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Foreword

This paper presents the results the author achieved during his participation in the
Young Scientists Summer Program (YSSP) 2004. However, the impact of these
results is wider than it can be seen from this paper. This is because of the synergy
resulting from team work.

Three participants of the YSSP 2004: Bart lomiej Pre
↪
dki, Cezary Chudzian, and

Vladimir Molchanov were members of the team working on the development of the
Structured Modeling Technology (SMT). The other two members of the team were
Micha l Majdan (who has spent five months at IIASA on leave from the National
Institute of Telecommunications, Warsaw, Poland) and myself.

The development of SMT is a long-term challenging undertaking that requires
collaborative work of researchers having experience not only in methods and tools for
advanced modeling but also knowledge and skills in DBMSs (Data Base Management
Systems), XML (Extensible Markup Language), and object-oriented programming
of Web-based applications.

Micha l Majdan has designed the user interface to, and basic data structures of
SMT. He had been coordinating the design of elements developed by other colleagues
in order to be able to smoothly combine all elements into one system. This work
has not been documented yet.

The contributions of the other three members of the team have been described
in three Interim Reports (IRs), which constitute a kind of virtual set describing the
collaborative work. I briefly summarize the scope of each IR encouraging the reader
to become familiar with all of them:
• Bart lomiej Pre↪dki (IR-04-050) has implemented an extension of SMT (originally

designed for algebraic models) by implementing a prototype handling of decision
rule models; he has adapted a suite of software supporting application of decision
rules for analysis of qualitative data to work with SMT. Moreover, he tested
the concept by a medical case study developed in collaboration with the Ottawa
University.
• Cezary Chudzian (IR-04-051) has developed the key elements of SMT that sup-

port a part of modeling process composed of instance definition, specification of
preferential structure for various types of model analysis, and efficient handling of
underlying complex and large data structures (e.g., for parametric optimization,
and diversified sets of results, both composed of huge amounts of data).
• Vladimir Molchanov (IR-04-052) has explored possibilities of using XML for au-

tomatic documentation of the modeling process, and implemented a prototype of
automatic documentation of model specification, which is the most difficult ele-
ment of the documentation due to the complexity of the structure of symbolic
specification and the requirement for supporting gradual modifications of the de-
scriptive part of the documentation (which is added to the part resulting from the
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interactive model specification).
Finally, I would like to stress that it has been a pleasure to be the leader of the

SMT team during the Summer 2004. Each member of the team not only has very
good professional skills but also abilities necessary for team work, strong dedication
to achieve good results, and to have fun during the short periods spent away from
keyboards.

We plan to make the SMT publicly available in 2005. Therefore, I invite the
readers to not only become familiar with the IRs mentioned above, but also to visit
http://www.iiasa.ac.at/~marek in Spring 2005 to check further developments of
SMT.

Marek Makowski
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Abstract

This report presents the design and implementation of basic components of Struc-
tured Modeling Technology (SMT), and discusses in more detail the issues related to
model analysis. First, the representation of symbolic model specification composed
of entities, sets, indices and relations in the SMT is outlined. Then, the structure of
a data warehouse for storing values of model parameters, along with the data sets
hierarchy, giving strong support for the tracking of changes in data is explained.
The concept of initial data import and subsequent updates allows to implement
an efficient data versioning mechanism. Next, the model instance (a selection of
a specification and a data set) is described.

The main topic discussed in the paper is model analysis, which is composed of
a series of analyses of various instances. The analysis of each instance is in turn
composed of a set of analysis tasks, each of which can be performed with a different
analysis type, such as optimization, simulation and multicriteria analysis. Each type
of model analysis uses a specific representation of a preferential structure. Moreover,
some analysis tasks (e.g., parametric optimization) result in a possibly large number
of computational tasks. Thus, the paper presents an efficient approach to automatic
generation of DBMS’s data structures that supports the whole modeling process, and
discusses in more detail such issues of DBMS-based management as: definition of
model instances, specification of user preferences, generation and management of
computational tasks, and handling results of a possibly huge number of analyses.

Finally, plans on further SMT development with special attention to analysis of
results and distributed computations are summarized.

Keywords: model-based decision support, structured modeling, algebraic models,
model analysis, preferential structure, results analysis, distributed computations.
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Support of Model Analysis within Structured

Modeling Technology

Cezary Chudzian* (C.Chudzian@elka.pw.edu.pl)

1 Introduction

Structured Modeling Technology (SMT) is a consistent framework for supporting
the whole modeling process and is designed for efficient and effective support for
complex models. SMT is designed to cover all the steps of the modeling process,
from symbolic specification, and data management, through model instantiation to
analysis and results’ maintenance. SMT is based on the well established technology
of relational databases, it uses the Web as the interface for all functionalities and
provides automatic documentation of all modeling activities. Currently it is possible
to develop and analyze two types of models within the framework: algebraic and
decision rules.

One of the characteristic features of SMT is its support of persistency for mod-
eling activities. Namely, every created data modification, model instance, or any
performed analysis and its results, may be either easily reconstructed or retrieved
from the database.

Access to SMT functionalities is realized through the WWW interface. Thus the
modeling process is supported without having any specialized software installed on
the user’s computer. In other words, the only thing the user needs is a web browser
and an internet connection. Modeling resources are stored on the SMT server, and
are accessible through the Web from any location, at any time, by users authorized
to have access to selected parts of them. Thus collaborative modeling, by inter-
disciplinary teams, located at distant locations is effectively supported. Moreover,
collaborative modeling implies the demand for transparency of the whole modeling
process. Especially the automatically generated documentation of the model speci-
fication and data, as well as modeling activities of the collaborating teams’ members
have to be transparent.

In this report, special attention will be paid to the organization of data handling
of a model instance within SMT and an even closer look will be taken at the topic
of model instance analysis.

Data warehouse and concepts of updates allow for persistency of the data part
and for handling large amounts of data in an efficient manner.

*National Institute of Telecommunications, Szachowa 1, 04-894 Warsaw, Poland, and Warsaw
University of Technology, Faculty of Electronics and Information Technology, Nowowiejska 15/19,
00-665 Warsaw, Poland.
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Every model instance defined may be analyzed in many ways and each analysis
type has a specialized preferential structure associated with it. Model analysis task
may result in a possibly big number of computational tasks, where the latter is
understood here as task specification for an external computer program, namely a
solver. Computational task must have computational resources allocated, and have
to be scheduled in a queue of tasks to be performed. The huge amount of resulting
data returned from solvers is then stored back in the SMT database. Because of
their large volume, results have to be efficiently managed.

The remaining part of the report is organized as follows. Section 2 provides an
overview of the modeling process. An outline of objects involved in symbolic model
specification can be found in Section 3. Section 4 covers organization of the data part
in SMT. Model instantiation is the topic of Section 5. The part of this report that
is most detailed is devoted to the analysis of model instance. Section 6 starts with
an overall look at the issue of analysis of model instance. Several types of analysis
tasks are discussed in more details in 6.1. The specification of preferential structure
is presented from the user’s point of view in Section 6.2.1, and the implementation
details are provided in Section 6.2.2. Management of computational tasks associated
with analyses is covered in Section 6.3, while problems of dealing with results coming
from analyses are presented in Section 6.4. Conclusions and further steps follow in
Section 7.

2 Modeling process

In order to provide a framework for structuring this report we start with outlining
the basic components of the modeling process in the context of Structured Model-
ing (SM). Modeling is a network of activities, is often referred to as a modeling cycle,
or a modeling process, or a modeling lifecycle. Geoffrion (1989) provides a detailed
specification of a modeling cycle, together with references to earlier works on this
topic. Here, we discuss the modeling cycle composed of more aggregated elements
which correspond to the elements of SMT.

Modeling process starts with analysis of the problem for which the model will be
developed. This stage is a collaborative work of the domain experts and modelers.
As it is not practicable to attempt to formalize this stage, the problem analysis
phase is not supported by SMT.

SMT supports all other phases of the whole modeling process:
• symbolic (mathematical) specification of the model;
• management of data to be used for definition of parameters of relations declared

in the symbolic specification;
• definition of model instances;
• specification of various types of analysis of instances, and management of results

of analyses.
We will discuss these phases in subsequent sections at different levels of detail

which correspond to the focus of the research reported in this paper. Background
and methodology of Structured Modeling is presented in (Geoffrion, 1987; Geoffrion,
1989; Geoffrion, 1992). More detailed discussion of Structured Modeling Technol-
ogy (SMT) is given by Makowski (2004). An extensive discussion of model-based



– 3 –

decision support methods with a detailed presentation of modeling tools and their
applications to complex problems is presented by Wierzbicki, Makowski and Wes-
sels (2000). Readers interested in modern decision making may want to consult
(Wierzbicki and Wessels, 2000).

Figure 1: Entity definition screen of SMT (with the navigation panel on the left
side).

Users of SMT are guided through the modeling process with the help of a nav-
igation panel (which is illustrated on the left side of Fig. 1), which only has those
choices active that correspond to modeling actions that can be performed at a given
phase of a modeling process.

3 Model specification

Model specification of SMT consists of:
• indices,
• sets,
• entities, and
• relations between entities.

Any large and/or complex model is built up using the concept of primitive entities
(parameters, variables, relations) and indices that expand primitive entities into
compound ones. Thus a specification of any complex model starts with the definition
of indices.

Two types of indices are supported by SMT:
• collection type, which can be unordered (although various forms of ordering are

typically used for analysis and/or reporting purposes),
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• sequence type, which are ordered and have basic properties of a sequence (such as
an initial value, step, and number of elements); this type is used e.g., in dynamic
models.
Moreover, an index can be defined as a composition of other indices, e.g., for

simplifying the notation. Composition of two, or more indices that appear often
together in a symbolic model specification is, for the sake of more understandable
model formulation, substituted with one compound index.

Another type of index is called alias, which defines an alternative name for a
given index. This type of index is typically used to avoid ambiguity and possible
inconsistency in model specification, e.g., in cases when an entity is indexed more
than once by the same index (e.g. aii).

Values of indices are organized into sets. A set in SMT is defined as an enumera-
tion of all possible values for an index in a specific context (e.g., within a relation or
a set of relations). Sets are declared during the model specification, their definitions
(i.e., actual specification of values of indices that belong to a given set) is being done
by the specification of corresponding data. Sets can also be indexed (see e.g., Ai in
equation (1) on page 5). An indexed set is actually a member of a collection of sets;
in other words a member of the collection is defined for every value of the indexing
index (which is in turn member of another set).

The concept of entity has been introduced to capture common functionality of
various elements (e.g., parameters, variables, relations) used in a model specification.
An entity is uniquely identified by a label, and has other attributes that define it:
the entity’s role in the model, type (in terms of mathematical programming), indices
(used for defining compound entities). Moreover, depending on the entities’ roles
also other attributes are defined, such as lower and upper bounds, zero tolerance,
sets of indices, etc.

As an example we provide a few characteristics of selected types of entities:
• Entities in the roles of constants have their values defined within the model spec-

ification.
• Entities that are parameters have lower and upper bounds defined (possibly using

other parameters, or constants). Their actual values are defined later by selection
of data used for the definition of a model’s instance.
• Entities that are variables are divided into subsets of decisions, outcomes, auxil-

iary and external (independent) ones. Their lower and upper bounds are defined
symbolically using either parameters or constants.
• Entities that declare relations have attributes specifying the type of the relation

(e.g., an assignment or a constraint), zero tolerance, and (for constraints only)
entities that will be used for lower and upper bounds definition.
• For each entity defining a relation, an algebraic expression that uses the previously

defined parameters and variables, is defined. For compound relations the sets of
indices are also selected.
Entities of all types except for constants are declared by the same interface

illustrated in Fig. 1 on page 3. Thus the user does not need to learn any modeling
language syntax to use SMT. Moreover, basic elements of good modeling practice
are enforced by requesting a complete declaration of each entity. The right side of
the form shown in Fig. 1 contains the list of already declared entities. The user may
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edit any of them, remove those which are not needed,1 or interactively redefine the
order in which entities are listed.

Exemplary assignment relation (1) illustrates almost all of the concepts used for
symbolic model specification outlined above.

emipa =
∑
t∈Tpa

eipatxipat i ∈ I, p ∈ P, a ∈ Ai (1)

Namely:
• i, p, a, t are indices,
• eipat is a compound parameter,
• emipa and xipat are compound variables, (outcome and decision, respectively),
• Tpa is indexed set used in the assignment-type of relation that defines the variable
em,
• Sets I, P, Ai define the set of relations to which the symbolic formula (1) will

actually be expanded, whenever a representation of an instance of the model is
generated.

4 Data

An efficient, robust, and well documented handling of any large model data typically
requires a big part of resources assigned to the model development and maintenance.
In order to be able to trace and document each set of data used in instantiations
of the model, and to reconstruct every instance of the model, one needs to assure
persistency of every data modification. In order to achieve this, SMT exploits the
concept of data warehouse. A data warehouse is a kind of data repository fulfilling
the persistency requirement.

However, during the model analysis typically only a small part of a large data
set is modified. Storing the full data set, each time a part of data is modified, would
not be efficient. Thus, changes of data are handled by applying the concept of
data updates. Updates allow to avoid storing whole modified data sets. Moreover,
updates can be made incrementally, i.e., can be applied to previously made updates.
Thus the structure of updates forms a tree hierarchy with initial data import as the
root, and updates as nodes at lower levels of the tree illustrated in Fig. 2 on page 6.

The whole hierarchy is defined in a meta data layer. Every single data record
is linked to exactly one update. Complete data set definition is given by the whole
path, from a selected tree node, up to the root.

DBMS tables of the data warehouse are generated automatically on the basis of
the model specification. This approach not only saves a lot of resources but also
guarantees consistency between the definitions of parameters (being a part of the
model specification) and the data warehouse.

Moreover, during the warehouse generation process, not only data structures for
parameters and sets are defined, but also DBMS tables for storing the results of
analyses of instances are created, as their form depends on the model specification
as well.

1The remove operation will be denied, if the selected entity is used in declaration of another
entity.
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Figure 2: Organization of data updates tree.

5 Model Instance

A model specification together with a chosen data update (which implies applications
of all updates on the path from this update up to the initial data import) define
a model instance (which is also called a substantive model or a core model). An
instance defines a realization of the symbolic specification using a selected set of data
composed of the indices’ sets (which will be used for expanding compound entities)
and values of parameters used in the relations. More on organization of analysis of
a model instance can be found in Section 6.

A schematic view of SMT objects representing model specification, data and
instances is shown in Fig. 3.

INSTANCE

DATA MODEL

PARAMETERS SETS ENTITY INDEX

SET

CONSTANT PARAMETER VARIABLE RELATION

Figure 3: Objects within model specification, data and instance parts of SMT.

Finally, we stress that in SMT the definitions of model instances are stored in
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a symbolic way. Thanks to the persistency of all the data used in the modeling
process, it is not necessary to actually store parameterized versions of instances.
Such representations are generated only, when needed for computational tasks, and
are removed from the system after the computational task does not need them
anymore.

6 Instance analysis

Model instances are analyzed using diversified paradigms of model analysis. Each
analysis of an instance provides a solution (from a typically infinite set of solutions)
having certain properties. These properties correspond best to the preferences of
the user. The key problem of any complex decision making is due to the fact
that for a complex problem there is never a single adequate representation of user
preferences. Thus the aim of model analysis is to support a learning process in
which users actually learn about the properties of the modeled problem: diversified
types of model analysis provide a variety of insights into the problem, and in this
way support the process of learning about the problem, which eventually ends up
with identifying a small set of solutions that are interesting for the user.

The structure of mathematical model utilization in decision making support is
illustrated in Fig. 4.

F(x,z)
P(x,y)

y
z

Figure 4: Structure of model usage for decision making support.

A model is a set of relations between variables, which are abstract representations
of factors that need to be considered, in order to evaluate the consequences of a
particular decision. Variables used for the model specification are grouped according
to their role in the model, namely:
• decisions (model inputs): variables controlled by the user, denoted here by x,
• external or independent variables: model inputs being out of the user’s control,

denoted here by z,
• outcomes (model outputs), used for evaluation of implemented decisions, denoted

here by y,
• auxiliary variables, which are defined for various reasons by model developers but

are usually of no interest for model users.2

The model user is mainly interested in the relations between decisions x and the
corresponding consequences measured by outcomes y. Thus the solution part, that
a model user is focusing on, is composed of a pair of vectors (x, y).

Not all of the solutions are worth analyzing in a specific decision-making problem,
especially in a typical case when the number of all possible decisions is infinite. For

2Therefore auxiliary variables are not discussed in this paper.
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example, a very simple linear regression y = ax, with a parameter a, and even
constrained domain of x is characterized by an infinite set of (x, y) solution pairs.

The aim of model analysis is to help the user identify a manageable set of so-
lutions for more detailed consideration. The selection of such solutions is based
on exploiting the concept called preferential structure P (·), which induces partial
ordering of solutions.

Each analysis task utilizes a given representation of the user’s preferential struc-
ture, which in turn is used for the definition of a mathematical programming task.
The solution of such a task provides values of decision variables. The implementa-
tion of decisions, that have been found, results in values of outcome variables that
correspond best to the given representation of the user’s preferences.

Below we outline various types of analysis and the associated representations of
the preferential structure.

6.1 Types of analysis

Here the types of analysis for algebraic models will be presented, to provide a back-
ground for the later discussion of the organization of the analysis process.

As illustrated in Fig. 4 preferences are in general expressed as a function of deci-
sions and outcomes. A selected realization of a representation of preferences P (x, y)
combined with a definition of the model instance is used to define a computational
task. Such a task should3 provide a solution that best corresponds to a selected
realization of preferences P (·).

We give an outline here of the most commonly used types of analysis:

Simple simulation: The preferential structure P (·) is defined by given values of
decision variables (thus it does not concern the outcomes of a model):

x = x̂ (2)

where x is a vector of decision variables, and x̂ are the corresponding desired
values.

However, for non-trivial models it is rather difficult to specify values of x̂ that
are feasible (i.e., do not cause infeasibilities of model’s constraints).

Soft simulation: Is a simple but useful modification of the standard simulation that
uses P (·) in the form:

min |x− x̂| (3)

A corresponding optimization problem always has a solution.4 If x̂ is feasible,
then the soft simulation will provide the same result as the simple simulation

3Large or badly conditioned optimization problems typically have an infinite number of solutions
with values of goal functions that differ less than an optimization tolerance. However, in such cases
regularization techniques should be used to provide a unique solution; see (Makowski, 2001) for
more details.

4This is assuming that the modeled decision problem has at least one solution. Such an assump-
tion is obvious for any properly modeled decision problem (because such models are developed to
analyze typically large sets of feasible solutions).



– 9 –

approach. However, since the feasibility of x̂ is typically difficult to assess,
therefore it is rational to use the soft simulation method in order to get a
solution, also in typical situations when the specified, desired decisions x̂ are
not feasible. In the latter case the solution will contain the values of decisions
x which are closest to x̂ in the sense of the norm |.|. Thus the solution (for
infeasible x̂) may strongly depend on the selection of the norm (most typically
weighted Chebyshev norms are used).

Inverse simulation: has a preferential structure analogous to that of soft simula-
tion (3):

min |y − ŷ| (4)

The aim of using it is to find a solution that results in desired values of out-
comes ŷ.

There are several other forms of simulation-type analysis. The reader inter-
ested in this type of analysis may want to consult (Makowski and Wierzbicki,
2003).

Single criterion optimization: is the most often used analysis type. It assumes that
one of the outcome variables is the criterion that is optimized5 and optional
bounds are placed on other outcome variables. For single criterion optimiza-
tion the P (·) takes the form (5) with optional bounds defined by (6).

min ygoal (5)

subject to:
lp ≤ yp ≤ up, ∀p ∈ P (6)

Optimization of the goal function (5) subject to bounds (6), combined with the
relations defined by the substantive model, should6 result in a unique solution.

Parametric optimization is used to define a set of single criterion optimizations. For
instance in an environmental model, while analyzing cost-effective strategies
for improving air quality, maximum allowed emission levels may be changed
to examine effects of diverse regulations. In such a case the goal function (5)
can be defined by the outcome variable defined as the cost of reducing emis-
sions, and different combinations of upper bounds in 6 can be set for outcome
variables yp that correspond to emission levels. From the user point of view it
is convenient to define a single analysis task with parameterized bounds (9):

li ≤ yp ≤ uj, ∀i ∈ Lp, ∀j ∈ Up, ∀p ∈ P (7)

where Lp and Up are sets of indices enumerating elements of sets of bounds
(lower and upper, respectively) for yp.

5In the follow-up presentation for the sake of simplifying it, we assume that the criterion is
minimized. However, the same approach can be used for maximized or target-type (that minimize
the distance to a given target value) criteria.

6See the note above about applicability of regularization techniques.
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Note that such a compact representation, and an easy interface to defining the
sets of bounds may result in possibly many optimization tasks. For example,
a specification of 10 elements of upper bounds for 5 outcome variables results
in 105 optimizations.

Presentation of other analysis types, including multicriteria model analysis7 can
be found e.g., in (Makowski and Wierzbicki, 2003). Granat and Makowski (2000)
discuss in detail the methodology and a modular software for interactive specification
and analysis of aspiration-based preferences.

6.2 Specification of preferences

Before discussing the implementation of software handling preferential structure
representation, we illustrate the user interface supporting the specification of the
preferential structure.

6.2.1 Interface to specification of parametric optimization

A SMT user is interactively guided through the forms in which he/she specifies
the type of analysis, and all the elements needed for the specification of his/her
preferential structure. There are many possible paths of such a process which is
composed of easy to complete, elementary steps.

As an illustration, a very simple example is used, which has a preferential struc-
ture in the following form:

min cost
emAUSTRIA,SO2 ≤ 11
emAUSTRIA,CO2 ≤ emmx

AUSTRIA,CO2

(8)

where emmx
AUSTRIA,CO2

takes 10 values uniformly distributed between 6 and 10.
The goal is to minimize the outcome variable cost (which defines the overall costs

of emission reduction). A simple bound on a maximum level of SO2 emission in one
country (Austria) is set, and a parameterized bound for CO2 emission from the same
country is defined.8

After a new analysis task option is selected, the whole process is organized into
steps composed of:
• selection of the model instance for which the analysis task will be defined,
• definition of the task (identifier to be selected by the user, author and date inserted

by SMT),
• selection of an outcome variable to be the goal function,
• selection of outcome variable(s) for which simple bounds will be defined,
• selection of outcome variables(s) for which parameterized bounds will be defined.

Fig. 5 and 6 on page 11 show the dialogs for the selection of the model instance
(from the list of all model instances available to the user making the analysis), and
selection of the analysis type, respectively.

7In fact inverse and soft simulations are special cases of multicriteria model analysis.
8This example is built by extracting a small element of an actual parametric optimization, and

is defined to make consecutive steps of analysis definition easier to follow. Thus one should not
interpret it as an example of actual analysis.
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Figure 5: Selection of a model instance.

Figure 6: Selection of analysis type.

Figure 7: Selection of an outcome variable to serve as the goal function.

Specification of user preferences starts with a choice of an outcome variable (cost)
which will be used as a goal function (see Fig. 7). From the same dialog the user
selects the type of optimization (minimization or maximization). Since the variable
cost is not indexed, the dialog for selecting values of indices will be skipped.

The next step is definition of simple bounds (i.e., lower and/or upper constraint
for a selected outcome variable).9

Figure 8: Selection of an outcome variable to be bounded.

In the example shown in Fig. 8 variable em is selected from all of the outcome
variables (automatically extracted from the model specification and displayed in the

9Note that all entities of the model have lower and upper bounds symbolically defined during the
model specification. Thus the actual values of the bounds are defined by the model parameters,
which in turn are defined by a chosen update of data used for the definition of the analyzed
instance of the model. Therefore, defining additional (more tight) bounds within a specification of
preferences simply supports the analysis of trade-offs between outcome variables, which is a part
of the traditional, single-criterion optimization paradigm of model analysis.
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choice list).

Figure 9: Selection of values of indices for the variable selected to be bounded.

The variable is indexed, therefore the user is guided to the next dialog (shown in
Fig. 9), in which he/she selects (out of the choice list generated by the query defined
by SMT using the information about the chosen update of data) values of indices.

Figure 10: Definition of the value of a simple bound.

In the presented example values of indices SO2 and Austria have been selected.
The final step of simple bound definition is accomplished by defining the value of
the upper bound for the selected variable (equal to 11) in the dialog illustrated in
Fig. 10.

Note that no optional lower bound is defined for this variables therefore the
corresponding field in the form is left empty.

Figure 11: Definition of parameters (range and number of steps) of a parameterized
bound.

The process of specification of parameterized bounds is similar to that of defining
simple bounds. In the last equation of (8) the parameterized bound with 10 values
of maximal level emission of CO2 in Austria is defined. The selection of an outcome
variable (in the example emAUSTRIA,CO2) is done in a simple way. The specification
of parameterized bounds is supported by the dialog illustrated in Fig. 11 in which
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each parametric bound is defined by a triple, composed of the starting and ending
values of the interval, and the number of steps to be made within this interval.

All the information collected during the analysis definition stage is stored in the
database in intermediate form. It can be viewed, edited, copied or deleted any time
by any user who is authorized to access a specific definition. When the definition
is considered to be completed the user can lock the task, which means the task is
no longer editable. Then the corresponding tree structure is built up in the SMT
database10, and the definition of the preferences is available in a form suitable for
generating the computational task(s).

However, before we discuss (in Section 6.3) the implementation of the com-
putational tasks’ management, an overview of the actual implementation of the
preferential structure handling will be presented.

6.2.2 Implementation of instance analysis

The data structure and processing are hidden from the user. However, we summa-
rize them here for those readers who might be interested in the implementation.
Analysis task with the most complex definition of the preferential structure, namely
parametric optimization is used for the presentation of the implementation issues.

Data structures for storing all the information on the analysis, including the
whole pathway from type specification, through preferential structure to definitions
of computational tasks are to be designed and created at the beginning.

Structuring a representation of preferences is crucial for proper design of the
module responsible for the maintenance of the analysis process. For all types of
model analysis and the corresponding forms of the preferential structures, the ele-
mentary preference item (or basic block of preferential structure) may be represented
by a triple (variable, role, value). Here variable is either the decision or outcome
variable, role indicates the role of the item in the preferential structure, and value
contains optional value needed for some types of items. A variable’s specification
consists of a compound entity of a type variable which has selected values for all
its indices. Its role depends on the analysis type. It may be a goal function, lower
or upper bound, desired value of an outcome or decision variable, etc. Variables
which have specific roles (e.g. lower/upper bound), must have additionally values
assigned.

Such items serve as elements from which a representation of the preferential
structure is built. As will become clear soon, the structures for single criteria op-
timization and different types of simulation tasks can be defined using the same
schema.

Basically to represent a definition of a parametric optimization analysis task
out of items described above, one needs to implement functionality of nested loops,
iterating over all values specified for every parameterized bound. Each loop is for
one upper/lower bound. For instance, following two parameterized bounds:

1 to 7 in 3 steps ≤ y1 ≤ 6 to 10 in 3 steps
y2 ≤ 10 to 11 in 2 steps

(9)

10See Section 6.2.2 for details.
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may be expressed in ”loop form”, with the use of basic blocks as follows:

for lb1 in (1, 4, 7) do
for ub1 in (6, 8, 10) do

for ub2 in (10, 11) do
(y1, ”is greater than or equal to”, lb1)
(y1, ”is less than or equal to”, ub1)
(y2, ”is less than or equal to”, ub2)

end
end

end

Algorithm 1: Nested loops of parametric optimization

To meet the requirement of being able to uniquely identify every single definition
of the optimization task (that corresponds to a realization of the most inner loop of
Algorithm 1) it was decided that every such realization would have a corresponding
item in the SMT database.

(G)

(SB  )

(SB  )

1

11

n

1(y ,LB, 1) (y ,LB, 4) (y ,LB, 7)

1(y ,UB, 8) 1(y ,UB, 10)
1(y ,UB, 6) 1(y ,UB, 6) 1(y ,UB, 8) 1(y ,UB, 10) 1(y ,UB, 6) 1(y ,UB, 8) 1(y ,UB, 10)

Figure 12: A tree of parameterized bounds.

Fig. 12 shows the physical tree representation of nested loops for first bound
defined in (9). A path starting from a leaf and going up to the root has one-to-one
correspondence to the most inner loop instantiation.

In Fig. 12 G stands for a triple representing the optimization goal, SBi are
simple (non-parameterized) bounds. Parameterized bounds are depicted in more
detail, with upper bound (UB) and lower bound (LB) roles assigned. It is worth
noticing, that some of paths in a tree may be excluded from the list of optimization
tasks as they are for sure infeasible (e.g.the path from the root to the leftmost leaf
of the rightmost lower level subtree, with y1 ≥ 7 and y1 ≤ 6). Those paths are
therefore omitted when the tree is built up.

In order to keep the system portable, none of the DBMS vendor specific exten-
sions for tree structure implementation was used (e.g., connect by clause of Oracle
SQL). Instead, representations of preferential structure trees are based on the ad-
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jacency list model, developed in the graph theory field. Each tree node, except for
the root, simply holds a reference to its parent node.

Additional remarks may be made on avoiding redundancy in the tree structure.
Even in a very simple case, as the one illustrated in Fig. 12, at the second branching
level all preference items are repeated in a way, where the same set of children exists
for each upper level node. In order to avoid undesired repetitions of items, the con-
cept of structure-content separation was utilized. Tree structure and (variable, role,
value) triples are stored separately, with pointers relating nodes to items logically
assigned to them.

6.3 Management of computational tasks

As mentioned above, a preferential structure representation of an analysis task is
generated in the database in the form of a tree. Each leaf of the tree corresponds to a
single computational task. Computational tasks are called runnable tasks (RTasks)
as each of them results in one execution of a solver (which is a software specialized
in solving a specific type of mathematical programming problem).

Every computational task is executed by a software package which organizes a
sequence of the needed computations. Such a sequence is typically composed of the
following software execution:
• Generator of a mathematical programming problem. Generators are specialized in

selected types of computational tasks. A generator takes the ID of RTask as input,
and reads from the DBMS all the information necessary to generate the task in
a format required by a selected solver. Based on the corresponding definitions of
the model instance and the preferential structure, appropriate input for a solver
is generated (e.g., MPS or LPDIT format for LP solvers).
• Solver of the mathematical problem.
• Postprocessor which converts the results provided by the solver into the form

that can be loaded into the SMT data warehouse. Results are then stored in the
warehouse together with an ID of RTask, which makes it possible to link them to
the appropriate model instance and a realization of user preferences. It, in turn,
allows to regenerate any piece of data used, for any type of analysis, and any
specification of user preferences.
Fig. 13 on page 16 provides an overview of the analysis process from the model

instantiation to the results associated with various specifications of user preferences.
A simplified UML diagram of objects supporting the model analysis phase is depicted
in Fig. 14 on page 16.

One of the open problems of management of a large number of computational
tasks is their automatic scheduling for distributed computations. RTasks are ini-
tially grouped according to the analysis task they belong to. However, a more
sophisticated grouping might be more efficient, e.g., based on estimated demand
for computational resources. A more sophisticated (than the currently implemented
based on the FIFO11 principle) scheduler could assign priorities using various criteria
specified by users, administrators of groups of users, and by system administrators.
Such priorities could then be used for scheduling computational tasks.

11First in, first out.
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Figure 13: Components of the analysis process (from definition of instances to re-
sults).
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Figure 14: UML representation of objects supporting analysis.

Finally we want to stress that iterative analyses, like parametric optimization, de-
serve special attention in the context of computational resources. As discussed above
it is easy to generate a large number of optimization tasks, say 105. However even
if one computational task processing (composed of a generator-solver-postprocessor
sequence) takes only about one minute, the wall-clock time needed to complete such
an analysis on a single-processor computer would be counted in months. Thus a dis-
tribution of computational tasks over a computational Grid is necessary for analyses
of this type.

6.4 Management of the analysis’ results

Data warehouse structures for storing the results are generated from the model
specification by the SMT system automatically. For algebraic models the results are
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stored in tables which have structures designed for optimizing space and access time
(which is the primary concern for a big number of analyses of large models). Pro-
posed data structure allows for flexible specifications of elements of results that are
actually stored (e.g., primary and dual solutions). Moreover, the same set of tables
is used for all possible instances and analysis types of a given model. Therefore, the
RTask ID is stored with each element of results to allow for an effective retrieval of
solutions corresponding to a given analysis.

Thus an efficient results’ management for a large number of complex models’
analyses has been implemented. However, another challenging problem still needs
to be addressed. Namely, providing support for the analysis of large result sets. For
this purpose at least two types of methods and techniques may be applied:
• various types of reports generated on demand, which should include also a diver-

sified graphical representation of selected results,
• data mining for discovering knowledge represented by selected results.

These issues will be addressed in the future stages of SMT development.

7 Conclusions and further steps

This report gives an overview of the current stage of the SMT framework develop-
ment. The design and structure of the SMT part handling various types of analyses
of substantive models is presented in more detail. All system components repre-
senting elements of algebraic models are outlined along with interrelations between
them. In particular, issues of data warehouse design, especially of saving the stor-
age space occupied by values of model parameters, set enumerations, and results
of instance analysis are presented. Distinct features of SMT, namely persistency of
data and application of a data update hierarchy are also discussed.

The design of the model analysis module has been driven by the needs of para-
metric optimization, which is the type of analysis that requires the most complex
data structure, which also needs to be efficient for large models. Such a structure
can also effectively support simpler types of analysis, like classical optimization or
different types of simulation. Thus one consistently implemented framework can
support diversified types of complex model analysis.

Preferential structures can be specified easily: users can define preferences for
various types of analysis in quite a straightforward way, and are guided through
simple dialogs which are automatically organized for each selected type of analysis,
according to attributes of selected variables. Thus all the complexity of the actual
implementation is hidden from the users.

There are at least five challenging problems that still need to be addressed in
order to improve the functionality of the SMT for large models:
• scheduling policies for computational tasks,
• exploitation of capabilities of grid environments,
• application of solvers that can exploit structures of large optimization problems,

see e.g., (Fragnière, Gondzio, Sarkissian and Vial, 2000),
• efficient data-mining based support for analysis of large sets of results, see e.g.,

(Granat, 2003), and
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• various (created on demand) views (including graphical visualization of large sets
of multidimensional data) on the model parameters and results.
We briefly comment only on two of these problems:

• In recent years grid technologies have been developing very fast, see e.g., (Fos-
ter, Kesselman and Tuecke, 2001; De Roure, Jennings and Shadbolt, 2003; Expert
Group Report, 2003). Thus, a possibility of exploiting capabilities of grid environ-
ments will be examined in the near future. Two aspects will be explored. First, as
distributed computing is a must for a comprehensive and efficient analysis of large
models, the capabilities of computational grids (including solvers exploiting struc-
tures of large optimization problems) will be utilized. Second, we plan to explore
how semantic grids can be used for a better organization of modeling resources
(composed of models, data, and modeling tools).
• Especially in the case of parametric optimization and complex algebraic models,

where complexity arises from the scale of the problem, the results of an analysis
will grow into a huge amount of information. Thus special attention has to be
paid to knowledge discovery from data. The application of automatic data analysis
with statistical and machine learning techniques is one of the next steps.
However all challenging problems listed above should be addressed in future

versions of SMT.
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