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Whether one-shot interactions can stably sustain mutual cooper-
ation if they are based on a minimal form of reputation building
has been the subject of considerable debate. We show by math-
ematical modeling that the answer is positive if we assume an
individual’s social network evolves in time. In this case, a stable
mixture of discriminating and undiscriminating altruists can be
proof against invasion by defectors. This sheds light on current
discussions about the merits of different types of moral assess-
ment, an issue where theoretical arguments and experimental
findings seem at odds.Unexpectedly, our approach also relates to
the proverbial observation that people tend to become more
tightfisted with age.

cooperation � reputation � evolutionary dynamics

“G ive and it shall be given unto you.” But by whom? Luke’s
account (New Testament, Luke 6:38) was not specific on

that point. A helpful action, or a gift, can be returned by the
recipient, in which case one speaks of direct reciprocation. But
it can also be returned by a third party. Alexander (1) called this
’’indirect reciprocity,‘‘ emphasizing its reliance on status and
reputation.

In a simple model, Nowak and Sigmund (2) attach a binary
score (‘‘Good’’ or ‘‘Bad’’) to each individual in the population.
From time to time, two individuals meet randomly, one as donor,
the other as recipient. At some cost c to one‘s own payoff, the
donor can help the recipient, i.e., increase the recipient’s payoff
by a benefit b�c. In that case, the donor‘s score will be Good in
the eyes of all observers, whereas the score of a donor refusing
to confer the benefit will be Bad. A discriminating strategy of
helping only those with a Good score would channel benefits
toward those who help and discourage defectors.

The question is whether such a strategy can evolve in the
population, assuming, as usual in evolutionary game dynamics,
that strategies yielding a total payoff above average increase in
frequency. The issue has attracted considerable attention for two
major reasons. One lies in the potential of indirect reciprocity for
explaining the emergence, among humans, of cooperation
among nonrelatives. Alexander (1) viewed this as the biological
basis of morality; others (3, 4) saw in it a major motivation for
language, gossip being a way of spreading reputations. The
recent advent of e-commerce provides the other reason why
understanding the assessment of reputations matters: the prev-
alence of anonymous one-shot interactions in global markets
raises the issues of trust building and moral hazard (5–7).

Although economic experiments have strongly bolstered the
concept of indirect reciprocity (8–12), the radically simplified
model of Nowak and Sigmund (2) has raised the skepticism of
theoreticians (4, 13, 14). A discriminator who refuses to help
recipients with a Bad score receives a Bad score and risks getting
no help in the next round. In this sense, punishing defectors by
withholding help is costly. Can such a trait evolve? Would it not
be advantageous to distinguish justifiable defections (against a
Bad recipient) from nonjustifiable defections (against a Good
recipient) and attach a Bad score only to the latter? This would
constitute a noncostly form of punishment and would greatly
alleviate the discriminator’s task. But such a distinction requires
considerable cognitive capacities. Not only the recipient’s
past but also that of the recipient’s recipients, etc., must be taken

into account. If information spreads through rumor, rather
than direct observation, the task may be alleviated, but the
likelihood of misperception and deception grows. Conceivably,
noncostly punishment cannot be realized, and many experiments
show, anyway, that humans do not shrink from using costly
punishment (15).

Materials and Methods
To return to theory, Ohtsuki and Iwasa (14), as well as Brandt
and Sigmund (16), analyzed all conceivable strategies based on
a binary score (some 4,096, at first count). Indeed, each such
strategy can be viewed as a combination of two modules. The
action module prescribes to a donor whether to give, depending
on the recipient�s score and one’s own (there are four possible
combinations of the two scores and hence 24 � 16 action
modules). The assessment module prescribes how to assess the
players’ scores as a result of their action as donors in the previous
round. Because there are two possible scores for a donor, two for
a recipient, and two possible actions (to give or not), an
assessment module has to state, for each of the eight combina-
tions, how to assess the resulting action (for instance, is it Good
if a donor with a Good score refuses help to a recipient with a
Bad score, etc.). Thus, there are 28 � 256 assessment modules
and hence 16 � 256 strategies. Ohtsuki and Iwasa (14) found that
eight of them are evolutionarily stable and lead to cooperation
even if the benefit b is only slightly larger than cost c. All these
‘‘leading eight’’ strategies differentiate between justifiable and
nonjustifiable defection. Nevertheless, the less-sophisticated dis-
crimination mechanism suggested in ref. 2 can promote coop-
eration if it leads to a stable mixture of discriminators and
undiscriminating altruists. After all, a population need not be
homogenous, although this is required for evolutionary stability.
But Panchanathan and Boyd (4) showed that, in the presence of
errors (or other causes for unintended defections, for instance,
lack of resources), such a mixture can be invaded by defectors.
This blow was softened by Fishman (17), who found that if the
game extends over a constant number of rounds, the mixture of
discriminating and undiscriminating altruists can repel defectors.
But what is more likely, a constant number of rounds per
lifetime, as assumed in ref. 17, or a constant probability for a
further round, as assumed in ref. 4?

In fact, both assumptions appear unrealistic. Whereas in an
experimental game all players may start at the same time and
play their rounds synchronously, it seems plausible to assume
that under natural conditions, players enter the population one
by one, at random times, and interact asynchronously. Under the
assumption of stable age distribution, the analysis of this model
becomes even simpler and boosts the conclusion of ref. 4.

Indeed, let us denote by q the probability that a player knows
the score of a randomly chosen coplayer (via either direct
observation or gossip, through acquaintances), and that discrim-
inators are trustful in the sense that, if they have no information
to the contrary, they assume that their recipient’s score is Good.
In the next section, we will see by a simple calculation that
whenever discriminating and undiscriminating altruists do
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equally well, defectors do just as well. This means that, ulti-
mately, they will take over. This is an extremely robust result,
independent of the probability distribution of the number of
rounds (which could also be constant or infinite) and holding
even if different strategies have different error probabilities, if
discriminators are suspicious rather than trustful, or if they adopt
strategies that also take into account their own score (for
instance, by helping whenever the recipient’s score is Good or
their own score is Bad).

However, there is a way out, which extends an approach due
to Mohtashemi and Mui (18), who assumed in their model that
whenever a donor provides help, the donor‘s set of acquaintances
is added to the recipient’s. We need not be so specific but only
assume that a player’s network of acquaintances grows, i.e., the
probability qn that a player in round n is informed about the
recipient’s image grows with n, i.e., qn � qn�1. To keep the model
as simple as possible, we assume the number of rounds is
proportional to age (later we will consider more general sce-
narios). It will be shown in the next section that, whenever the
average level of information is sufficiently high, there exists a
mixture of discriminating and undiscriminating altruists that is
an attractor, so defectors cannot invade. Thus let wn be the
probability that a randomly chosen individual is in round n. The
average level of information in the population is q � � wnqn,
which by our assumption is larger than s :� � wnqn�1. If s is
sufficiently large (or, equivalently, if the cost-to-benefit ratio c�b
is small enough), and if w1 is sufficiently small (i.e., if a second
round is likely to occur), then a cooperative equilibrium exists,
and defectors will be repelled. We emphasize that it is the
individual’s probability qn to know the coplayer’s score, which
increases with age. We do not assume that q, i.e., the overall
probability that two randomly chosen individuals know each
other’s score, increases with time, i.e., that the social network in
the group, and thus the average level of acquaintance, grow.

We can, incidentally, also use the opposite condition, qn �
qn�1, if we correspondingly suppose the discriminators are
distrustful and refuse to help in the absence of information. We
do not claim this is a reason why people whose social circle
shrinks (the very old, for instance) tend to become suspicious.
But both mechanisms, intriguingly, imply people should become
more tightfisted with age. In one case, trustful individuals know
more and more people and are therefore less and less ready to
give the benefit of the doubt. In the other case, suspicious
individuals know fewer and fewer people and are willing to
support only those of whose Good score they are certain. We
note the average frequency of Good persons in the population
does not change within an individual’s lifetime.

In Results and Discussion, we shall return to the current debate
about the relative merits of different moral assessment rules
giving a binary score (Good or Bad) to coplayers according to
how these coplayers act toward third parties. This problem,
which seems essential for discussions on the biological evolution
of moral norms, offers a wide scope for further experimental and
theoretical work.

A Continuous-Entry Model for Indirect Reciprocity
Let us denote by x, y, and z the relative frequencies of indis-
criminate altruists, defectors, and discriminators in the popula-
tion. We assume a continuous model: from time to time, a birth
or death occurs, changing the frequencies x, y, and z (with x �
y � z � 1) according to a differential equation, for instance, the
replicator equation (see ref. 19). One could also use some other
evolutionary game dynamics describing the transmission of
strategies (for instance, through inheritance or imitation) in the
population. All we need to assume is that strategies that yield a
payoff above the population average will increase in frequency.

Occasionally, a player will be selected to play one round of the
indirect reciprocity game. We shall assume for convenience that

such a player will actually play two games in one round, one as
potential donor and the other as recipient (always with different,
randomly chosen coplayers, so there is no scope for direct
reciprocity). We could just as well assume that players play only
one game per round and are, with equal probability, donors or
recipients.

Let us denote by 1 � r the probability of an unintended
defection, and by q the probability that a player knows the score
of a randomly chosen coplayer (via either direct observation or
gossip). Let g be the frequency of players with a Good score.
Clearly, g depends on x, y, and z. If the population is sufficiently
large, g can be taken to be stationary throughout one individual’s
lifetime, Finally, let us posit that discriminators are trustful in the
sense that, if they have no information about the score of the
recipient (for instance, in the case of a newborn), they assume
their recipient’s score is Good.

Thus an undiscriminating altruist will always try to give (but
will fail with a probability 1 � r, possibly through lack of
resources). A defector will never give, and a discriminator will try
to help, when the recipient’s score is Good (or unknown) but will
succeed only with probability r. We assume for simplicity there
are no mistakes in implementing a defection. This assumption,
however, is not necessary for the following.

The payoff in the nth round (n � 1) for an undiscriminating
altruist is

Px	n
 � � cr � brx � br	1 � q
z � br2qz,

for a defector it is

Py	n
 � brx � br	1 � q
z,

and for a discriminator it is

Pz	n
 � � cr	1 � q � qg
 � brx � br	1 � q
z

� br2qz	1 � q � qg
.

The last term in this sum is obtained as follows: the discrimi-
nating recipient meets, with probability z, another discriminator,
who, with probability q, knows the recipient‘s score. If that score
is Good, the recipient receives payoff b with probability r
(because 1 � r is the probability that the intended donation
fails). The score is Good if the recipient, in the previous round,
succeeded in an intended donation (probability r), either not
knowing the coplayer’s score (probability 1 � q) or else knowing
the coplayer’s score (probability q), which was Good (probability
g). It is easy to see that g � (1 � rqz)�1r[z(1 � q) � x].

A straightforward computation shows that

Pz	n
 � Py	n
 � �Px	n
 � Py	n
�	1 � q � qg
.

The same relation holds for the first round and hence also for
total payoff values Px, Py, and Pz. These values are obtained as
Px � � wnPx(n), etc., because in a stable population, the
probability wn to be in round n is proportional to an individual’s
probability of reaching round n during his or her lifetime.

The replicator dynamics on the unit simplex S3 is given by ẋ �
x(Px�P� ), etc., where P� � xPx � yPy � zPz is the average payoff
in the population. This is an ordinary differential equation on the
state space S3 � {(x, y, z): x � 0, y � 0, z � 0, x � y � z � 1},
the unit simplex in 3D space. The usual normalization (setting
Py � 0 and multiplying the right-hand side by the positive
expression (1 � rqz)�r) yields Px � (1 � rqz)(�c � brqz) and
Pz � (1 � q � rqx)(�c � brqz). The fixed points are the corners
of S3 (where the population consists of one type only). In
addition, if q � c�br, all of the points on the segment with z �
c�brq are fixed (see Fig. 1).
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If q � c�br, the undiscriminating altruists are dominated by
both the discriminators and the defectors, whereas the discrim-
inators are dominated by the defectors. All orbits in the interior
of the simplex lead from x � 1 (undiscriminating altruists only)
to y � 1 (defectors only). This means that if the probability q of
knowing the coplayer’s type is too small (i.e., if there is not much
scope for reputation), cooperation cannot evolve, a well known
result from ref. 2 (see Fig. 1A).

If q � c�br, then line z � c�brq intersects the interior of the
simplex and defines a segment of Nash equilibria. The orbits lie
on the same curves as before, but the orientation has changed in
the region with z � c�brq (see Fig. 1B). This means that the
mixture of discriminating and undiscriminating altruists given by
z � c�brq and y � 0 corresponds to a fixed point of the
evolutionary dynamics. A cooperative population of two types of
altruists can exist, if the average level of information within the
population is sufficiently high.

We note that this equilibrium is stable. However, it is not
asymptotically stable, because it is contained in a segment of
fixed points. The dynamic behavior along the segment of Nash
equilibria is interesting. One part of the segment is transversally
stable, in the sense that small perturbations away from the
segment are opposed by the dynamics. In the other part of the
segment, small perturbations will be amplified by the dynamics.
A small deviation to higher z values will lead first to an increase
and then to a decrease of discriminators and eventually back to
the stable part of the segment. A small deviation to lower z values
will lead to the fixation of defectors.

In this sense, it must be admitted that, although the mixture
of discriminating and undiscriminating altruists is stable, a
sufficiently long sequence of random shocks can lead to the
eventual fixation of defectors.

However, let us assume now that the probability of knowing
a coplayer’s score is not a constant but depends on experience
and is denoted by qn in round n. Then

Pz	n
 � � cr	1 � qn � qng
 � brx � br	1 � q
z

� br2qz	1 � qn�1 � qn�1g
,

where q now is the average of the qn (i.e., because wn is the
probability of being in round n, we have q � � wnqn). If qn �
qn�1 for all n, then q � s :� � wnqn�1. We note that

Pz	n
 � Py	n
 � Px	n
 � Py	n
 � r	1 � g
�cqn � zbrqqn�1�

and hence

Pz	n
 � Px	n
 � r	1 � g
	cqn � zbrqqn�1
.

For total payoffs Px, Py, and Pz, we obtain

Px	zcr
 � Pz	zcr


for zcr :� c�brs. We note that zcr � c�brq and assume in the
following that s � c�br, i.e., zcr � 1. This condition is of the same
type as q � c�br, i.e., it requires a sufficient amount of
information. It is somewhat stronger but leads, as we shall see,
to the asymptotic stability of the mixture of discriminating and
undiscriminating altruists.

The relation Px(n) � Py(n) � �cr � br2qz implies that for z �
zcr, one has Px(n) � Py(n) � cr(q � s)�s for n � 1 (and � �cr
for n � 1). It follows that for sufficiently small w1 (i.e., a
sufficiently large likelihood of having more than one round),

Px	zcr
 � Py	zcr
.

Hence there exists a mixture consisting of discriminating and
undiscriminating altruists only, Fxz � (1 � zcr, 0, zcr), which cannot
be invaded by defectors. The resulting replicator equation is bist-
able: one attractor consists of defectors only, the other of a mixture
of discriminating and undiscriminating altruists (see Fig. 2).

We note that, instead of qn � qn�1 for all n, we need only
� wn(qn � qn�1) � 0, i.e., that, on average, individuals learn
about reputations from one round to the next. If rounds are not
equally spaced, i.e., more precisely, if the time intervals among
rounds within an individual’s lifetime do not obey the same
probability distribution, then probability wn that a randomly

Fig. 2. If the probability of knowing the coplayer’s score grows during an
individual’s lifetime, the dynamics is bistable. Depending on the initial con-
dition, the population in the end consists of defectors only or of a mixture of
discriminating and nondiscriminating altruists.

Fig. 1. The dynamics if the probability q of knowing the coplayer’s score is constant. (A) If q � c�br, defectors always win. (B) If q � c�br, there exists a segment
of fixed points in the interior of the state space (filled circles represent stable fixed points, open circles represent unstable fixed points).
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chosen individual is in round n need not be proportional to
probability vn that an individual reaches round n. Instead of s �
c�brq, we now need the analogous condition ŝ � cq̂�brq, where
q̂ :� � vnqn and ŝ :� � vnqn�1.

If we assume, in contrast, that discriminators are suspicious,
then

Px	n
 � � cr � brx � bqr2z, Py	n
 � brx,

and

Pz	n
 � � crqng � brx � br2zqgqn�1.

An argument similar to that above shows that the same bistable
dynamics holds if qn is decreasing.

Results and Discussion
Indirect reciprocity stands somewhere between direct reciprocity
and public Goods games. It is based on dyadic interactions, but
within a larger group. There are interesting links among the
different concepts. Thus, the discriminating strategy considered
here is a close relative of Observer Tit for Tat, a strategy for playing
the repeated Prisoner‘s Dilemma in a larger group (see refs. 2 and
20), and Contrite Tit for Tat is analogous to strategies for indirect
reciprocity that distinguish between justified and unjustified defec-
tions and thus are based on ‘‘standing’’ (21, 22). Both empirical and
theoretical findings show that, if public Goods games and indirect
reciprocity games alternate, they strongly influence each other; in
fact, reputation building through indirect reciprocity may help in
solving the ‘‘tragedy of the commons’’ (23, 24).

Many recent experiments have shown that indirect reciproc-
ity can often lead to cooperation (see, e.g., refs. 8–12).
However, it is difficult to disentangle the different factors
behind the decisions of the players. Thus it appears, for
instance, that players who have recently received a donation
are more prone to give, in their turn, than those who have
experienced a refusal. Furthermore, a sizeable number of
players seem motivated not only by the coplayer’s score but
also by their own. Finally, there is currently a debate between
the relative merits of ‘‘scoring’’ and ‘‘standing,’’ essentially
tackling the issue of whether players distinguish between
justified and unjustified defections.

In this paper, we have concentrated on a model that is
minimalistic in several points of view. It considers only binary
scores, hence it does not count how often a player has given or
refused to give, but only what the player did in the last round (or
when last observed). This restriction to a binary score may seem
artificial, and it is indeed a device to keep the model analytically
tractable (for larger score ranges, see refs. 2 and 13).

However, it helps to understand the principles of decentral-
ized mechanisms of local information processing in the context
of reputation and moral hazard. For instance, Dellarocas (6)
found, in the context of online selling, that binary feedback
mechanisms publishing only the single most-recent rating ob-

tained by the seller are just as efficient as mechanisms publishing
the seller’s total feedback history.

Basically, there are three degrees of sophistication in assessing
whether an observed interaction between two coplayers is Good
or Bad. In first-order assessment, this judgement depends en-
tirely on whether the potential donor gives or refuses to give. In
second-order assessment, the score of the receiver is taken into
account; it may make a difference whether help is refused to a
Good or a Bad person. In third-order assessment, the score of
the donor is also taken into account (see refs. 14 and 16).

The discriminating strategy considered here is based on
first-order assessment. It cannot be implemented without cost: a
player refusing to help a Bad coplayer will be Bad in the next
round and less likely to be helped. In this sense, such discrim-
inators engage in costly punishment, and such punishment,
although certainly widespread among humans (15, 25, 26), raises
a second-order social dilemma. There is an obvious way out,
namely, to use a standing strategy, as suggested by Sugden (21).
To the question, ‘‘Should an individual who does not help a
person with a Bad reputation lose his Good reputation?’’ posed
in ref. 15, the obvious answer is ‘‘no.’’

However, standing strategies are based on second- and even
third-order assessment, and hence they are complicated to
perform if information is not perfect. If, for instance, the
probability that a player’s action is known is only 50%, then a
second- or third-order assessment module is often useless,
because it is unlikely the player will know what the recipient and
the recipient’s recipient have done in previous rounds. The
possibility of error due to misperception or lack of information
is large. One may, of course, assume that gossip reduces this
uncertainty (4), but gossip increases the possibility of cheating
through lies and manipulations (3). In numerical simulations
(27) that tested different second-order assessment rules under
errors of perception, the standing strategy did much less well
than another rather paradoxical strategy that assigns a Bad score
to any player meeting a Bad coplayer (irrespective of the player’s
decision). The reason is essentially the following. Discriminators
are threatened because they do less well against invading defec-
tors than undiscriminating altruists; their score is reduced.
Standing repairs that defect by not reducing the score of the
discriminator; the paradoxical strategy repairs it instead by
reducing the score of the undiscriminating altruist as well.

Finally, little experimental evidence of standing strategies
has been found so far (28). This makes it important to analyze
whether first-order assessment rules, despite their obvious
drawbacks, can sustain cooperation. Here we have shown that,
under the reasonable assumption that each person’s social
knowledge increases with experience, a mix of discriminating
and undiscriminating altruists can stably resist invasion by
defectors.
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