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I. Introduction

The goal of nuclear materials safeguards is to guard
against diversion of the nuclear materials which in themselves
must be used for peaceful purposes. In nuclear fuel processing
facilities the materials are controlled by accounting systems
of various measurements, but the systems are always accompanied
by some measurement errors or losses, and further, by some
other normal losses inherent in the operation of each
facility. All these losses are the factors yielding what
we call the Material Unaccounted For, MUF. In principle the
losses may be reduced by improving the accounting system and
the operational manner. From both the technical and the
economic standpoint, it is almost impossible to reduce the
MUF to nothing.

As far as nuclear fuel processing facilities are
concerned, the purpose of safeqguards inspection consists
mainly in discriminating between the MUF due to diversion
and the MUF due to normal losses as mentioned above. It is
impossible to perfectly discriminate between the two in so
far as the generation of normal MUF is inevitable. Therefore,
for an inspection authority, it is of great importance to
determine the detection limit concerning the MUF due to
diversion; for each facility, it is an important problem to
set the allowable limit of technical and economic efforts
for reducing the normal MUF. It is to be noted here that
both of these limits should be fixed, not independently, but
interdependently.

Though both the limits are determined from reason, it
is still necessary for an inspection authority to draw up
an inspection plan to verify the normality of MUF within
the limits. It is intuitive to say the more rigorous the
limits, the stricter and more frequent the inspections must
be. Hence, in determining the limits, the feasibility of
the corresponding inspection plan must be taken into account.

The aim of this paper is to construct the mathematical
model which describes the comprehensive relationship between
the limits mentioned above and the corresponding inspection
effort. Using the model it is possible to optimize inspection
effort in accordance with these limits.



MUF is defined by the difference between the book
inventory (BI), the amount of material which is supposed to
be present in the inventory, and the physical inventory (PI),
the amount of material which is estimated to be in the
inventory by direct inventory measurement techniques.

Figure 1 is a schematic illustration of the material balance
area where MUF for a campaign interval T is described by
the relation:

MUF = BI - PI , (1)
where
I
BI = I Z; i Z; = A(ti) - B(ti) ’ (2)
i=1
and
J
PI = I (w.(0) - w.(T)) . (3)
j=1 J J

One question is how an inspection authority should
verify the normality of the MUF of Eg. (1) reported from each
facility. It follows from Eq. (1) that this question should
be divided into two questions: one for verification of BI
and the other for verification of PI. 1In either of the two,
however, it requires a great deal of inspection effort to
verify all of the individual data Zi' or wj(O) and wj(T).

Thus it is natural that we should consider the sampling plan

of drawing samples from the population of (Zl,...,ZI) or the

populations of (wl(O),...,wJ(O)) and (wl(T),...,wJ(T)) by
making use of the statistical behavior of these data.

A number of works have been written concerning this
kind of sampling plan, and reference [8] gives us the
critical reviews of some of them. The direct sampling method,
based on the paired comparison test, was developed by Gmelin
[5]. The feasibility of the mixed variable/attribute sampling
plan for the safeguarding of the Pu-fuel store of the Zebra
zero-energy reactor was shown by Brown et al. [3]. Stewart
[16] proposed the cost/effectiveness model where the variance
on MUF was minimized subject to a cost constraint, and the
sample size which gave adequate protection was determined.



Avenhaus et al. DJ treated the problem of optimizing inspection
plans by a game theoretical method, selecting the probability

of detection as a criterion for mini-max optimization. Jaech
[9] constructed the statistical model for inventory verification
on measured data showing the numerical examples for fuel
fabrication facilities. And Constanzi et al. [4] made a

model to optimize the overall inspection costs subject to a
given constraint on the vulnerability index, an index of the
relative likelihood of attempted diversion assigned to the
various forms of nuclear materials,

In addition to these works, some further papers have
been reported. Among them, Bouchey, Koen and Beightler [2]
improved Stewart's model by using the dynamic programming
algorithm; Servais and Goldschmidt [15] represented another
stochastic model which enabled us to quantitatively assess
the efficiency of detecting diversion.

Almost all these models were based upon the Neyman-
Pearson theory of testing hypotheses and upon the supposition
of diversion strategies. According to the theory of
statistical testing, a choice is made between acceptance
and rejection of the null hypothesis Hn against the alternate

hypothesis Ha‘ It is well known that there are two kinds of
error: an error of type I, rejection of Hn when it is
actually true, and an error of type II, acceptance of Hn

when it is actually false. It is the usual way to determine

a sampling plan that first the maximum tolerable probability

o of an error of type I is fixed customarily as .l or .05,

and then the probability B of an error of type II is minimized
subject to the constraints on costs for the sampling plan.

In the models briefly reviewed above, the nuli hypothesis,

H : there is no degree of diversion in the MUF,
is tested against the alternate hypothesis,

H s there is some degree of diversion in the MUF.

Generally speaking the probability B of an error of type II
depends upon not only the accuracy of sampling plan, but

also the value of the statistic in question which is selected
in Ha' Therefore in the problem of statistical testing for

nuclear materials safequards, B is dependent on the degree of
diversion in H  as well as on the accuracy of inspection

procedures [7]. From this consideration there are two
different methods to determine a sampling plan for inspection.
One is the method of minimizing B or maximizing the accuracy
(the inverse of the variance) for a specified degree of



diversion, and the other is the method of minimizing the
degree of diversion for a fixed B. .

It is to be noted here that the following two inevitable
difficulties are involved in the orthodox approach stated
above:

(1) It is difficult to explain the reasonability for
selecting the value of a which is strongly related
to the limit of detecting the MUF due to diversion.

(2) It is difficult to take into account all the
possibilities of diversion strategies so as to
evaluate the degree of diversion in Ha.

As mentioned earlier the determination of the detection limit
is a critical problem to be resolved between an inspection
authority and each facility. Hence it may be a crucial
assumption to fix the value of a not reasonably but
customarily. The idea of deciding an inspection plan by
selecting the degree of diversion in Ha is a straight-

forward approach as the goal of safeguards consists in the
prevention of diversion. However, it is impossible to
comprehend all the possibilities of diversion strategies.

Even if possible, it is difficult to formulate the possibility
as a probability because the possibility of diversion is a
hypothetical danger and the frequency distribution of diversion
is not given.

The first difficulty is solved by using Bayesian decision
theory [14]. The theory requires not the preassignment of
the maximum tolerable probability o, but its derivation from
the consideration of the risk and benefit associated with
decision making under uncertainty. The uncertainty is due
to the fact that it is impossible for a decision maker to
know the true value of a basic variable for making a decision.
The basic variable of the problem of a sampling plan for
inspection is the variable to be verified by an inspection
authority, the true value of which is unknown. Therefore
some uncertainty is involved in the problem treated here,
and uncertainty is always associated with risk and benefit
in decision making. It is obvious that such risk and benefit
is closely related to the detection limit concerning the MUF
due to diversion, and the allowable limit of technical and
economic efforts for reducing the normal MUF. This implies
that Bayesian decision theory is useful for formulating the
problem.

The second difficulty makes it necessary to introduce .,
a measure to describe the hypotheticality of diversion [6].
In this study a kind of incentive-tax system is supposed for
the purpose of evaluating such a measure. Here too it is



apparent that MUF is to be as low as possible and yet it

is also apparent that it is impossible to reduce MUF to
nothing. 1In the case of a non-nuclear materials accounting
system, the guestion whether any amount of MUF should be
traced or not is settled by comparing the cost required for
tracing it with the cost required for re-purchasing the same
amount. In other words MUF should not be traced if the
tracing cost is more than the re-purchasing cost; otherwise
MUF should be traced. The amount of MUF which makes both
costs equal is a threshold value in this case.

In the case of nuclear materials accounting systems,
however, the threshold amount of MUF is to be fixed not
from such an economic consideration but from the standpoint
of nuclear materials safeguards. That is to say the threshold
amount of MUF is defined as the minimum value of the amount
required for producing a nuclear weapon.l The threshold
amount fixed in such a manner is usually far smaller than
the threshold amount which would be fixed from economic
considerations., This necessitates additional technical or
economic efforts for each nuclear fuel processing facility
to reduce MUF.

To reduce the hypothetical danger by making these
additional technical or economic efforts easier, the following
incentive-tax system is useful. Each facility can get an
incentive when the amount of the basic variable is less than
a fixed value on the one hand, and on the other hand a facility
must pay a tax when the amount of the basic variable exceeds
the fixed value. This sort of incentive-tax system is founded
upon utility theory [13]. A linear utility function is used
in the model presented in this paper.

This paper shows a new model to optimize a sampling plan
for inspection by using Bayesian decision theory under
supposition of an incentive-tax system. The mathematical
framework of the model is delineated in section II and the
numerical examples for a fuel fabrication plant, a fuel
reprocessing plant and a fuel enrichment plant are illustrated
in section III.

II. Mathematical Model

-~

A. Basic Random Variable

Now we consider the problem of how to determine an
optimal sampling plan for verification of the normality of
the BI or the PI in Eg. (1l). First of all the following

lsee 1AEA, 1972, p. 3.2.



three assumptions are made for the purpose of simplifying
the discussion:

(a) Concerning the problem of how to verify the BI,
a plant is in stationary state and therefore the
true value of individual data Zi(i=l,...,I) is

kept constant during campaign interval.

Under this assumption the true value of BI is I
times the true value of individual data. Next,
the problem is how to estimate the true value of
individual data by drawing I' samples (I' < I)
from the population of I data.

(b) Concerning the problem of how to verify the PI,
the true values of individual data wj(o) and

Wj(T)(j=l,...,J) are constant at the beginning

and the end of the campaign respectively.

Under this assumption the true value of PI is J
times the difference between the two values. Next,
the problem is how to estimate each true value of
individual data by drawing J' samples (J' < J)

from the population of J data.

(c) The measuring process for individual samples is
fixed and therefore the parameter to characterize
the sampling plan is only sample size.

Under this assumption the problem of optimizing
the sampling plan is equivalent to the problem of
optimizing sample size.

Owing to assumptions (a) and (b), both of the problems
for verification of the BI and PI are described in the
following fundamental form: an operator states that N data
(xl,...,xN) have been measured by a prescribed measuring

process and that as a result of the measurement the true
value of individual data has been estimated as a certain

value. In order to verify this statement it is necessary

for an inspector to draw n samples (x!,...,x') from N data
1 n

(xl,...,xN), estimate the true value of individual data

independently, and compare his estimated value with the
value estimated by an operator.

It is necessary to examine the difference between the
two estimated values for the sake of this comparison. There-

upon let Eope and gins denote the true values of individual

data estimated by an operator and an inspector respectively.



Both values should be equal in an ideal case. In practice,
however, they are not necessarily equal because of the
statistical behavior of individual data. Hence the difference
§ between ¢, and ¢ becomes a key measure for the

ins ope
verification, and we consequently choose § as a basic
random variable. The definition is

§ = Sins Eope (4)

B. Two-Action Problem

Collecting the information on the value Eins from an
inspector and on the value Eope from an operator, and
comparing these two values, an inspection authority needs to
decide whether any further action should be conducted or not.
If there is no difference between the values Eins and Eope'

or if the value § is nil, there will be no reason for an
authority to bring any further action against a facility.

On the contrary, if the value § is by far larger, and
especially if it exceeds the threshold amount fixed earlier,
then some further action will have to be applied.

So as to formulate this decision-making problem we now
consider the following two-action problem: an authority
selects either

action 1: "Accept the operator's data"
or
action 2: "Reject the operator's data"

after observing n samples drawn from the population of N
data. A criterion for the selection is supposed to be given
from the costs of each action.

Action 1 means no further action, while action 2 means
some further action depending on the value of §. Therefore
action 1 costs nothing, while the cost of action 2 is
dependent on the basic random variable. Let CA and CR denote

the cost of action 1 (act of acceptance) and the cost of
action 2 (act of rejection) respectively, and we can describe
the equations:

c. =0 , (5)



and

Cr = Cri&) . (6)

R

It is supposed here that the problem to choose either
the act of acceptance or the act of rejection is equivalent
to the one to compare these costs CA and CR' In other words

it is supposed that an optimal action for an inspection
authority is the act of acceptance if CA < CR' or the act of

rejection if CA > Cgr-

If the value of the basic random variable could be known
exactly, an optimal act could be chosen deterministically

since the cost CR of Eg. (6) could be computed exactly. As

mentioned earlier, however, an
the value § statistically, and
inspection authority to decide
uncertainty. Hence using P (9§)
distribution of a basic random

inspector can only estimate
it is inevitable for an

an optimal action under

to denote the probability
variable, we can describe the

discriminative condition for optimality as below:

1) 1if EVCp > EVC, = O , then act of acceptance is
optimal
or
2) if EVCR < EVC, =0 , then act of rejection is
optimal
where
0
EVCA = I CA(G) - P(8)d§ = 0 , (7)
4
and
Lo o)
EVCR = f CR(G) « P(6)ds . (8)

-0

EVCA and EVCR mean the expected costs of acts of

acceptance and rejection respectively under the probability



distribution P(8) of a basic random variable. The distribution
P(8) is estimated with the aid of the historical data of §,
and by making use of the observed information on n samples
(xi,...,xé) drawn from N data (xl,...,xN). If the distribution

P(S8) is preassigned prior to the observation of samples, then
an optimal act under the distribution can be determined by
computing the corresponding EVCR. After observing samples,

however, the newly estimated distribution becomes different
from the preassigned one, and it may bring about the revision
of decision making on an optimal act. Therefore it is of
great importance to assess the probability distribution P(§)
of a basic random variable in order to determine an optimal
act.

In the model described here the effectiveness of the
assessment on P(§) is defined by the value of the observed
information required to select either of the two acts. On
the other hand it costs some amount to obtain the observed
information. This susggests that it is necessary to consider
cost/effectiveness analysis for the purpose of optimization
on the observed information. The observed information has a
close relation to sample size, and an optimal sample size is
to be determined from the optimization analysis.

C. Incentive-Tax System

In order to solve such a two-action problem as mentioned
above it is necessary to assess the costs of actions as well
as the distribution of a basic random variable. As a result,
the following incentive-tax system is thought out hypotheti-
cally.

Suppose first that the threshold amount 6TA of a basic

random variable is preassigned from the standpoint of nuclear
materials safeguards. Then suppose that if it is proved that
the value of § exceeds 6TA' a facility must pay the tax CT(G),

which is proportional to the exceeded value § - § or an

14
inspection authority should levy the tax CT(G) @ gA— GTA‘
On the other hand, it is supposed that if it is proved that
the value of § is smaller than the threshold amount GTA’ a
facility can receive the incentive CI(6), which is
proportional to the difference 6TA - §, or an authority

should pay the incentive CI(G) « 6TA - 6.

In the event that the threshold amount ¢ is set to the
utmost limit of permissibility, a kind of safety factor should
be taken into account. In such a case, using the value 6BE'
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which is smaller than GTA’ we can formulate the incentive-

tax system:

if § < dBE’ then the incentive CI(d) = kI(dBE - &),
will be paid to a facility by an inspection
authority, while on the contrary

if & > dBE' then the tax CT(d) = kT(d - GBE)’ will

be paid to an inspection authority by a facility.

Now suppose that the act of rejection is synonymous with
taking part in the hypothetical game where an inspector takes
some further action and then according to the above incentive-
tax system, pays the incentive or levys the tax. It is
supposed additionally that the cost of the further action
is negligibly small compared with the incentive or the tax.
The additional supposition implies that an authority has no
need to take the cost of the further action into account in
choosing the decision.

Upon these suppositions Eg. (6) is to be written as
below:

Co(8) = ky(8pp = 8) , if & <80

CR(8) = (9)

~-C (6) =

T §) , 1if ¢ > GBE .

kT(dBE -
Substituting the CR(d) of Eq. (9) for the CR(d) of Eq. (8)
the expected cost of act of rejection is

GBE ®
EVCR = J CI(G)P(G)dG - [5 CT(G)P(G)dd ' (10)
-0 BE

and therefore the discriminative condition for optimality on
actions is rewritten as in the following:

GBE b
1) if J CI(d)P(G)dG > { CT(d)P(G)dG P
-0 6BE



~-11-

then act of acceptance is optimal;
or

(S =]

BE
2) if J CI(6)P(6)d6 < J C.(8)p(8)ds ,

-0 (SBE

then act of rejection is optimal.

The first term of the right hand side of Eq. (10) implies
the authority's risk associated with the act of rejection, or
the expected utility associated with the facility's effort to
realize § < 6BE' The second term implies the facility's risk

associated with the act of rejection, or the expected utility
associated with the authority's effort to prove & > SBE'

Hence it is to be understood that Eq. (9) represents a utility
function in terms of §.

For the purpose of simplicity we assume here that
k. =k, = kR. Then Eq. (9) is reduced to a linear utility

I T
function, i.e.,

C, = k_(8& 8) for every §. (11)

BE ~

Assume that the incentive CI(O) for § = 0, and the tax C.(§,...)

T "TA
for § = & are given the values kR and 6BE are obtained

TA'
from:
kg = (€L (0) + C (8,200 /80, (12)
and
5BE =T« 8pp ¢+ IT= CI(O)/(CI(O) + Cp(8pp)) (13)

respectively. The ratio 1 is a sort of safety factor.
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Provided that these assumptions for simplification are . made,
Eg. (10) is written in a most simple form:

EVC_ = k_ (8 - E(8)) , (14)

R R "BE

where

E(§) = J § « P(8)ds (15)

represents the expected value of 8.

Consequently according to the incentive-tax system an
optimal act in the two-action problem is to be decided from
the following:

1) 1if E(8) < §

F BE’ then act of acceptance is

optimal,
or

then act of rejection is

2) if E(8) > GB
optimal.

EI

Thus an essential parameter of our problem is the expected
value E(8) of a basic random variable. If the expectation
E(8) is larger than the break-even value GBE as a result of

observing n data from N data and estimating E(§), then an
inspection authority should bring some further action against
a facility. And furthermore if, after the further action it
is still true that E (§) > 6BE' then a facility should pay

the corresponding tax. On the contrary if it turns out that
E(d) < 6BE' then an inspection authority should give the

corresponding incentive to a facility. Figure 2 shows the
procedure of inspection for nuclear materials safeguards
according to the incentive~tax system.

D. Nuisance Parameters

Generally speaking the errors associated with observation
of samples are divided into two component parts: random error
and systematic error. The definitions are as follows and are
valid for both operator's data and inspector's data.
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Let u denote the mean of an infinite number of measure-
ments. Random error vy is defined as the difference between
individual measured data x and the mean u. In symbols,

Y =X -1 . (16)

Then in many if not most situations u would not be exactly
equal to the true value § of the quantity being measured.
Systematic error © is defined as the difference between these
two values. In symbolic forms,

6 =u-8& . (17)

From Egs. (16) and (17) the formula which shows the
three component parts of any individual measured data is
obtained:

X =+ 808+ v . (18)

If the systematic error 6 is kept constant during the campaign
interval, then Eq. (18) leads to the relation for any sample
mean

X=E+0 + v . (19)

In words rather than symbols, any sample mean can be regarded
as the sum of the true value of the quantity measured, the
fixed systematic error of the measuring process and the mean
of the random error of the individual observations in the
sample. This implies that the distribution of the mean y

of random error and the distribution of systematic error 6
are to be assessed so as to yield the distribution of the
sample mean X.

The distribution of the mean Yy is assessed in a common

manner. It follows from the definition of random error that
the expected value E(y) of the mean vy is zero:

E(y) = 0 . (20)

The variance 02(7) of the mean Yy is estimated by using the
equation:
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2,= 2 N -
ol = L% 2, (21)
where
2 2 -
ot (y) = £ } T 2 (x; - S (22)
i=1

Equation (21) is the formula to be used when a sample of y's
is drawn without replacement from a finite population the
size of which is N. Equation (22) is the formula to be used
when the number of measurements under the same condition is
not large enough to justify us in treating x as certainly
equal to u. It should be noted here that if the conditions
under which the measuring process operated were not constant
or if the systematic error varied even though the true value

¢ remained constant, then the value 02(Y) estimated by Eg. (22)

would tend to overstate the true random variance oz(y)
because the x's in Eq. (22) would contain variance due to the
random error. As concerns the shape of the distribution of
Y, the central limit theorem insists that the distribution of
Y in large samples will be often exactly Normal even though
the distributions of the individual y's are quite far from
Normal.

On the other hand the distribution of systematic error
¢ cannot be assessed in such a common manner because system-—
atic error often results from many sorts of factors inherent
in individual facilities. As far as a nuclear materials
processing facility is concerned, however, the factors are
to be decomposed into the following two. Factor one is
related to a material flow pattern of individual material
balance areas. We cannot assess this factor without repeating
the integral experiments for various patterns of material
flow. Hence it is assumed in the model that a facility
operates under the stationary condition such that the pattern
of material flow is kept unchanged, and it is also assumed
that the component of systematic error due to this factor is
known in advance with aid of the historical data. Factor twe
concerns the measuring process, with a systematic error
component that is always involved in any measured data.
To assess the error component, observed data must be
calibrated at appropriate time intervals and therefore it is
assumed here that the error component can be estimated on
occasion by the calibration.
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Consequently, provided that the assumptions: (a) the
pattern of material flow is kept stationary throughout the
campaign interval, (b) observed data are calibrated at
appropriate intervals and (c) the shape of the distribution
of systematic error is Normal are made, then the distribution
of systematic error is to be specified by the two parameters:

the expected value E(6) and the variance 02(6). And then it
is supposed in the model that these parameters are given
beforehand:

E(8) = Ey(8) (23)

o?(8) = ol(e) . (24)

Using Egs. (20), (21), (23) and (24) the expected

value E(X) and the variance 02(§) of sample mean in Eq. (19)
are described in the formulae:

E(X) = £ + E(0) (25)
and

o2(x) = 02(8) + o2(F) (26)
respectively.

Now in connection with basic random variable § let Ax
denote the difference between the mean Xi s of inspector's

measurements and the mean Eope of operator's measurements,

and then AxX is written:

Ax = & + 9, -0 + v, -y ' (27)

where

eins: systematic error of inspector's measurements

eope: systematic error of operator's measurements
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the mean of random error of inspector's
measurements

<1

ins®

?o et the mean of random error of operator's
P measurements,

The expected value E(AX) and the variance 02(A§) are
given by the definitions,

E(AX) = & + E(A®) (28)

and

o2 (4%) = o2 (80) + 02 (AY) (29)
where

A = X, - )‘(Ope , (30)

AD = eins - eope (31)
and

by = ;ins - ;ope . (32)
In case that both 6. and 6 are assessed by the same

ins ope
method, and that an operator measures all of N data, Eq. (29)
is rewritten as

2, _ 2 2,-
o (Ax) = 20 (eins) + @ (Yins) . (33)

E. Bayesian Decision Making

The value of basic random variable § is calculated from
Eq. (28) by observing the value of E(Ax). Prior to the
observation, however, it is possible to a certain degree to
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guess the value of § with aid of the design information and
the historical data.
Suppose now that PO(G) denotes the prior distribution

of § which is estimated roughly prior to observation and
and assume that the prior distribution PO(G) is a Normal

distribution with the expectation:

E(8) = Eo(d) ’ (34)
and the variance:
o? () = g8 . (35)

An optimal act under Po(d) is decided from the conditions:

1) if Eq(8) < $ then act of acceptance is optimal;

BE’
or

2) if EO(G) then act of rejection is optimal.

> Spgy

Hence an optimal decision under P, (8) is dependent only on

0
Eo(é) and regardless of 03(6).

The variance oé(d), however, implies a sort of the
unreliability of the value of § being estimated, or the
inverse of oé(d) implies a sort of the accuracy of the value

of 6. Therefore it is risky to select an optimal action
under the prior distribution with large variance. Usually
the expected value estimated without any observation is not
so reliable and then it becomes valuable to observe samples.
It is to be noted here that if the relation

Eo(d) = 6BE (36)

is made, there is no distinction concerning the optimality
between the acts of acceptance and rejection; either of the

two is optimal regardless of the value of og(d).
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Suppose then that as a result of observing n samples
from the population of N data a sample mean Ax is obtained
and that Pl(é) denotes the posterior distribution of § which

is estimated after observation. The posterior distribution
Pl(G) is given by Bayes' theorem:

P (8) = P, (8)P (8x]8)as / [ po(a)p(A§|6)d6 , (37)

-0

where

P(AR[§) = Pylw) /o (8%)
(38)

u = (Ax - E(AX))/o(Ax) .

The probability p(A%X|8), the conditional probability of the
event Ax given the event §, implies a sort of likelihood.

Given that both the prior distribution of & and the
sampling distribution of Ax are Normal, the posterior
distribution also is Normal, and the formula Eg. (37) is
able to be solved analytically. The mean El(S) and the

variance oz(v) of the posterior distribution are in the fol-

lowing: 1

IOEO(G) + IA§(AX - E(A8))

E, (8) = (39)
1 ‘IO+IA;(
and
2
01(5) = l/Il = l/(IO + IAE) ’ (40)
where
I, =1/0%(8) (41)
0 0
2

See R. Schlaifer, 1959, p. 441.
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and

1,- = 1/6%08%) . (42)

The meaning of Eqg. (39) is clear. The inverse of variance
(IO, IA§ or Il) represents the accuracy of the corresponding

statistic and may be called the guantity of information on
the statistic. Thus the mean of the posterior distribution
of § is a weighted average of the prior mean and the sample
mean, the weight of each estimate being the quantity of
information.

Once the mean El(d) and oi(d) are assessed from the

observation of samples, an optimal act can be decided by
comparing the value of El(d) and the break-even value GBE'

Unless the quantity of information I, is sufficient to make

1
a decision, it is necessary to reobserve more samples and re-
estimate the posterior distribution Pz(d) by regarding Pl(é)

as a renovated prior distribution. Taking this procedure
iteratively, we have a sequential decision making problem in
the sampling plan.

Now there is a question of how to determine the optimal
quantity of information to make a decision. A solution here
is obtained from the counterbalance between the effectiveness
and the cost of observed information. First, let us define
effectiveness of observed information.

An optimal act under the assumption that the value of
§ is known deterministically is chosen easily by inspecting
Fig. 3 which shows the cost of each act as a function of §.
If § = §', for example, then the act of acceptance is optimal
since CA(G') < CR(é'). Hence the cost C,(8) of the optimal

act under the assumption of deterministicality is illustrated
as the bold line OPQ in Fig. 3.

Now let us define the opportunity loss of each act,

LA or LR, by the difference between the cost C, and the cost

of each act. In symbolic form

L,=C, -C, = (43)
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and

L, =C, ~-C, = (44)

Furthermore let EVL, and EVLR denote the expected values of

A
opportunity losses of acts of acceptance and rejection
respectively, i.e.,

EVL [ LA(S)P(G)dG (45)

-0

and

EVL

[ LR(a)P(G)dG . (46)

-— 00

It is evident that the expected value of opportunity
loss of the optimal act under uncertainty, EVL, is subject
to

EVL, = min {EVL

EVLR} . ' (47)
A or R

AI

The value EVL, of Eg. (47) is the expected value of opportunity
loss which is by all means inevitable as far as there is any
uncertainty on a basic random variable. Hence it may be

called the cost of uncertainty or the expected value of the
perfect information which if it were available would enable

us to make a decision perfectly. So let EVPI|P(5) denote

the expected value of perfect information under the distribution
P(8§). The definition is

EVPI| = EVL, (48)

P(S)

The observation of samples changes the distribution of §
from PO(G) to Pl(é), and therefore it changes the expected



-21-

value of perfect information from EVPI|P to EVPI|P . The
0 1
definition of Eq. (48) apparently insists that the inequality

EVPI| < EVPI| (49)
Py - Po

should be satisfied for the observation to be of worth. Then

we define the value of the observed information, VOIl which

changes the distribution PO(G) into the distribution Pl(G)

by the difference between EVPIIP and EVPI|P . In symbols,
0 1

VoI, = EVPI|PO - EVPI|Pl . (50)

The value of observed information defined by the above
equation is known after observing samples and getting the
distribution Pl(d). However, the effectiveness of observed

information needs to be assessed before observing samples.

To do so it is necessary first to estimate the distribution
of posterior mean El(G) of a basic random variable, and then
to assess the expected value of VOIl under the distribution

of El(é). That is to say, using P(El) and EVOI, to denote

the distribution of El(G) and the expected value of observed

information respectively, we should define the effectiveness
of observed information by the equation:

EVOI, = (EVPI|, =- EVPI|, )| (51)

1 o 1 P(El) :

Provided that the prior distribution of § and the
distributions of 6 and y are Normal, the distribution of El(é)

is also Normal and it is given in the following forms:3
the expectation,

E(Ey(8)) = E,(8) (52)

3See R. Schlaifer, 1959, pp. 525-530.
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and the variance,

where,

and

2
o (§) » ¢
0% (gy(8)) = 22— X
y
(53)
1 y N=-n
ety Sy R-T
_ 2 2
€y = 07 () /o t8) (54)
Epp = 0 (86) /02 (8) (55)
ey = (1 + epgn + ey - (56)

There are two sorts of usage of Eq. (53), depending on

the variance oéo(é) of the original distribution of §:

(1)

In the case that we have no useful knowledge for
assessing the prior distribution of §, it is
necessary first of all to take n, pilot samples

(no<<n) from N data for the sake of the provisional
assessment of the prior distribution. In this case
the variance oéo(d) guessed prior to taking pilot

samples is equal to infinity. Therefore Eg. (53)
is reduced to

2 n
2 _ o (y) ON-n
o (Ey (6)) = & /‘1+?N D (57)

j = = N =
since €Y €r6 O and EY ny .
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(2) In the case that we have any aid from design
information, historical data and so forth to
assess the prior distribution of §, it is possible
to give the prior distribution a certain finite
value without taking any pilot sample. Therefore
Eq. (53) is rewritten as

2 2

0% (B1(8)) = 02(8) /(1 + €,q + % e N-ny

YN-1" "7

. B 2 2 v o
since n, = 0 , 000(6) = 00(6) and EY EY .

Given the distribution of the posterior mean in Egs. (52)
and (53), the formula below4 is used to compute the expected
value of observed information defined by Eq. (51):

EVOI, = ch(El(S))G(DEl) ' (59)
where

DEl = |6BE - EO(6)|/0(E1(6)) (60)
and

G(DEl) = Pﬁ(DEl) - DEl . PN(Dél > DEl) . (61)

Equation (59) is the concrete expression of the effectiveness
of observed information to be derived in the model.

It follows from inspection of Eqg. (58) that the variance
2 . . .
o) (El(6)) increases monotonously in terms of sample size n.

Since the variable DE is inversely proportional to 02(El(6)),
1
the variable DE decreases monotonously in terms of sample size
1
n. Furthermore Fig. 4 shows that the loss integral function

G (Dg ) is a monotonously decreasing function of the argument
1

4see R. Schlaifer, 1959, p. 532.



-24~

DE , and that the value of the function G(DE ) increases
1 1 '
monotonously in terms of sample size n. Therefore the expected

value of observed information, EVOIl is a monotonously increas-

ing function of sample size n. This is due to the fact that the
expected value EVOIl corresponds to the gross gain of observed

information,
In order to determine an optimal sample size it is
necessary to take into consideration the cost Cs(n) for

observing the information on n samples, and then to define the
net gain NGOl(n) of observed information by the equation

NGOl(n) = EVOIl(n) - Cs(n) . (62)

It is natural that the cost Cs(n) should increase monotonously

in terms of sample size n. The simplest expression of the
cost Cs(n) is a linear equation in terms of n:

Cs(n) = KS + ksn . (63)

Since both EVOIl(n) and Cs(n) are monotonously increasing
functions of n, the net gain of observed information, NGOl(n),
possibly has a maximum where the values of the individual
differential coefficients are equal.

Thus the ultimate description of the problem of
optimizing sample size is as follows: find an n subject to
the constraints

d d2
dn
NGO, (n) > O (65)

and

l<n<nN . (66)
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III. Calculation Results

A, TIllustrated Examples

In order to demonstrate the calculating procedures
according to the mathematical model presented here, and also
to show the optimal solutions of sample size, the following
three nuclear fuel processing facilities are taken as
examples:

1) 100 tons of UOz/year fuel fabrication facility (FFF),

2) 200 tons of y/year fuel reprocessing facility (FRF),
and

3) 8,750 tons SWU/year fuel enrichment facility (FEF).

The relevant specifications of the individual facilities
are given in Table 1. The specifications for the FFF are
taken from the results of the simulation study using the
historical data which have been obtained actually. As for
the FRF, the data in Table 1 are made artificially with the aid
of the design information [10]. It is supposed that the re-
processed fuel is the discharged fuel of a light water
moderated reactor which includes 0.75% plutonium. The FEF
is characterized by analogy from the data published in
[ll] and [12]. Here, the top product is 4% enriched uranium,
and for the purpose of simplicity it is supposed that an
inspector observes only samples of the product.

It is to be noted here, however, that there are the
remarkable differences between the values of systematic error
given for the individual facilities. For the FFF both the
expectation and the standard deviation are negligibly small;
for the FRF, both the expectation and the standard deviation
are approximately 1% of the population mean; and for the FEF
the expectation is negligible, and yet the standard deviation
is comparable to the standard deviation of random error.
These differences will have a significant effect on the
calculation results.

Table 1 also shows the inspection parameters assigned
for the individual facilities. The threshold amount (T.A.)
is fixed in accordance with footnote one. It is supposed
here that the incentive CI(O) for § = O should be equal to
the tax CT(6TA) for § = GTA' and that the value of CI(O)
should be assigned impartially for each facility. Concerning
the cost of observing samples, however, the costs for the FRF
and the FEF are fixed at ten times the cost for the FFF because
of the complicated measuring process for the FRF and the FEF.
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The calculation results for the FFF, the FRF and the
FEF, obtained by using the basic input data in Table 1, are
represented in Tables 2, 3 and 4 respectively. In each of
these the following four cases are taken in connection with
the assignment of the prior distribution Po(d):

Case 1l: the expected value of Po(é) is zero, Eo(d) = 0;

Case 2: the expected value of PO(G) is comparable to
the break-even value 6BE but a little smaller,
EO(G) < GBE;

Case 3: the expected value of Po(é) is identical to
GBE’ Eo(é) = GBE; and

Case 4: the expected value of PO(G) is comparable to

GBE but a little larger, EO(G)

Case 3 implies that the corresponding optimal act under the
distribution Po(é) is undecided since the costs of acceptance

> Spp-

and rejection are equivalent. Cases 1 and 2 make the act of
acceptance optimal under PO(G), while on the contrary, Case 4

makes the act of rejection optimal under PO(G)._

In addition it is presumed that the variance of PO(G)

for the FFF is assessed by taking n,. pilot samples for the

o}
sake of verifying the variance oz(y) of individual measurements.
On the other hand, the variances of Po(é) for the FRF and the

FEF are assessed by making use of the design information and
the experimental data.

Displaying the net gain of observation NGO1 for the FFF

as a function of sample size n, Fig. 5 shows that:
(a) there is no feasible solution in Case 1 (FFF 1),

(b) the net gains for Cases 2 and 4 (FFF 2,4) are
exactly identical,

(c) the net gain for Case 3 (FFF 3) is the highest for
any n, and

(d) the optimal sample sizes for FFF 2, 3 and 4 are
almost the same (n* =~ 205). :

It follows from the definition of NGOl (Eg. (62)) that the
differences between the values of EO(G) affect only the
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values of the loss integral G(DE ). Hence we should give
1
a reason for these four facts by considering differences
between the values of G(DE ). That is to say, fact (a) is
1
due to the value of DE for FFF 1 being too large and therefore
1

the value of G(D; ) being extremely small (< $10—7) as compared
1

with the cost (> $4). This means that it is of little value

to observe samples if the value of EO(S) preassigned by a

decision maker is so different from the break-even value,
and if at the same time the preassignment is done with such
accuracy as O(El(é)) < 23% of 6BE' Fact (b) is a self-

evident truth because the absolute values of the difference
EO(S) and GBE for FFF 2 and 4 are given as identical. Fact

(c) results from the value of G(DE ) which has the maximum

1
value for DE = 0, as shown in Fig. 4. Aand finally, fact
1
(d) originates in the value of G(DE ) being almost constant
1

in the neighborhood of the optimal solution n*.

Figures 6 and 7 are placed to display the net gains of
observation for FRF and FEF respectively as a function of
sample size. According to these figures, we can see facts,
except for (a), similar to the ones for FFF. 1In the cases
of FRF and FEF the values of oo(y),which from Eg. (58) are

proportional to O(El(é)), are assigned to be more than ten

times the break-even value GBE' From this the value of
Dg is close to zero (< 0.1l) regardless of the value of
1 ~

EO(G) assigned in the examples. Therefore the value of

G(DE ) is roughly constant for any of the assigned values of
1
Eo(d). This is why the optimal sample size exists, and takes

the same value for any cases of FRF and FEF.
It is also worthy of notice that the net gain of
observation does not significantly vary with sample size n

in the cases of FRF and FEF. For instance, even the values
of NGO1 for the minimum sample size in FRF and FEF amount

to approximately 95% and 85% of the values of NGO1 for the

optimal sample size respectively. This is caused by the
following facts:
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(a) EVOIl(n) >> Cs(n) for any n,

(b) the change of EVOIl associated with n is
nearly proportional to the change of U(El(G))

associated with n, and

(c) the value of o(El(G)) does not remarkably

vary with sample size n because of €r0 ® eY.
Generally speaking, the increase of sample size yields the
reduction of the ambiguity associated with random error, and
yet it has no relation to the decrease of the ambiguity

associated with systematic error. Therefore the increasing
rate of EVOIl(n) is by far lower for €pg EY than for
€A6 = 0.

With the view of comparing the optimal act and the cost
of uncertainty, EVPI under the posterior distribution Pl(G)

with the optimal act and the cost EVPI under the prior
distribution PO(G), Tables 2, 3 and 4 show the examples

assuming certain inspection results concerning the values of
Ax and o(y). For every facility it is assumed that an
inspector obtained the value of AX or Ax - E(A8) which was
close to and a little smaller than the break-even value, and
also that he obtained the value of o{y) which was equal to

or a little larger than the value given from the specification.
Since the value of El(G), computed in accordance with the
imaginary results of inspection, is smaller for every case

than the break-even value 6BE' the optimal act under Pl(G)

for every case is the act of acceptance. With regard to the

cost of uncertainty, the values of EVPI P under the posterior
l .

distribution Pl(G) for FFF 3, FRF 3 and FEF 3, for example,

are reduced to $2.77 x 10° (7.7% of EVPI|, ), $7.53 x 10°
o}
(37.8% of EVPI|_ ) and $9.94 x 10° (58.4% of EVPI|_ )

P P
respectively. While the reduction rates for FRF and FEF may
be still unsatisfactory, the reduced amounts are enormous in
comparison with FFF. Furthermore, taking into consideration
the ratio of the cost of uncertainty for the maximum sample
size (n=N) to the value EVPI!P (see Table 5), the optimal

o}
sample size obtained here can be considered as reasonable.
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B. Asymptotic Solution

The calculation results mentioned above suggest to us
that an optimal sample size can be found regardless of the
expectation E(El(é)) of posterior mean (E(El(d)) = Eo(é),

from Eq. (52) so long as the prior distribution has been

assigned so that samples from measured data may be worthy

of observing. Additionally it is apparent from the relation

between Eo(d) and G(DE ), Egs. (60) and (61), that given all
1

the parameters other than Eo(é) the optimal sample size has

the maximum value for EO(G) =34 Owing to these mathematical

BE®
properties of the optimal sample size n* it is worthwhile to
consider the relationship between the optimal solution n* for

Eo(é) = 6BE and the other relevant parameters.

(6) =6 is obtained

The net gain of observation for E BE

from Egs. (52) to (63) as below:

0

i
Ky = 0. (8)(e_ /et)?
NGO, (n) = R__00 L_X - G(0) = (Kg +kgen)
1 N - n
1 + Eng + = e; N o1
(67)
where
G(0) = 0.3989 ., (68}

Now setting aside the constraints of Egs. (65) and (66), we
suppose that an optimal solution is subject only to Eq. (64).
In considering the differential equation, Eq. (64) it is
convenient to rewrite Eq. (67) in the following form:

NGOl(n) + K
_ 2 =2G(0) * ———— - n , (69)

S Vl + w/n

where
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i g! ’
ko, sa.  (6)+ (e )" _ Y
x =R _T00 7 Ty \/1+6A9 — (70)
- 2
kg (e;)
and
N Y
- ] -
wEe g-T Qg T - (71)

Equation (69) implies that the parameters, which have a
substantial effect on an optimal solution, are A of Eq. (70)
and w of Eg. (71). And it is obviously understood that as
far as such a function of n of Eq. (69) is concerned, the
optimal sclution satisfying the condition, Eg. (64), exists
for any X > 0 and w > O. Figure 8 illustrates the contour
of the optimal solution n* in the A-to-w chart where the
units are in logarithmic scale.

From Fig. 8 we find that every one of the contours is divided
into two parts: (a) for A/w 2 10, the optimal solution n¥*
increases with w and (b) for A/w < 10, the optimal solution
n* decreases with w. Now for the purpose of explaining this
property, we can consider the simplest case assuming N » <«
(infinite population), €rg = 0 (no systematic error) and

e! = e or 000(6) = 0.(8) (no pilot sample). In this

Y Y
simplest case, since

o]

A= 0g(8) = kp/kg (72)

and
w = Gz(y)/oé(d) , (73)

the value of A is proportional to kR/kS and the value of w

is proportional to 02(Y): for constant og(é). Hence the
increase of  corresponds to the increases of 02(Y), and then
it results in the increase of n* so as to improve the accuracy
of observed value. This is the reason for property (a)
mentioned above. However, if the value of w increases too far
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(w 2 1 for n* = 1), then it becomes less valuable to observe
samples, since prior to observation we had the value of 00(6)

which is less than o(y). In other words, Fig. 8 suggests that
there is a limit concerning the accuracy of sampling measure-
ment which is available for observation of samples. The limit
is written by the relation:

A/w 2z 10 . (74)

Nevertheless it is to be noticed that every one of the
contours is represented asymptotically by a straight line in the
the A-to-w chart as the value of A increases and the value of
w decreases. This implies that it is possible to express the
optimal sample size for a domain of XA and w by an asymptotic
solution. According to Fig. 8 the asymptotic solution is
approximated by the formula:

Nty =VAcw/s i M2 105 . (75)

The comparison between the asymptotic solution and the numerical
solution for the examples, FFF, FRF and FEF is given by Table 6
and it shows that the formula, Eq. (75), gives almost the

exact solution, since each of the examples is subject to the

condition A/w = 103. Even for 102 < AJw < lO3 it follows from
Fig. 8 that the formula, Eg. (75), overstates the optimal
sample size, and therefore it is useful for practical purposes;
the difference due to the overstatement is less than 25% of
the exact optimal sample size.

From Egs. (70), (71) and (75) we obtain the relationship:

k
o R%./- ;5. I |!2'
n*(a) (Eg) (voo(é)) (e.) (e)
(76)
) \_s
'(N—I_qf)%'<1J"5A9'N—_Yf>h :
Furthermore assuming N>« and e; = ¢ and using Egs. (12),

Y
(13), (54) and (55), Eq. 76 is reformed into
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¢, (0)

o« o, .
n*( ) (ﬂ. P > O(Y) 00(5)
(76)

i

© (oZ(8) + %) TE .

The safety factor 7 is related to the detection limit
concerning the MUF due to diversion, and the lower value of
m raises the limit. Therefore Eqg. (76) implies that if the
detection limit rises, then the corresponding sample size

increases. With regard to the variances 02(Y) and 02(A6) it
is natural that

2

2
o (ving) 2 920 pd) o

2
(eins) 20 (eope) - 7D

because of the difference between the quantities of the
source data available for assessing oz(y) and 02(6). Hence

it is to be considered that the variances oz(y) and 02(A6)
in Eg. (76) should be improved by individual facilities.

From this consideration the variances 02(Y) and 02(Ae) are
related to the technical and economic efforts of individual
facilities. According to Eg. (76) the effort to improve the
accuracy associated with random error brings about the
decrease of sample size in proportion to o(y). On the
contrary the effort to reduce the ambiguity associated with
systematic error gives rise to the increase of sample size.
This is due to the fact that the reduction of o(A6) promotes
the expected value of observed information.

Consequently Eg. (76) should be regarded as the equation
representing the relationship between the limits concerning
the inspection plan mentioned earlier and the corresponding
optimal sample size. Equation (76) has been derived without
regard to the constraints, Egs. (65) and (66). In applying
Egq. (76) for a practical problem, the limits concerning the
inspection plan should be selected so that the optimal
solution obtained from Eg. (76) may exist within the feasible
domain given by the constraints, Egs. (65) and (66).

iVv. Concluding Remarks

So as to determine the optimal sample size for nuclear
materials safeguards inspection and to show the explicit
expression of the relationship between the optimal sample
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size and the parameters which represent the limits concerning the
inspection plan, the problem of optimizing the observation

plan was formulated by describing the hypotheticality

associated with the safeguards problem as an incentive-tax
system. Bayesian decision theory was applied to solve the
problem: it was found that the formulated model gives the
optimal sample size, which is of practical use, and that the
asymptotic solution derived from the model is applicable for

the sake of understanding the relationship between the optimal
sample size and the limits concerning the inspection plan.

It is prescribed in the model that the purpose of the
inspection plan is to collect the observed information which
is required for making the decision on the two-action problem,
whether the operator's data should be accepted or rejected,
while evaluating the costs for acts of acceptance and
rejection in an incentive-tax system.

Some uncertainties are inevitably involved in the decision
making because of the statistical behavior of the variable §
in question, and therefore the effectiveness of the observed
information is defined by the expected value of observed
information which is expressed by the difference of the costs
of uncertainty prior to the observation and posterior to the
observation. Thus by subtracting the cost for observing
samples from the expected value of observed information, the
net gain of observation is defined and the optimal sample
.size is obtained by maximizing the net gain of observation.

In conclusion, the calculation results based on the
formulation suggest to us that (a) while the optimal sample
size depends on the break-even value GBE’ which corresponds

to a sort of the detection limit of MUF due to diversion,
and on the variances of random error and systematic error,

oz(y) and oz(AG), which are related to the technical and
economic effort of individual facilities, it is possible to
select these parameters by taking the feasibility of the
corresponding optimal sample size into consideration, and

(b) the ambiguity associated with systematic error is not
reduced by taking samples from measured data, but rather
systematic error reduces the expected value of observed
information, and therefore it is of great importance to
research and develop the method to evaluate systematic error.



~34-

INPUT F LOW MBA OUTPUT FLOW
()T (W (), e [n D)
L — —

o (t)—f o (m) Ly

k
TOTAL INPUT FLOW AT t=t; : A(ti)=k§ ak(t;)

TOTAL OUTPUT FLOW AT t

k
ti B (ti) = kZ% b|(( ti )

THE DIFFERENCE AT t

"
g
N

= A(tj)-B(t;)
)
BEGINNING INVENTORY(t=0): ij(O)
=1
J
ENDING INVENTORY {t=T): }:Wj(T)
j=1

Figure l: A scheme of material balance area.



-35-

ROUTINE INSPECTION
OBSERVATION
OF n SAMPLES FROM N DATA

:

ESTIMATION OF E(/)

ACT
OF
ACCEPTANCE

ACT
OF
REJECTION

AD HOC INSPECTION
SOME FURTHER ACTION

PAYMENT
OF
INCENTIVE
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Table 1: Relevant data on the specifications and the inspection parameters
of the reference facilities.
Uranium-Fuel Fuel Reprocess.|Fuel Enrichm.
Fabr. Facility Facility Facility
(FFF) (FRF) (FEF)
A) Specifications:

B)

Capacity/year
No. of Campaigns
Campaign interval

Total pieces/Camp. N

Population mean u
E. of r. error E(y)
S.D. of r. error ofY)
E. of s. error E(A0)
8.D. of s. error ofA8)

Inspection Parameters:

Threshold Amount/year

CI(O) in Eq. (12)
cT(éTA) in Eq. (12)
Kg in Eq. (63)
ko in Eq. (63)
6TA’ T.A./piece

m from Eqg.

GBE from Eq. (13)
k from Eq. (12)

100 tons of UO2
5/year
60 days
4165 fuel pins
4482.9 g of 2.5w/0 EU
0g "
17.8 g "
Og "
0 g "

25 kg of 235

$ 4x10°
$ hxlO5
$ 0
$ L

50 g of 2.5 w/0 EU
0.5
25 g of 2.5 w/0 EU
$ 1.6x10h/g

U

200 tons of U
5/year
60 days

100 fuel assm.s

3000 g of Pu
Og
g "
30g "
ho g "

kg of Pu
Lx10
Lx10

©“ 4 B &

Lo
16 g of Pu
0.5

8 g of Pu
$ 5x10h/g

1972 tns.UF6
l/year
300 days
986 bombs
2tns.of UF6(h%)
0 kg "
L.o kg '
0 kg "
3.6 kg "

25kg of 235U

$ 4x10°
$ hxlO5
$ 0
$ Lo

938g UF(4%)
0.5

469g UF(L%)

$ 8.53x102/g
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Teble 2: Calculation results for the fuel fabrication facility.
FFF 1 FFF 2 FFF 3 FFF b
1) Prior Distribution PO(G)
Ey(8) g of 2.5"/  EU 0 20.0 25.0 30.0
3 (8) g of 2.5"/O EU 5.63 5.63 5.63 5.63
wmﬁm'%=m
Optimal Act under Po(é) Accept Accept Either Reject
EVPI]P a) 7.52 x 10~ 9.04 x 10% | 3.58 x 10* 9.04 x 10°
0
2) Optimal Sample Size
n* from Egs.(64-66) —— 205 205 205
EVOI, from Eq. (59) - 8.68 x 103] 3.51 x 10" 8.68 x 10°
Cq from Eq. (63) -—— 8.20 x 102 | 8.20 x 102 8.20 x 102
NGO, from Eq. (62) ———- 7.46 x 10%| 3.43 x 120" 7.46 x 103
3) Inspection Results
Ax g of 2.5“/0 EU _— 2l .0 24.0 2L.0
Ax ~ E(A8) g of 2.5”/OEU — 24,0 24,0 2.0
v) from Eq. (22) R 20.0 20.0 20.0
oly) from Eq. (21) — 1.36 1.36 1.36
‘o Ax) from Eg. (33) e 1.36 1.36 1.36
4) Posterior Distribution Pl( }
T from Eq. (L1) ——— 0.032 0.032 0.032
IA; from Eq. (42) ———— 0.540 0.540 0.540
I, from Eq. (L0) —— 0.572 0.572 0.572
vl(d) from Eq. (40) —— 1.32 1.32 1.32
El(é) from Eq. (39) _— 23,7 2k, 1 24 .3
Optimal Act under Pl(ﬁ) _— Accept Accept Accept
EVPI| P v) - 1.89 x 10° | 2.77 x 103 3.93 x 10°
1
a) EVPI|PO = quo(d)G(Do) b) EVPI]P = kAcl(é)G(Dl)
where, where 1
Dy = | 8gp = Ej(8)]/ o,(8) D) = 8y - B (8)]/0(8)
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Table 3: Calculation results for the fuel reprocessing facility.
FRF 1 FRF 2 FRF 3 FRF 4
1) Prior Distribution, P.(8)
B, (8) g of Pu 0 6.0 8.0 10.0
co(s) g of Pu 100 100 100 100
(qoo=ﬂb, n0=0)
Optimal Act under PO(G) Accept Accept Either Reject
EVPI | p 1.80x10° | 1. 9hx106 1. 99x106 1. 9hx106
‘ 0
2) Optimel Semple Size
n* from Eqs. (6L4-66) Lo Lo Lo Lo
EVOIl from Eq. (59) 1.6hx106 1.79x106 1.8hx106 l.79x106
Cq from Eq. (63) 1.68x10° 1.68x10° | 1.68x10° | 1.68x10°
NGO, from Eq. (62) 1.6hx106 l.79x106 1.8hxlo6 1.'{9x106
3) Inspection Results
AX g of Pu 37.0 37.0 37.0 37.0
Ax - E(A8) g of Pu 7.0 7.0 7.0 7.0
oly) from Eq. (22) 35.0 35.0 35.0 35.0
o(y) from Eq. (21) 4.15 4.15 k.15 4.15
o(ax) from Eq. (33) 42.2 42,2 k2,2 42.2
L) Posterior Distribution, Pliél
Iy from Eq. (41) l.OOxlO—h 1.00::10_1l l.OOxlO_h 1.00x10'll
L ' from Eq. (42) 5.61;;:10'1l 5.6hx10'l' 5.6hx10_)4 5.611.x10'14
I, from Eq. (L0) 6.60x10 " | 6.64x107" | 6.64x107" | 6.64x107"
01(6) from Bq. {(L40) 38.8 38.8 38.8 38.8
El(d) from Eq. (39) 5.95 6.85 7.15 T.45
Optimal Act under P, (6) Accept Accept Accept Accept
EVPI| 7.24x10° | 7.45x10° | 7.53x10° | 7.60x10°
P
1
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Table 4: Calculation results for the fuel enrichment facility.
FEF 1 FEF 2 FEF 3 FEF }
1) Prior Distribution P, (§)
EO(G) g of UF. (L%) 0 438 469 500
(8) g of UF, (4%) 5000 5000 5000 5000
(g 8g=0)
Optimal Act under PO(G) Accept Accept Either Reject
EVPI|, 1.51x10° 1.69x10° | 1.70x10° 1.69x10°
o .
2) Optimal Sample Size
n¥ from Eqs. (64-66) 85 85 85 85
EVOI, from Eq. (59) 1.19x106 1.36x10° | 1.38x10° | 1.36x10°
Cg from Eq. (63) 3.h0x103 3.40x103 3.40x10> 3.40x103
NGO, from Eq. (62) 1.18x106 l.36x106 l.37x106 1.36x106
3) Inspection Results
Ax g of UF¢ (4%) 450 450 450 450
Ax ~ E(A8) g of UFg (4%) 450 h50 450 450
aly) from Eq. (22) 4000 4000 Looo 4000
ol¥) from Eq. (21) 415 415 415 415
ol Ax) from Eq. (33) 362k 3624 362L 3624
4) Posterior Distribution, Pligl
1, from Eq. (b1) b.ox10° | k.oxo0® k.0x1078 | n.ox1078
I from Eq. (42) 7.6x100 7.6x10°C | 7.6x107% | 7.6x107°
L from Eq. (L0) 11.6x1078| 11.6x1078| 11.6x107| 11.6x1078
q,(8) from Eq. (40) 2936 2936 2936 2.936
El(G) from Eq. (39) 295 Ly2 k57 467
Optimal Act under Pl(s) Accept Accept Accept Accept
EVPI|, 9.27x10° 9.88x10° 9.94x10° | 9.99x10°

1
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sample sigze.

Comparison of the cost of uncertainty for various

Under Prior

Under Posterior Distribution,

Distribution Pl(6)
PO(B) n=1 n=n* n=N

Fuel Fabrication y $3.38x10u $2.77x103 $ 0
Facility (FFF 3) $3.58x10
n*=205, Nz=4165 (94.3%) (7.7%) (0%)
Fuel Reprocessing 6 $9.38x105 $7.53x105 $7.51x105
Facility (FRF 3) $1.99x10
n*=42, N=100 (47.1%) (37.8%) (37.7%)
Fuel Enrichment 6 $1.2Hx106 $9.9le105 $9.89x105
Facility (FEF 3) $1.70x10
n*=85, N=986 (73.1%) (58.4%) (58.2%)

the ratio to the cost of uncertainty under Po(6)
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Comparison between asymptotic solutions and numerical

solutions.

FFF FRF FEF
Population Size N 4 165 100 986
S.D. of original distribution 000(6) o 100 5,000
Pilot Sample Size ng 10 0 0
€y from Eq. (54) 0 0.09 0.64
€rp from Eq. (55) 0 0.18 0.52
N from Eq. (56) 10 0.09 0.64
4 5 4
A from Eq. (70) 2.25x10 1.15x10 8.65x%10
w from Eq. (71) 1.00x10% | 7.73x1072 |y, 22x1071
Asymptotic Solution nfa) 212 42 85
Numerical Solution n* 205 42 85
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