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Abstract

Although single-species deterministic difference equations have

long been used in modeling the dynamics of animal populations,

little attention has been paid to how stochasticity should be

incorporated into these models. By deriving stochastic analogues to

difference equations from first principles, we show that the form of

these models depends on whether noise in the population process is

demographic or environmental. When noise is demographic, we

argue that variance around the expectation is proportional to the

expectation. When noise is environmental the variance depends in a

non-trivial way on how variation enters into model parameters, but

we argue that if the environment affects individual fecundity then

variance is proportional to the square of the expectation. We

compare various stochastic analogues of the Ricker map model by

fitting them, using maximum likelihood estimation, to data

generated from an individual-based model and the weevil data of

Utida. Our demographic models are significantly better than our

environmental models at fitting noise generated by population

processes where noise is mainly demographic. However, the

traditionally chosen stochastic analogues to deterministic

models—additive normally distributed noise and multiplicative

lognormally distributed noise—generally fit all data sets well. Thus

the form of the variance does play a role in the fitting of models to

ecological time series, but may not be important in practice as first

supposed.

Keywords: population models, stochastic population models, Ricker model,

first principles.
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1 Introduction

The goal of modeling the dynamics of animal populations is to understand

how population change arises from the interplay of environmental forcing,

density dependent regulation and inherent stochasticity (Bjørnstad &

Grenfell, 2001; Hilborn & Mangel, 1997). Population fluctuations can arise

from variation in the environment over time (Walther et al., 2002; Saether,

1997), from intrinsic ‘demographic’ stochasticity arising from variation in

the number of offspring produced per individual (Bartlett, 1960; Royama,

1992), from errors in observations (Valpine & Hastings, 2002) and from

deterministic non-linear dynamics, such as cycles and chaos (May, 1976;

Turchin, 2003; Berryman, 1999). The combination of these effects, coupled

with the fact that ecological time-series are often short, makes the

construction of predictive mathematical models notoriously difficult

(Turchin & Taylor, 1992). Indeed, the central requirement in developing

mathematical models of population ecology is that stochastic and

deterministic factors can be weighted appropriately.

Recent theoretical work on the construction of deterministic models has

concentrated on the basis of ‘laws’ or ‘first principles’ of population growth

(Berryman, 1999; Turchin, 2003). For example, that populations grow

exponentially in the absence of environmental constraints is a simple

consequence of reproduction. Such theory is most thoroughly developed for

single-species, discrete and unstructured population models with first order

feedback, i.e. of a form

at+1 = f(at) = atg(at) (1)

where at is the population on generation t and g has a natural

interpretation as the net reproduction rate per individual for the

population. Reasoning from a few simple, biologically reasonable postulates

we can establish properties of g. For example, density independent

reproduction is equal to g(0) while, since populations cannot grow

indefinitely, g(a) < 1 for sufficiently large a. Such reasoning results in the

definition of two qualitatively different forms for f , compensatory
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models—where f is increasing—and overcompensatory models—where f

obtains a maximum and then decreases (Bellows, 1981). A typical example

of a compensatory model is the Beverton-Holt model, g(a) = k1/(k2 + a)

and overcompensatory the Ricker map, g(a) = k1 exp(−a/k2).

In deriving models from first principles of population dynamics,

stochasticity in the population is not usually considered. However, when it

comes to fitting these theoretical models to data, random variation—which

is an undoubtable characteristic of most time series of natural

populations—can no longer be ignored. The simplest manner in which noise

can be incorporated is through additive normally distributed noise, i.e.

at+1 = f(at) + σǫt (2)

where σ is the constant of standard deviation and the ǫt will be assumed

throughout this paper to be independent random variables, normally

distributed with mean 0 and variance 1 (see for example Hilborn & Mangel,

1997; Solow, 1998). For the Ricker map it is natural to use a multiplicative

lognormally distributed noise term, such that

at+1 = bat exp(1 − at/K + σǫt − σ2/2) (3)

This formulation has the convenient property that linear regression on the

{at} plotted against {ln(at+1)− ln(at)} gives not only fitted values for b and

K, but also the standard deviation, σ, which is equal to the error sum of

squares from the regression (see for example Berryman, 1999).

Noise in population time series can be classified as demographic (arising

from variation in the number of offspring produced per individual),

environmental (arising from variation in the environment over time) and

observational (arising from errors in measuring the population size).

Despite these numerous ways in which stochasticity can arise in field data,

it appears to be somewhat of an after-thought in the derivation of models

such as equations 2 and 3. Indeed, the main influence on the choice of

stochastic population model seems to be the ease with which it can be

fitted to data. Since maximum likelihood techniques can be used to fit
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generalized models to data, the ease of using linear regression should not be

a restriction on the type stochastic population models developed in ecology.

Stochastic analogous of deterministic population models can be developed

from first principles on the basis of the types of noise present in time series.

In order to address the need for models which more accurately capture

demographic and environmental noise, Engen et al. (1998) introduced

general definitions of demographic and environmental variance, as well as

demographic covariance. A central point arising from their study is that

environmental and demographic variance, just like the expectation, are

functions of population size. Since both the deterministic and the

stochastic components of a time series model must arise from the same set

of reproductive actions and interactions between individuals in the

population, we expect some relationship between the two. However, the

exact nature of this relationship depends on the type of interactions as well

as the relative importance of demographic and environmental noise. The

aim of this paper is to develop practical stochastic population models of

discrete, single-species population dynamics with first-order feedback,

which combine appropriate deterministic and stochastic components.

2 Stochastic models from first principles

Consider a population of At individuals with discrete non-overlapping

generations indexed by t. Let R1, ..., RAt
be the individual contributions to

the population at the next generation and Zt be a random vector describing

various environmental factors (Athreya & Karlin, 1971). We assume that

the Ri are identically distributed random variables, with expectation and

variance conditioned on At and Zt given by µ(At, Zt) and σ2(At, Zt)

respectively.

The population at generation At+1 = R1 + . . . + RAt
depends on the

population density and the population abundance on the previous
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generation as well as the environmental conditions during the year,

represented by At and Zt respectively. If Zt = zt and At = at the expected

population on the next generation is

E[At+1|At = at, Zt = zt] = E[R1 + R2 + . . . + Rat
] = atµ(at, zt) (4)

From this point on, we will assume that At = at and not state this

explicitly. Unlike the expectation, the variance is only additive if the

random variables are uncorrelated,

Var[At+1] =

at
∑

i=1

Var[Ri] +
∑

i6=j

Cov[Ri, Rj ] (5)

We will now give plausible forms of the variance as a function of at, first in

the presence of demographic stochasticity only, and later for a combination

of demographic and environmental stochasticity.

2.1 Demographic variance

In a constant environment, we have no environmental variance, and

Zt = zt = z. If the correlation between the number of offspring produced by

two individuals is ρ(at, z) then from Equation 5

Var[At+1] = σ2(at, z)(at + ρ(at, z)at(at − 1)) (6)

where ρ(at, z) = Cov[Ri, Rj]/Var[Ri]. Since σ is bounded, it follows that if

ρ is at most of order a−1
t the variance grows at most linearly with total

population size. Correlation of order a−1
t is not an unreasonable assumption

since environmental and temporal constraints force most individuals to

interact with only a fraction of the total population during a lifetime.

If we assume that each individual produces a binomially distributed

number of offspring where each of b potential offspring is born and survives

the year with probability p, then µ(at, z) = pb and σ2(at, z) = p(1 − p)b.

Provided at is sufficiently large, we may assume that the correlation
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ρ(at, z) = (Cρ − 1)/(at − 1). Then from equations 4 and 6, we get the

expectation and the variance of At

E[At+1] = pbat and Var[At+1] = Cρp(1 − p)bat (7)

For our purposes, the important point to note here is how the expectation,

pbat, and the variance, Cρp(1 − p)bat, are related to each other: both are

expressed in terms of the same parameters, b and p, and both the

expectation and the variance scale linearly with the population on the

previous generation At. Specifically, Var[At+1] is proportional to E[At+1].

This relationship between mean and variance contrasts with the model

given by Equation 2 in the introduction, where the variance is constant for

all at.

The model we have constructed here is a linear birth-death process with no

density dependence. In order to construct general, non-linear stochastic

models we now introduce density dependence by assuming that the number

of offspring produced, b, depends on at. Specifically, given any deterministic

population model, f(at) = atg(at), we let b(at) = g(at)/p. In this

formulation, g(at), is interpreted as the expected net reproduction rate per

individual, while b(at), although not necessarily an integer, is interpreted as

the gross reproductive gain per individual. Substituting into Equation 7 we

get

E[At+1] = f(at) and Var[At+1] = Cf(at) (8)

where C = Cρ(1 − p). Thus Var[At+1] is proportional to f(At), the

expected population in the next generation. Thus, if a population is

expected to decrease, the variance in the outcome is smaller than were it to

increase. Even though Equation 8 was derived under rather specific

assumptions we hope that it captures the essential features of demographic

stochasticity in a broad range of single-species populations.
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2.2 Environmental variance

In the previous section we assumed the environment to be constant. We

remove this assumption and again represent the environment with a

random vector Zt. With Ri as before, we follow Engen et al. (1998) and

write Ri as a sum of three parts, Ri = E[Ri] + We + W i
d where the first term

is the expectation if we have no information about the environment, i.e. the

deterministic part, the second is the deviation from this expectation due to

environmental factors, i.e. Zt and the third being the difference between

the actual outcome Ri and the expectation in the realized environment this

year:

Ri = E[Ri] + (E[Ri|Zt] − E[Ri]) + (Ri − E[Ri|Zt])

Here, E[Ri|Zt] = µ(at, Zt) is the conditional expectation given Zt. It can be

shown that the two stochastic terms are uncorrelated (Engen et al., 1998).

Then

Var[At+1] = Var

[

at
∑

i=1

Ri

]

= at(σ
2

d(at) − τ(at)) + a2

t (σ
2

e(at) + τ(at)) (9)

where σ2
d(at) = Var[W i

d], σ2
e(at) = Var[We] and τ(at) = Cov[W i

d, W
j
d ]. When

populations are sufficiently large, there is usually little interaction between

two randomly selected individuals and the demographic co-variance τ is

small (see Engen et al., 1998, for some examples). We thus assume for now

that τ = 0 and Equation 9 takes the form

Var[At+1] = atσ
2

d(at) + a2

t σ
2

e(at) (10)

giving independent terms for demographic and environmental stochasticity.

To construct a stochastic analogue to a given deterministic model,

at+1 = f(at) = atg(at)

under the assumption that noise is environmental, we need to find how

σ2
e(at) is related to g(at). It seems reasonable to assume that environmental

stochasticity affects one or more of the parameters in the deterministic
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model. For example, the non-dimensionalised Ricker model can be written

as g(at) = b exp(−at), where b is the density-independent growth rate.

Assume that this rate is determined by and actually equal to the

environmental variable Zt, so that E[Ri|Zt] = Zt exp(−at) and,

consequently, the expected net reproduction per individual is

g(at) = E[Zt] exp(−at). Then

σ2

e(at) = Var [E[Ri|Zt]] = exp(−2at) Var[Zt] = Cg(at)
2 (11)

where C is a constant depending on E[Zt] and Var[Zt]. Assuming that there

is no demographic variance, that is σ2
d(at) = 0, Equation 9 and 11 imply

that

Var[At+1] = Cf(at)
2 (12)

Thus if environmental stochasticity affects the density-independent growth

rate, the variance is proportional to the square of the expectation.

Many deterministic models of population dynamics incorporate a carrying

capacity, a parameter related to equilibrium population density. Unlike the

density-independent growth rate, there does not seem to be any general

relationship between σ2
e(at) and g(at) when environmental change affects

the carrying capacity, and the relationship therefore has to be determined

on a case-by-case basis. For example, the Ricker model can be written with

g(at) = b exp(− ln(b)at/K), where K is the carrying capacity. If we assume

that the environmental variable Zt equals the fluctuations in carrying

capacity, so that E[Zt] = 0, we can write

E[Ri|Zt] = b exp(− ln(b)at/(K + Zt)). Using the linear approximations

(1 + x)−1 ≈ 1 − x and exp(x) ≈ 1 + x we get

σ2

e(at) = Var

[

b exp

(

−
at ln b

K

1

1 + Zt/K

)]

≈ Ca2

t g(at)
2 (13)

where C is a constant depending on Var[Zt], K and b. Equation 13 gives a

good description of the variance provided the quotient Zt/K is small.

Assuming that there is no demographic variance, that is σ2
d(at) = 0,

Equation 9 and 13 implies that

Var[At+1] = Ca2

tf(at)
2 (14)
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is the environmental variance.

The difference between equations 13 and 14 highlight a difficulty that

environmental noise presents. The relationship between variance and

expected population is dependent on how environmental change affects the

population. However, this relationship can be determined provided that the

important environmental driving forces are well understood. In the case

that environmental stochasticity affects density-independent growth rate or

maximum fecundity of individuals, the relationship is largely independent

of g(at) and we can assume that the variance is proportional to the square

of the expectation.

2.3 Stochastic population models

The preceding discussion argued that for many biologically realistic

deterministic models of population dynamics, demographic noise can be

introduced by the addition of a noise term with variance proportional to

f(at), while environmental noise affecting the density-independent growth

rate can be introduced by the addition of a noise term proportional to

f(at)
2. As yet, we have not discussed the distribution underlying

environmental and demographic noise. While a normal distribution is

natural in view of the central limit theorem, a lognormal distribution may

be favored on biological grounds, as it is always positive. We thus examine

models with both distributions. Table 1 lists the demographic and

environmental stochastic models we now investigate, along with other

models taken from the literature.

The demographic models D1 and D2 have approximately the same variance,

with the variance of D1 proportional to the expectation, and a normal and

lognormal distribution respectively. The third demographic model in Table

1, Model DW, has its origins in diffusion approximations of continuous

population dynamics (Engen et al., 1998). It was used in an extended form

by Sæther et al. (2000) for fitting bird populations and Bjørnstad &
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Grenfell (2001) suggested it could be used in fitting of discrete generation

ecological time series provided the dynamics is not overcompensatory.

The models representing environmental stochasticity, models E1 and E2,

both have variance proportional to f(at)
2. Model E1 is normally

distributed and Model E2 is lognormally distributed. Model N1, is

commonly used normally distributed additive noise where the variance is

constant, independent of population size. It can be classified neither as

environmental nor demographic, since it predicts that variance is

independent of population size. It is however a plausible model of

observation error, which can be independent of at (Solow, 1998).

3 Testing the models

We fit the models in Table 1 to time-series first from an individual-based

model and then from experimental data. The reason for fitting to data

from an individual-based model is that we can control the proportion of

demographic and environmental noise in the time series, while retaining

some degree of biological realism. In the absence of environmental

stochasticity, we may also compare the results with those obtained when

fitting a theoretically derived model. The model we consider is one of

scramble competition for discrete resources, originally introduced by

Sumpter & Broomhead (2001) for the parsitism of honey bee brood cells by

Varroa mites.

In the model, At individuals are distributed randomly with uniform

probability over n resource sites. Reproduction then takes place at each site

independently, such that if the number of individuals at site i after

distribution is determined by the random variable Ci, then

φ(Ci) =

{

bmin + Zt if Ci = 1

0 otherwise
(15)

gives the number of individuals passing on to the next generation, i.e.
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At+1 =
∑n

i=1
φ(Ci). Environmental noise is represented by Zt ∼ Bin(br, p),

a random variable determining the number of individuals produced per site

in the absence of competition. bmin is the minimum number of individuals

produced, and we define b = bmin + pbr to be the expected number of

individuals per site. Note that the demographic noise in this model is

entirely due to the distribution process, i.e. the distribution of the Ci.

Figure 1 shows typical time-series from the model for three different values

of b, in the absence of environmental noise, i.e. p = 1. As b increases, the

population dynamics changes from stable (b < 8) to periodic (8 < b < 15)

and chaotic (b > 15).

In the case where there is no environmental noise Johansson & Sumpter

(2003) have shown that the population dynamics of the model are

well-approximated by the stochastic dynamical system

At+1 = nΦ

(

At

n

)

+

√

nv

(

At

n

)

ǫt (16)

where Φ(x) = bx exp(−x) is the well-known Ricker map, ǫt ∼ N(0, 1) is a

normally distributed random variable with mean 0 and expectation 1, and

v(x) is defined by

v(x) = bΦ(x)(1 − e−x) + Φ(x)2(1 − x) (17)

We use this function v(x) to define Model T1 in Table 1. In the absence of

environmental noise, T1 serves as a ‘benchmark’ against which the

performance of the other models can be measured.

3.1 Demographic noise

We fitted each of the models in Table 1 with f(a) = ba exp(a/n) to

time-series of length 20 sampled after 100 generations from the

individual-based model with n = 500 sites. By setting p = 1 we ensured

that all stochasticity generated for the individual-based model was
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demographic. All three parameters—b, n and s—were estimated using the

method of maximum-likelihood (see Appendix A), and the estimates are

written as b̂, n̂ and ŝ respectively. We repeated the simulations we now

describe for n = 100 sites, thus introducing more noise. The results were

similar though the relative difference between the log-likelihood of the

various models were reduced.

Figure 2 shows the difference between the estimated value b̂ and the actual

value b used in the simulations, for models fitted to data from simulations

with a range of b values. Model T1 gives, for nearly all values of b, the best

fit to the simulation data, in the sense of being least biased in the estimate

b̂. For b < 8 the individual-based model has stable population dynamics

(see Figure 1a). In this case, all models fit approximately equally well and

exhibit the same consistent bias in parameter estimate. For b ≥ 8,

individual-based model produces periodic then chaotic population dynamics

(see Figure 1b and c) and differences appear between the fit of the models.

Contrary to our predictions about its applicability, the model N1 gives

values of b − b̂ closest to that of T1, for all b. It is however, only slightly

better than the demographic models, D1 & D2, which produce almost

identical estimates b̂ to each other. The environmental models E1 and E2

are somewhat worse than D1 & D2. b̂ − b for these models differs in sign,

but not greatly in magnitude. The model DW is inaccurate for b > 8,

consistently over-estimating b.

Since all our models are based on the same deterministic framework, we can

compare their fitted variance to the theoretically derived variance v(at/n)

(see Equation 17). Figure 3 shows variance as a function of population size

for models in Table 1 fitted to time-series from the individual-based model

with b = 10 and n = 500, and the theoretically derived variance nv(at/n)

for these parameters. Models D1 and D2 are similar in variance and best

approximate nv(at/n). Despite its good fit to the simulation data, model

N1 does not have a variance that lies particularly close to that of nv(at/n).

The variance of DW is f(at)
2(exp(s2/at) − 1) which tends to infinity as the

population goes to 0. Furthermore, Model DW does not approximate the
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theoretically derived variance well, which may explain the large bias in the

estimate b̂.

When fitting models with the same number of parameters to a time-series

using the method of maximum likelihood, the likelihood can be used to

select one of the models as the best fit. Thus, in order to distinguish the

ability of the various models to fit simulation data we can compare the

log-likelihood. This is done in Figure 4. For b ≥ 8, model T1 is consistently

the most likely model over a large number of trials. The likelihood of

models D1 and D2 lie nearest to that of T1, followed by N1, with models E1

and E2 fitting less well. Model DW is consistently the least likely model.

Figure 4 also shows the probability that model D1 is selected over model E1

(i.e. the proportion of fittings that D1 has a higher log-likelihood than E1).

Despite the absence of environmental noise, model E1 has a slightly higher

probability of being selected than D1 for b < 8. As b increases, however, the

demographic models are more likely to be selected, such that for b > 12

there is more than 90% probability of selecting Model D1 over model E1.

3.2 Environmental noise

By setting p < 1 in the individual-based model we introduced

environmental noise into the time series. For a fixed population at the

individual-based model’s demographic variance scales with n, while the

environmental variance scales with n2 (see equations 16 and 10).

Thus by increasing n we increase the relative proportion of environmental

noise. We compared the models D1 and E1 by fitting them to time-series

generated by the individual-based model with increasing values of n.

Figure 5 shows the probability that Model D1 has higher log-likelihood

than E1 as a function of n, with p = 0.5 and br = 8. When b = 5 (i.e.

bmin = 1) the individual-based model has stable population dynamics and

there is little difference between the models. However, as in the case of
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demographic noise, model E1 is selected more often than D1, even for small

n. When the population dynamics are periodic (b = 12), the probability of

selecting D1 over E1 decreases with n. A similar effect is observed for

chaotic population dynamics (b = 16), with E1 being chosen over D1 only

for n > 2000. In this last case, a typical time-series will contain many

transitions from very large to very small populations (see Figure 1c).

3.3 Experimental data

To test the techniques against experimental laboratory data, we model the

population dynamics of the southern cowpea weevil, Callosobruchus

maculatus (Utida, 1967). The population data consists of four carefully

arranged experiments where weevils were kept in a constant environment.

The population was censured and supplied with fresh food every 25 days,

approximately the start of each new generation. The advantage of fitting

our models to this data set is that it should be free of environmental noise

and observation error, thus allowing us to test the applicability of our

demographic noise models.

By calculating the autocorrelation function and the partial rate correlation

function we could confirm that the weevils’ dynamics are driven by

first-order feedback (Berryman, 1999). We thus modelled the expectation

with the theta-Ricker map, f(at) = nbat exp(aθ
t/n

θ) and fitted the

stochastic population models in Table 1 using the method of maximum

likelihood. Parameter estimates for the model with highest likelihood in

each of the four replicates are given in Table 6. In three out of four cases an

environmental model gave the best fit to the data, while in the other case

the observation error model, N1, gave the best fit. Although the

demographic models had only slightly lower log-likelihoods, they failed to

provide the best fit to any of the laboratory based data.
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4 Discussion

A recent trend in ecology is that general ‘principles’ or ‘laws’ of population

dynamics (Berryman, 1999; Turchin, 2003) are starting to gain acceptance.

The ‘principles’ or ‘laws’ that have been considered so far are all concerned

with the expected population change. In this paper we search for

corresponding principles for stochasticity arising from demographic and

environmental sources. If firm principles of population change can be

established, it would significantly facilitate the reconstruction of underlying

ecological processes from experimental data (Jonzén et al., 2002).

The link between deterministic and stochastic models is not as strong as

one may initially think. From a stochastic model we can recover a

deterministic skeleton in a number of ways; usually by taking the

expectation or the mode. The opposite task, to construct a stochastic

population model incorporating a fair amount of biological realism from a

deterministic skeleton, is considerably more difficult. The ‘first-principles’

approach taken here is to state assumptions about individual interactions

and derive the stochastic population dynamics as a consequence. Such

reasoning allowed us to derive a generic model of demographic stochasticity,

where the variance is proportional to the expectation (Model D1 in Table

1). Furthermore, building on previous foundational work by Engen et al.

(1998), we constructed a generic model for populations with intrinsic

growth-rate affected by environmental stochasticity, such that the variance

is proportional to the square of the expectation (Model E1 in Table 1).

In the absence of environmental stochasticity, our generic model of

demographic noise fitted data from the individual-based model nearly as

well as the theoretically derived ‘benchmark’. The demographic models

were significantly better than the environmental models, E1 and E2, when

fitting to periodic or chaotic time series. This is not surprising since the

variations in population size brought about by the underlying periodic or

chaotic dynamics cause profound changes in the variance, resulting in

greater difference in likelihood. Somewhat surprising however was the
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minor influence of the distribution when compared to the importance of the

relationship between expectation and variance. Both normally and

lognormal distributed stochasticity fitted the data equally well.

Most ecological time-series are likely to contain significant amounts of both

demographic and environmental stochasticity. As the size of a population

increases, the dominant noise component changes from being demographic

to environmental. Our models captured this effect: as we increased the

number of resource sites the best fitting model changed from being

demographic to environmental. Even when there are a relatively large

number of resource sites, up to 2000, the demographic model still proved

the best fit when population dynamics were chaotic. This is because the

uncertainty in the outcome of transitions from large populations to small

populations is mainly demographic. A time-series can thus be viewed as a

series of transitions which differ in the amount of demographic and

environmental stochasticity. In an attempt to capture all transitions, we

have made preliminary attempts (not shown here) to fit models that

include both demographic and environmental components. The maximum

likelihood of these models did not converge reliably, and the only known

robust approach to separating environmental and demographic noise is

estimation of demographic stochasticity from individual reproductive data

(Sæther et al., 2000).

The difficulty of applying these ideas in practice was evident when we

constructed stochastic population models from Utida’s cowpea weevil data.

Although the weevils were kept in a constant environment, the

environmental models, E1 and E2, had the highest likelihood in all but one

case where Model N1 fitted the data best. A possible explanation for this

could be demographic covariance. With relatively few individuals in a small

space, it is likely that reproductive success is highly correlated between

individuals. Given the way demographic covariance would manifest itself

(as ρ > 1/at in Equation 6 or τ > 0 in Equation 9) this could conceivably

lead to a variance-abundance scaling relationship resembling that of the

environmental models. Were the experiment to be conducted with a large
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group in a large area this effect would likely disappear as two given

individuals from a large group are not likely to interact much, thereby

reducing the covariance.

Model N1, additive normally distributed noise, fitted the data best in one

of the four time-series and was the best model at estimating b from the

individual-based model, although not with the highest log likelihood.

Despite its versatility and its common application in fitting ecological time

series, we could not find a first-principles argument, or any other

justification on biological grounds, for using model N1 to fit to data free

from measurement error. Similarly, the other commonly used stochastic

model, model E2, also proved a good choice when fitted to the laboratory

data. In light of the widespread use of these two models in the literature,

these conclusions should be comforting.

Less comforting is the implications of model N1’s good performance for our

’first principles’ approach. It may be argued that if model N1 fitted the

data well, there is no need to consider more complicated demographic

models. If the sole aim of an ecological investigation is to fit parameters of

the deterministic skeleton, then this view may hold some truth. However,

models with noise independent of population size overestimate stochastic

effects for small populations and underestimate them for large populations.

In one highly important ecological endeavor—the estimation of extinction

time—such errors would have serious consequences for predictions. Our

current results have demonstrated the robust performance of both

demographic and environmental stochastic models. The further

development of these techniques—to include age-structured populations,

population dynamics with higher order feedback, and environmental change

correlated between years—will ultimately increase the certainty with which

extinction events can be predicted.
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A Model fitting

Let Y N = (Y1, . . . , YN) denote a sample of N consecutive observations from

a stochastic process {Yt}. We assume that the probability density function

fY N depends on a vector of parameters Θ, and that {Yt} is Markovian.

Thus

fYt|Y t−1 = fYt|Yt−1
(18)

where Y t−1 = (Y1, . . . , Yt−1). Intuitively, this means that the process lacks

memory so that once we know Yt−1 our a priori knowledge of Yt cannot be

improved even if we are given all the samples up to this time.

By definition of conditional distributions and using 18 we have

fY N = fY1

N
∏

t=2

fY t

fY t−1

= fY1

N
∏

t=2

fYt|Yt−1

Thus, if yN ∈ R
N is a given time-series we consider it to be a realisation of

Y N and interpret L(Θ|yN) := fY N (yN) as the likelihood of the parameters

Θ given the data. If L(·, yN) is maximised by some parameters Θ∗ we call

Θ∗ a maximum likelihood estimate for yN . For stationary and ergodic

time-series, the theoretical properties of the likelihood estimator is

well-understood, see Tong (1990) for an outline of the theory.

We point out that fY1
should be interpreted as the stationary distribution

of the time-series. This distribution can be determined numerically by
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iterating the model as many time as needed to reach some termination

criteria for stability. Valpine & Hastings (2002) takes this approach. We

consider only the likelihood of (y2, . . . , yN) given y1.

To maximise the likelihood, we minimised the negative log likelihood using

Matlab’s implementation of the Nelder-Mead simplex algorithm (Press et

al., 1992). We initialised the algorithm with a random set of parameters

drawn uniformly from a bounded set containing the true parameters. To

discourage the algorithm from finding local minimum outside the set of

valid parameters we defined the log likelihood to be negative infinity for

values outside this set. The algorithm was then restarted until no

improvement could be found in 20 consecutive runs.

To determine the set of valid parameters we examined several

first-principles derivations of the Ricker map and included parameters that

were ecologically realistic. The carrying capacity was bounded at 10 times

the average of the time-series.
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Label Stochastic population model Applicability References See

D1 f(at) + s
√

f(at)ǫt Demographic noise This paper Eq. 8

D2 f(at) exp
(√

s2

f(at)
ǫt −

1
2

s2

f(at)

)

Demographic noise This paper

DW f(at) exp
(√

s2

at

ǫt −
1
2

s2

at

)

Demographic noise 3

E1 f(at) + sf(at)ǫt Environmental noise This paper Eq. 11

E2 f(at) exp(sǫt − s2/2) Environmental noise 1,2 Eq. 3

N1 f(at) + sǫt Observation error 1 Eq. 2

T1 bnat exp(−at/n) + s
√

nv(at/n)ǫt Eq. 16

References: 1 – Hilborn & Mangel (1997), 2 – Royama (1992), 3 – Sæther et al. (2000).

Table 1: Stochastic population models studied in this paper. Here f(at) is

the expected population in generation t + 1 given at individuals in generation

t, and s is a constant which, together with the parameters of f is estimated

from data, while ǫt is a normally distributed variable with expectation 0 and

variance 1. The classification of the models after applicability follows the

discussion in Section 2.
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Figure 1: Time-series from the individual-based model in the absence of

environmental noise, with n = 500 sites and a) b = 4, b) b = 10 and c)

b = 18 offspring, corresponding to stable, periodic and chaotic dynamics

respectively.
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Figure 2: Bias in the maximum likelihood estimate of the number of offspring

for the models in Table 1 when fitting to time-series of length 20, sampled

after 100 generations from the individual based model in the absence of

environmental stochasticity and with n = 500 sites. 100 time-series from

populations that did not go extinct were used to estimate the bias. Models

for which the parameter estimate differed only slightly have been grouped

together.
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Figure 3: Variance as a function of population size for the generic models

in Table 1 fitted to a non-extinct time-series of length 20 sampled after 100

generations from the individual based model in the absence of environmental

stochasticity and parameters n = 500 and b = 10. Also shown for compari-

son is the theoretically derived variance for these parameter values given by

nv(at/n) with v defined by Equation 17.
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Figure 4: Average log-likelihood for the models in Table 1, and probability

that Model D1 is given a higher likelihood than Model E1, when fitting to

time-series of length 20 sampled after 100 generations from the individual

based model in the absence of environmental stochasticity and with n = 500

sites. 100 times-series from populations that did not go extinct were used to

calculate the average log-likelihood. Models for which the parameter estimate

differed only slightly have been grouped together.
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Figure 5: Probability that the demographic model D1 is given a higher like-

lihood than the environmental model E1 when fitting to time-series of length

20 sampled after 100 generations from the individual based model in the

presence of environmental stochasticity with parameters bmin = 1, br = 8,

p = 0.5 (left figure), bmin = 8, br = 8, p = 0.5 (mid figure) and bmin = 12,

br = 8, p = 0.5 (right figure). With the exception of the first four points in

the figure on the right-hand side, 100 times-series from populations that did

not go extinct were used to estimate the probability. Note that the number

of sites, n is plotted on a log-scale. Dotted lines represent a probability of

0.05, 0.5 and 0.95 respectively.
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Replica Best-fit Log-likelihood σ b n θ

A E1 -34.8145 0.06196 102.6 3.263 0.3780

B E2 -44.3005 0.1750 48.32 8.478 0.4356

C E2 -32.0774 0.04639 10180 7.603 × 10−05 0.1515

D N1 -36.3543 13.74 1789 7.329 × 10−3 0.2014

Figure 6: Population time-series for Callosobruchus maculatus, the four lab-

oratory experiments under identical conditions performed by Utida (1967)

and corresponding parameter estimates. Each time-series were fitted to each

of the generic models in Table 1 with the theta-Ricker map as the expecta-

tion. For each of the four time-series, the parameter estimates for the model

with the highest likelihood are given above.
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