to 6}, not necessarily for the
first time, having started this loop in a T TSeason. Equation
(3.9) has a similar justification.

Developing (3.8) we have
a'" ,5:0 = £ (5,50

a@ 1,500 = £V 6,5:0 Mg, 10+ £@ (4, 5;0

a0 = £ 4,500 @ @i + £ (1,500 M 10 + £ (4,550

a® 1,30 = £M(1,5:00 ¢ (1,11 +£ @ (1,5:00? (4,150
+ 34,506 @10 +£® (1,550
etc. (3.10)

This triangular system is a ready-made algorithm for the
numerical evaluation of the f(n)(i,j;O), n=1,2,... in terms of

the known (see (3.4),(3.5),(3.6), and (3.7)) values of the

q(r)(i,j;s): the first equation gives f(1), the second gives
f(2) (1) (1

(2 (n)

in terms of £ the third gives f(3) in terms of f

and

and so on. A corresponding system exists for the f (i,3:1).
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To obtain an analytical solution of the equation (3.10) we
work in terms of generating functions (as usual in the case of
an infinite system of equations).

For s = 0,1, let

K(i,j;s;:8) = a™ (i,5is)8™

Il ~1 8

0

with

Il
-

‘9 (i,958)

This is the generating function of the q(n)(i,j;s), n=1,2,...
It is convenient to split it into two parts, one containing only
odd powers of © and the other containing only even powers of 6.

We therefore define the "partial generating functions"

Ky(i,j;s;8) = ) q(zn)(i,j;s)e2n ; (even powers),
n=0
K, (i,3:8:8) = | q2™ D (i,9;5)8?™1 | (caa powers).
n=0
Then
K(i,j;s;0) = Ko(i,j;S;B) + K1(i,j;s;e)

Likewise, for s = 0,1, define the generating function of the

first passage probabilities as

F(i,i:s:0) = § £ (i,5;8)06"
n=1

= Fy(i,35s:0) + F (i,3is;0)

where F, contains the even powers and F, the odd powers.
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Now multiply the eqguations (3.10) by 9,62,83,...,respectively.

Adding the first, the third, the fifth,..., we find
K. (i,3:0:6) = 0" (4,350)K (i,1i51:8)
1 1,],0,9) = 0f (ll]l ) 0 1,171
v 0?8 (1,3, 00K,(1,15050)

+ e3f(3)

(i,j;O)KO(i,i;1;6)

ey (i,is0i0) & oo

=k (i,ir 0 s (1,550 + 0e 3 (1,550 + o0}

2)

+ K1(i,i;0;6){82f( (i,3:0) + 6% ™) (i,550) + +--}

so that

K1(i,j;0;6) = K, (1,1i;0;0)F

1 (i,j;O;e)-FKO(i,i;1;9)F1(i,j;0;9)

0

Similarly

Ko(i,j;O;e)—1 = K i,i;O;e)Fo(i,j;O;S)-+K1(i,i;1;6)F1(i,j;0;6)

o
(3.11)

Thus the required partial generating functions are given by the

following:

-1
Fo(i,j;O;e) K1(i,i;0;9) Ko(i,i;1;6) K1(i,j;0;6)

= (3.12)
F1(i,j;0;8) Ko(i,i;O;e) K1(i,i;1;9) Ko(i,jio;e)-1
Analogous results hold for Fo(i,j;1;e) and F1(i,j;1;e). This
formal solution can be made a little more explicit by expressing

the Ks(i,j;r;e) in terms of the season-to-season transition

matrices Q0 and Q1. We have
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q(2n)(i,j;0)82n
0

[]
le~18

K, (1,3:0;6)
0 n

1+ 1(0,0,) "1,
n£1 01 i

‘62n
J

_ _ 2, -1 2
= 1+ 1040, (1-050,0%) " 1,8
When i=j this simplifies to
K (i,1:0:8) = [(I1-0.0.0%) 1., -
pltetiviv) = 01 ii
Likewise
Ky (1,3:050) = § a2 (4,5;0 %]
n=0
_ 5 n 2n+1
1104005090715 40
n=0

010, (1-040,6%) 155

The corresponding expressions for Ko(i,j;1;6) and

K, (i,3;1;8) are

D 2, -1 2
Koli,3:1:8) = 1 4 [Q404(1-04Q407) 15467 ,
Ko (i, i:158) = [(1-0,0,6%) 7]

(A 1*0 ii 7
K, (k,3:1:8) = 8[0,(I-0,0,6%) 11, -
1 ’ ’ r 0 1 0 ij

(Subsequent computations may on occasion be simplified by

noting that

2,-1 _ _ 2, -1 .
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[We may verify that the ordinary non-seasonal
(homogeneous Markov chain) renewal equation is a
special case of the above, with Q0 = Q1(=Q), and
Fs(i,j;O;e) = Fs(i,j;1;9) (=Fs(i,j;9) say) for

s = 0,1. In the latter case (3.12) reduces to
2 2.-1 L. 2 2-1 s _ 2 2.-1
2. 2-~1 .. 22-1 .o _ 2.2.-1
[(1-Q%6)" 1, Fy(i,3:0) + 0[Q(I-06") ') ;F (1,5:0) = [(1-Q%6%) 1,4-1

whence, adding, we obtain the generating function
F(i,j;08) of the first passage time distribution

to é; from é} in the homogeneous chain as

F(i,j:9)

Fo(i,3:0) +F,(i,3:0)

[(I+Qe)(1-ozez)'11ij-1
[(1+08) (1-%6%) ™11,
-1
[(1-00) "1, -1
= ] . + (cf. Section 2.2).
[(z-00)~ "1,

3.2 First Passage Times F(i,j:;s), with i # j:

the Method of Absorbing States

Whilst the method described in Section 3.1 applies whether
or not i = j, there is an alternative method that is sometimes
simpler for the cases i # j. This makes use of the "absorbing
state" technique that is well known in the theory of random walks.

By relabelling the states, if necessary, we can ensure that
the state to which the first passage time is required is the
state1%. We consider, then F(0,3j:0), that is the first passage
time to €0’ starting from EJ in a 0-season (j#0). We provide

our seasonal chain {Ym j} with a companion chain {Ym j}’ which
’ ’
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has seasonal transitiog matriges QO and Q1 where the original
chain has Q0 and Q1. Q0 andNQ1 differ from Q0 and Q1 in one
column only, in each case: Q0 and Q1 each has as its first
Solumn the vector eq = (1,O,OL...,O)'; in all other respects
Q0 is identical with QO’ and 91 with Q1.

This~means that, in the Y-chain, éb is an absorbing state:
once the Y-chain has moved into this state it stays there. For
our purposes it is more appropriate to rephrase this as follows:
if after a certain number of transitions the Y-chain is in state
Eb, Ehen all further transitions are from éa to éb. Thus, 1if
the Y-chain is observed to be in state EB after n transitions
from the initial g—season occurrence of sj’ it follows that the
first arrival of Y at @b must have occurred after n or fewer

transitions, so that

P{F(0,3;0) < n} = P{T(0,3:;0) = n} (3.13)
where ; and % denote, respectively, the relevant first passage
time and the not-necessarily-first arrival time in the Y-chain.

However, since all transition probabilities other~than those
out of éb have the same value for the Y-chain and the Y-chain,
it follows that F(0,3;0) and F(0,3:;)0 have the same distribution.
Let

P{T(0,5;0) = r} = g (0,3:0) , r=1,2,... .
Then

a®™ (0,5;0)

- i
[(QQ) g5 + n=1,2,...

and (3.13a)

a1 (0,3:00 = 10,1000 M g5+ n = 0,1,

as in (3.4) and (3.5).
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We have thus obtained the cumulative distribution of the

first passage time in the original chain as

P{F(0,5;0) <1} =q'T(0,5:00 , r=1,2,... (3.14)

(r)

where the g are defined in (3.13a); and the corresponding

point distribution is

£ (0,5;0)

]

P{F(0,3;0) <r} - P{F(0,3:0)<r-1)}

‘% (0,5:0 - ¢V (0,5;0)

Thus
£02) 00,5500 = [0 ™ - @102 ™ 15
D m s in=T
= [(QO—I)Q1(QOQ1) ]Oj ’ n=1,2, «, (3.15)
and similarly
2 . PP P
£0271) (0,350) = 10,(@p0 ™ = (407) ™15

~ ~ o~ B
[(Q1-I)(QOQ1) ]Oj , n=20,1,... . (3.16)
From (3.15) and (3.16) we may obtain the generating function
F(0,5;0) = § £5)(0,3;0)0"
1
as

= p - ST a2y =1 .
[{(01_1) + (QO_I)Q10}(I_Q0Q1G ) ]Oje ’ ] = 1121"'Ip -
Equations (3.15) and (3.16) are convenient formulae for
computational purposes. They can however be written in terms of
computationally more attractive powers of matrices of lower order
than the Q.. Partition the és as follows:
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o, = » 8 =0,1. (3.17)

where (1,3&) denotes the first row of QS. Then

- 1 ap| |1 a}
Q024
LO Bo| [0 B4
1 a'
P B
say, where
a' = a; + a(')B1 B = BOB1 ; (3.18)
and
1 b!'
-~ r
(Q0Q1) = .
0 B

where b; is a row vector whose explicit form is irrelevant. 1In
terms of these submatrices it will be found that (3.15) and (3.16)

reduce as follows:

f(zn)(o,j;O) = (j-1)-element of the row vector a(')131Bn—1 ,
i=1,2,...,p
— ] n-1 — [
= aOB1B ej_1 , (ej_1—(0,0,...0,1,0,...0)
j-2
and
f(2n+1)(0,j;0) = (j-1)-element of the row vector a;Bn
= a;B“ej_1 , 3 =1,2,...,p .
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These formulae involve products and powers of matrices of order
(pxp), whereas the matrices in (3.15) and (3.16) are of order
(p+1) x(p+1).

The above version of the first passage time distribution
also lends itself to the evaluation of moments: for example

the expected value of F(0,j;0) is
E{F(0,9:00} =} r£T) (0,5;0)
1

)

=7 (2n+) 20,5500 + T 2n £2™M(0,5;0)
n=0 n=1

i n - n—1}
{a; ({)(2n+1)s +a)B, §2nB e

[]

] - -2 1 - -2
{23 (0+3) (1-5 % 4 223, (1-B) ey g L (3.20)
3 =1,2,.00,p .

In a similar way we may obtain higher moments.

The generating function of F(0,3;0) is

6(8l0,5;0) = 7 o%eF) (0,5;0)

+ a'B1e)(I—B62)—1e-

5o19 - (3.21)

We have dealt with first passages from an occurrence of 63
in a O-season. Analogous results hold when the initial occurrence

is in a 1-season.

3.3 First Entry Time into a Set of States, Starting from a

Specified State in a Specified Season

Let F(£,j:s), denote the first entry time to the set € of
states, starting from an occurrence of E} in an s-season, where
the set € does not contain the starting state é%, and let
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£05) (6,5;9)

i

P{F(€,3;:8)=r} , r=1,2,...

Then, if the set & consists of the states 53(1), 53(2),...,

E. , we have
i(a)

(r)

(8,358 £ (i(n),3;8)

1
Il ~18

where the terms under the summation sign are the first passages
probabilities discussed in Section 3.2.

Some reduction in the order of the matrices involved may
be obtained by an extension of the partitioning method used in
the previous section. Suppose, for example that & consists of
the states Eb and 51 (after a relabelling of states if necessary),
in a seasonal chain which has two seasons in the "year". We
shall take the starting season to have been a O-season. We now
provide our chain ~Yij with a companion chain Ym,j having
seasonal matrices QO'Q1 in each of which the first two columns
coincide with the first two columns of the unit matrix (thereby
making @ and @’ absorbing states 1n the Y-chain). In all other
respects QO coincides with QO' and Q1 with Q1

By an obvious extension of the methods used in deriving
(3.15) and (3.16) we find

P{F(0,5:0)<r} = aF)(0,3;00 + g'F) (1,5;0)

(r)

where the q functions are defined in terms of the matrices

QO and Q1 in exactly the same way as the q(r) are defined in
terms of QO and Q. in (3.13).
If follows that
£(20) (6 4:0) = the sum of the (0,j) and the (1,7)

n-1

elements of (Q,0.)" - 0,(0,0,) (3.22)

(2n+1)(€,j;0) similarly related

as in (3.15), with results for £
to (3.16).

The order-reduction process is now put into effect.
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Partition Q0 and Q1 as

where As is a 2-rowed matrix. Then (3.22) reduces to

1

£420) (g,4;0) = 1'a.B.B™ e

01 j-2
and (3.23)
(2n+1) . _an n
£ (&,3;0) = 1'A,B ey
where
B = BOB1
and
€. 5 = (0,0,...,0,1,0,...0)" .
i-
j-3
(The first of these expressions, for example, is the sum of the

elements in the (j-2)-column of the matrix A0B1Bn_1.)

The results in (3.23) are expressed in terms of powers and
products of matrices of order (p-1)x(p-1). Similar techniques
applied to first entry times into a set of h states would be
expressed in terms of matrices of order (P+1-h)x(p+1-h).

First-entry times into a set of states are important in

reservoir applications.

3.4 First-Entry Times into a Set & of States, Starting
from a Set & of States, Where &/ NZ = 0.

In a simple (non-seasonal, lag-1) Markov chain {Xt} defined
on (0,1,...,h), with

P(Xt+1=r|Xt=s) =d. . (3.24)
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the generalization of (3.21) to P(Xt+16g4Xt = s), where & is a
specified set of states not containing é;, is simply

P(Xepqel Xy = 5) = rgy{drs ’
a simplified version of the corresponding concept for a seasonal
chain, as used in Section 3.3.
The corresponding generalization at "the other end", namely
to P(Xt+1=r]XtC:B), where & is a given set of states, is of
quite a different nature. If, for example, % consists of éb

and gﬂ we have

P(X  1=r|X, €8 = P(X =1, X € B) /P (X CB)

t+1

{a, o %, (0) +qp, x, (1) }/{x (0)+x (1)}

where

]

xt(r) P(Xt = r) , r=20,1,...,p

In general, then

P (X &K CB) = Y g_.x,(s)/b
e reoy s€B o ¢ ¢
where
b, = ] x,(s)
t SE€B t

This probability is therefore time-dependent; but, provided the
process is ergodic, converges to a constant with increasing t,

since then the xt(s) converge to their stationary values.

3.5 "Recurrence" Times of a Set of States

In Section 3.4 we dealt with the first entry times to a set
& of states from a set # of states, the sets . and % having no

states in common. The first entry time to the set . from the
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same set &--i.e., the first arrival time at an unspecified one
of the states of ./, starting from an unspecified one of the
states of #--may be called the recurrence time of the set .
These recurrence times are rather messy to evaluate. For
example, let the set .o consist of the 3 states £ R é;, é;. The
probability of first passage to . from an occurrence of &b in

the season s, at the n-th transition is
= £™ 0,058 + £M™(1,0:8 + £ (2,0;8) .

The first of these three terms is a true recurrence time probabil-
ity, to be evaluated by the methods of Section 3.1; the other
terms are true first passage times in the sense of Section 3.2.

This gives the first entry time into %, from a specified
state €B of & Similarly for T and T,

For what we have called the recurrence time probability of
the set &, we must take the weighted average of Tor Tqr and Moy
the weights being the ratio of the absolute probabilities of
&, &, and 5;, respectively, to the sum of these probabilities,
as in Section 3.4. The resulting transition probability is in
general time-dependent, but as in Section 3.4, will converge to

fixed value as t + =,

4. STOCHASTIC RESERVOIR THEORY

4.1 The General Background

We work with discrete time, and take the grid spacing At of
the discrete time scale as our unit of time; and with discrete
volumes, taking the gquantum Av of the discrete volume scale as
our unit of volume. 1In these units, we consider a finite reser-

voir of capacity c¢. In the following diagram

X
2y t o 2y
"
/| Z)
ol S

We

» time
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Zt and Zt+1

times t, t+1, respectively, Xt the inflow available during

(t,t+1), and Wt the desired withdrawal during that interval,

where Xt may be a vector, if the inflow process is multivariate,

and where Wt is a specified function of Zt' Zt—1""' Zt—k'

Xt, xt_1,..., Xt—m (for given values of k and m), and of various

represent the volume of water in the reservoir at

and

environmental factors. (This function is the so-called "release
policy".) Subject to suitable assumptions concerning the se-
quencing of Xt and Wt we have the following "continuity equation"”
expressing the conservation of water quantity:

N
|

el = mln(Zt+Xt-Wt,c) - m1n(Zt+Xt-Wt,0) ’

= at+1(Zt,Xt,Wt), say, t=0,%,... . (4.1)

The reservoir might be unable to accommodate the whole of the
available inflow Xt, in which case the unacceptable part, or
spillage, in (t,t+1) is

St = max (Zt+xt—wt—c,0) . (4.2)
Likewise the reservoir might not contain enough water to satisfy

the whole of the withdrawal demand Wt, in which case the actual

amount supplied in (t,t+1) is the yield

Lt = mln(Zt+xt,Wt) . (4.3)
Once the structure of the inflow process and of the release
policy are given, (4.1) becomes a difference equation for {Zt},
from which one may derive equations for the distribution of Zeo
generally in terms of multivariate distribution vectors involving

X, and a set of earlier values of

the joint distribution of Zt' €

Z and of X.
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Reservoirs with Univariate Seasonal Lag-1 Markovian

Inflows and Simple Seasonal Release Policies

The principal result of this section is to show that in

reservoirs of this kind the sequence

of pairs (Zt,Xt) of

storage and inflow can be represented in terms of a univariate

lag-1 seasonal Markov chain, so that

the results of Section 3

apply to the passage times of this reservoir.

Suppose the year divided into (k+1) working intervals (of

size At

1 in our units) called "seasons".

The inflow process

{Xt} is assumed to be a seasonal lag-1 Markov chain with a finite

set of states corresponding to Xt =3

, J=0,1,...,n. As in

Section 2 it is convenient to provide an alternative notation,

in which

if

(k+1) m+J m=0,1,.

’

We then regard m as the indicator of
season corresponding to the epoch t.

DO’ D1,..., Dk denote the transition

inflows, so that for each wvalue of m,
xm,j = Djxm,j—1 , jJ=1,2,.
with
xm,0 = Doxm-1’k
where X

Xn,47 (cf. (2.5)).

.., 0 <3 <k .
the year and j that of the
let

matrices of the seasonal

In this notation,

..k

is the distribution vector of the random variable

The (r,s) element of a transition matrix Dj will be denoted

by dj(r,s).
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The withdrawal policy Wt is assumed to be a simple one in
the sense that Wt depends only Zt and Xt only, the dependence
being possibly one that varies from season to season. We express
this in the form

Wt = wj(zt'xt) 12
the subscript j representing the season corresponding to the

epoch t. The continuity equation (4.3) then reduces to the form

Zt+1 = aj(zt,xt) . (4.5)
It follows that the sequence of pairs ... (Zt’xt)’ (Zt+1’xt+1)’ .
form a bivariate seasonal Markov chain, in the sense that

—_ —_ —_ —_— —_ L] —_— L} —_——" —
P{(2, q=u, X 4=V) | (2 =1,X, =s), (B, _q=r',X _4=s'), (2, _,=r",X _,=s",...
= P{(Zt+1=u,xt+1=v)|(Zt=r,xt=s)} , t =20,1,...
r,s = 0,1,...,n . (4.6)

To see this, insert (4.5) in the former of these expressions.
It becomes
=s'),...}

P{aj (rls)=ul Xt+1=V| (Zt=rrxt=5)r (2 1=r.1x

t- t-1

= P{aj(r,s)=u,x =v|Xt=s} (4.7)

t+1
since Xt+1’ being by hypothesis a lag-1 Markov chain, is affected
by X, but not by any of the other conditioning variables. This

expression reduces to

=v|Xt=s) (4.8)

S{aj(r,S),u}P(Xt+1

where the 6-function takes the value zero when aj(r,s) # u, and

unity otherwise.
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For formal purposes however it is more convenient to re-

place the pair of variables X Z, by a single variable Y, which

t’ t t
"carries" the two variables Xt and Zt' We define
Yt = (n+1)Zt + xt R t =0,1,... (4.9)

where n is the largest permissible value of Xt' Consider the

equation

y= (nthy, +yp, , yg=20,1,...yn
(4.10)

Yg = 0,1,...,c

Not only is y uniquely determined by Yy and Yyr but the converse
is also true. For any given integer y, 0 <y < (n+1) (ct1)-1, Yg
is the integral part [y/(n+1)] of y/(n+1), that is Yq is the

unique integer such that

Yy

[ A

y/(n+tl) <y, + 1 ,

and

Yy =Y — (n+l)y,
It follows that

Yt =y 1if and only if Z, =Yg and Xt =Yy o

where vy, Ygr and yy are related as in (4.10). It then follows
from (4.7) that Yt is a seasonal lag-one univariate Markov

chain, with transition probabilities

P(Yp q=ul¥y=v) = P(2 4=y, X q=Ugl2=vy, X = vy)

(vhere u, u,, uX and also v, vz, vy are related as in (4.10))

= G{aj(vz,vx),uz}d (4.11)

j+1(ux’vx)

as in (4.8).
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Here "j" is the season label of epoch t, that is j = t - [t/ (k+1)].
This establishes the result announced in the opening para-
graph of this section.

We conclude with a simple example of the matrix (4.11).

Example 4.11

Suppose we have a 2-season year, then the sequence Yt

becomes

Yoor Yo1r Yaor Y910 Yoor Ypqreeer Ypor Ypqre--

the coresponding distribution vectors Yo 3 being related to each
I
other thus:

Ym1 = Q1 ¥mo -
Yme1.0 = Y¥pmq + ™= 0,1,... . (4.12)
Suppose the inflows are 3-valued: X, = 0,1,2; with transition
matrices DO' D1, so that the inflow distribution vector Xy of

X, is related to x thus:

t t+1

Xn,1 = D1 Xpo

xm_”’0 = D0 xm’1 , m=0,1,...

where

o
i
o

590 391 %2
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It is convenient to partition D, into its columns:

D. = (.d, + .d, + .d
j (J 0 - 371 -3 2!

and to define auxiliary matrices

Digy = (389 8 0 1 0)
Dyqy = (0 Pidp 1 o)

Suppose, for example, the withdrawal policy is

Then, in partitioned form, the transition matrices Q, and Q, of
0 1

the {Yt} process are given by

%= [P0 * 5w %o O o ° °
Dy (2) Dy¢yp Pjy Tt 0 0 0
\
° 5@  Pymy 0 o 0
\
0 0 Dj(2) \ 0 0 0
0 0 0 \ 0 0 0
\ \
. ) A \ . ) )
) . A \ - . )
\
- - . \ \ 0 0 0
\
. . . \ D'(O) 0 0
\ ]

\ Dyqy Dy O

\
i Py Py
L 0 0 0 .- \0

Pj@ P * Py
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The ordering of the Z and X states and the detailed layout
is exemplified in the following display of Qj in the case c = 2,

oo Y01
10 911 dqg

20 21

02 00

12 10

22 20

00 02

11 12

21 22

Here we have written drs instead of jdrs' for clarity; blanks
represent zero entries.

Equation (4.12) is a 2-season version of (2.5). The notation
and concepts are then those of the univariate seasonal lag-one
Markov chain of Section 2, and the passage time analysis of
Section 3 applies directly.

In particular, the first passage time to storage level Z=r
from a storage level Z=s (s#r) is the first entry time to the
entry set (Z=r,X=0), (Z=r, X=1),...,(Z=r, X=n) from the set
(z2=s, X=0),...,(Z=s, X=n) as explained in Section 3.4.
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4.3 Reservoirs with More General Inflow and Release Policies

Inflow processes of the type we have discussed can be gen-
eralized in two ways: they can be multilag, instead of lag-1;
and they can be multivariate, instead of univariate.

Likewise the release policies can be generalized, by allow-
ing W, to depend not only on Z, and X_ but also on Zt—1' Zt—2""'

t t

and on X for arbitrary values of the

By’ t=17 Xepre- ¥ g
integers k and p.

All these kinds of generalizations fit in with the methods
presented in earlier sections, all being formally eguivalent to
a suitably defined univariate lag~1 Markov chain {Yt}.

As an example, consider the following: the inflow is a
univariate seasonal lag-1 Markov chain (as in section #4.2) and

X, and Xt_1:

the withdrawal policy W, depends on Zt' Zt—1' £

W, = wj(Zt, b4 X

t t-1" "¢’ t—1)
where the suffix j represents the season corresponding to t. The

continuity equation coresponding to (4.5) is now

Zear = O3 (Bpr Zeoqr Xer Xeyq)

It is easy to see that the sequence of gquadruples {(Z

erlooqr X X))

forms a quadrivariate seasonal lag-1 Markov chain, which can be
represented as a univariate chain {Yt} by the obvious extension
of (4.9), namely

Y, = (c+1)2(n+1)Zt + (c+1) (n+1) 2

£ + (n+1)xt + X

t-1 t-1 7

(Xt_1lxt=ol1ll'-ln , 2 =0,1,...,c )

t-172¢

When the inflow is a bivariate lag-1 Markov chain, it can be
represented as a (suitably labelled) univariate lag-1 chain by
the methods used for the pair (Zt'xt) in (4.9) and this can then
be proceeded with by the methods explained.
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