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Many pathogens exist in phenotypically distinct strains that interact with each other through competition for hosts.
General models that describe such multi-strain systems are extremely difficult to analyze because their state spaces are
enormously large. Reduced models have been proposed, but so far all of them necessarily allow for coinfections and
require that immunity be mediated solely by reduced infectivity, a potentially problematic assumption. Here, we
suggest a new state-space reduction approach that allows immunity to be mediated by either reduced infectivity or
reduced susceptibility and that can naturally be used for models with or without coinfections. Our approach utilizes the
general framework of status-based models. The cornerstone of our method is the introduction of immunity variables,
which describe multi-strain systems more naturally than the traditional tracking of susceptible and infected hosts.
Models expressed in this way can be approximated in a natural way by a truncation method that is akin to moment
closure, allowing us to sharply reduce the size of the state space, and thus to consider models with many strains in a
tractable manner. Applying our method to the phenomenon of antigenic drift in influenza A, we propose a potentially
general mechanism that could constrain viral evolution to a one-dimensional manifold in a two-dimensional trait
space. Our framework broadens the class of multi-strain systems that can be adequately described by reduced models.
It permits computational, and even analytical, investigation and thus serves as a useful tool for understanding the
evolution and ecology of multi-strain pathogens.
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Introduction

Microbial pathogens are tremendously diverse. Pathogens
that cause one and the same disease may differ remarkably in
both their genotype and their phenotype, like in HIV/AIDS
[1], influenza [2], malaria [3], and meningitis [4]. Phenotypi-
cally different variants of the same pathogen are called
strains. If several strains exist in a host population, they
interact with each other in two ways.

The first type of interaction may be referred to as
ecological interference [5,6]. For many infectious diseases, a
host infected with one strain is removed, for the duration of
the disease, from the population of hosts susceptible to the
pathogen. This is because (a) the immune system of the host
becomes activated upon infection by the first strain, so that it
is hard for a second strain to enter and/or replicate in this
host, and (b) the infected host may be physically removed
from the susceptible population, by dying or staying at home.
Ecological interference takes place even between unrelated
pathogens [6].

The second type of interaction, referred to as cross-
immunity interference, is specific to different strains of the
same pathogen: these can confer full or partial immunity to
each other. This means that a host infected with one strain
becomes substantially less susceptible to certain other
strains of the pathogen for a prolonged period of time
after the initial infection is cleared. Cross-immunity is
highest between phenotypically similar strains. Since phe-
notypic similarity usually implies recent common ancestry, a

pathogen’s ecology is thus intrinsically entangled with its
evolution.
Understanding the dynamics of multi-strain pathogens at

a general theoretical level turns out to be extremely
difficult. Numerous models have been proposed during the
past twenty years (e.g., [3,7–9]). Although these models share
many similarities, they substantially differ in particulars,
often resulting in conflicting model predictions. In conse-
quence, there is little agreement as to how best to gain
insights into the ecology and evolution of multi-strain
pathogens. Models of multi-strain pathogens can be either
equation- or agent-based. Agent- or individual-based models
have recently become increasingly elaborate and interesting
[10–13], largely due to an increase in computational
capabilities. Since these models, however, are not designed
for analytical tractability, we do not dwell on this type of
model here.
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Virtually all equation-based models of disease dynamics
can be traced back to the compartment model introduced by
Kermack and McKendrick in 1927 [14]. These models are also
known as SIR (susceptible–infected–recovered) models, re-
flecting a host population’s partitioning into susceptible,
infected, and recovered individuals. A problem that arises
immediately when attempting to extend this classical SIR
framework to multiple strains is that the number of state
variables, and typically also of parameters, increases expo-
nentially with the number of strains [8,9]. This presents not
only computational challenges but also draws attention to a
fundamental conceptual difficulty: even for a moderately
large number of strains, the resultant number of state
variables quickly surpasses any realistic host population size.
Most compartments in such a model therefore consist of few
individuals, if they are occupied at all: effects of demographic
stochasticity must then not be neglected. To avoid this
complication, existing approaches to modeling multi-strain
pathogens have attempted to reduce the number of model
compartments. Usually, such reductions are valid only under
certain sets of assumptions that may or may not be adequate
depending on the modeled phenomenon. Thus, it is
important to expand the set of assumptions under which
reduced models are applicable. Our work presented here
contributes to this goal.

Traditionally, full models have been developed based on
the assumption of reduced susceptibility, which implies that
immune hosts are able to block off an infection completely,
with a certain probability [8,9]. On the other hand, all existing
reduced models rely on the assumption of reduced infectivity
that implies that all hosts, immune or not, get infected with
the same probability, but those that possess immunity
become less infectious than those who do not [3,15]. The
reality, most likely, lies somewhere between these two
abstractions. Nevertheless, as we discuss in the Model section,
the reduced susceptibility assumption seems more plausible.
In this study, we develop a state-space reduction approach
that can be applied under either of these assumptions, in
models with or without coinfections. Our approach differs
from the existing ones in that it produces a collection of
models that approximate the full models with the desired
degree of accuracy. The number of variables needed for the
resulting approximations grows algebraically with the num-

ber n of strains, rather than exponentially: when n is large, the
difference between, e.g., n2 and 2n, is enormous, with the
former growing much more slowly than the latter. If
coinfections and reduced infectivity are assumed, our
approach produces a model equivalent to that of Gog and
Grenfell [15].
To illustrate the utility of our approach, and that of

reduced models in general, we demonstrate its application to
the phenomenon of drift in influenza A. Using reduced
models we are able to simulate up to 400 strains. Influenza A
is a multi-strain pathogen whose epidemiology and evolution
display an intricate interaction pattern. Because the human
immune system can produce protective antibodies against
influenza’s surface glycoprotein hemagglutinin, individuals
gain lifelong immunity against each strain of the virus with
which they have been infected [2,16]. This results in a
complex partitioning of the human host population accord-
ing to the immunity of individuals to different influenza
strains. The ensuing frequency-dependent selection is
thought to drive the evolution of influenza A, giving rise to
a process known as antigenic drift [17]. Lapedes and Farber
[18] have shown that the antigenic space of influenza is
approximately five-dimensional. Subsequently, Smith et al.
[19] argued that the first two principal dimensions are most
important. Moreover, as follows from results by Smith et al.,
the temporal evolution of influenza’s H3N2 subtype proceeds
along a single line in the antigenic space, i.e., antigenic
clusters corresponding to different years are well separated
along the first principal dimension. This agrees with the
observation that the phylogenetic tree of subtype H3N2
possesses a single trunk [20] (but see an alternative hypothesis
by Recker et al. [21]). In other words, even though the H3N2
subtype experiences substantial genetic diversity during each
epidemic season, only one progeny strain survives in the
longer run. Accordingly, the number of coexisting H3N2
strains does not grow from year to year.
A few recent studies have attempted to model, and thereby

explain, the phenomenon of antigenic drift in influenza A.
Apart from individual-based models, most of these studies
consider a one-dimensional strain space in which some sort
of traveling-wave behavior is observed [15,22–25]. To con-
strain the evolution of a virus to one dimension in a two-
dimensional strain space, it has been necessary to require that
the strain space was essentially unviable except for a relatively
thin region along one axis [15].
In a recent study, Koelle et al. [26] took a different

approach and succeeded in constraining the diversity of a
virus living in a high-dimensional sequence space. The
authors explicitly mapped viral genotypes to phenotypes
and showed that the single-trunk phylogeny of influenza A
may be a consequence of the neutral network structure of the
influenza genotype space. However, it is an open question
which properties of the phenotype space are sufficient to
constrain viral diversity in the course of its evolution. Recker
et al. [21] suggest one explanation. They argue that the
succession of antigenically distinct variants may be an
intrinsic feature of the dynamics of a limited set of antigenic
types that are always present in the host population and, thus,
is decoupled from the genetic evolution of the virus. Here, we
suggest an alternative conceptual scenario that follows the
more traditional view that antigenic drift and genetic
evolution are tightly connected. However, we deliberately
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Author Summary

Many important human pathogens, including HIV and influenza
viruses, consist of many different ‘‘strains,’’ which elicit distinct
immune responses in their hosts. Infection by one variant usually
triggers partial cross-immunity against several other variants. This
process leads to a complicated and dynamic immunity structure in
the host population. Most existing models of a population with a
multi-strain pathogen are either very complex, or rely on specific
simplifying assumptions. Here, we suggest a new way of simplifying
such models that allows for greater flexibility in underlying
assumptions. This approach could lead to deeper understanding
of the ecology and evolution of multi-strain pathogens. We apply
our approach to a simple model of evolution of influenza A that
illustrates one hypothesis about how influenza A evolution may be
structured.
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avoid the problem of mapping genotypes to phenotypes and,
instead, assume a relatively simple structure of the phenotype
space—a rectangular lattice. Our model offers a straightfor-
ward explanation of what could be happening in such a
phenotype space in order for the diversity of a virus to be
constrained in the long run. Our work is, thus, complemen-
tary to that of Koelle et al. [26]. In our two-dimensional
phenotype space, each coordinate captures changes in the
conformations of an epitope—local region on the surface of
the hemagglutinin molecule that interacts with the immune
system [27–29]. We then investigate a scenario in which the
immune response of hosts depends on two epitopes, and full
immune protection is gained against all strains sharing an
epitopic conformation with a previous infection. In this
respect, our model is closely related to models studied by
Gupta and colleagues [3,21,30]. We show that the evolutionary
trajectory of the influenza A virus in our model follows a line,
even though the model’s strain space is two-dimensional. This
finding agrees with the observed single-trunk phylogeny of
influenza’s H3N2 subtype [20].

Model

Types of Equation-Based Multi-Strain SIR Models
As mentioned above, SIR models are based on partitioning

a host population into susceptible, infected, and recovered
classes. Abundances in the resultant compartments are then
tracked through time by means of ordinary differential
equations. There are three major dichotomies according to
which multi-strain SIR models can be classified. The first
dichotomy refers to the treatment of individuals with respect
to cross-immunity: there are history-based and status-based
approaches.

In the history-based approach introduced by Castillo-
Chavez et al. [31] and generalized by Andreasen et al. [8],
the hosts are grouped into classes by their disease histories,
which are defined in terms of all strains with which an
individual has ever been infected. Disease histories determine
the rates at which these compartments are populated and
depopulated when hosts acquire infections with new strains.

In the status-based approach introduced by Gog and
Swinton [9], the individuals are grouped together by their
immune status, which is defined in terms of all strains against
which an individual is immune. This set is at least as large as
the set of all strains with which an individual has been
infected, provided one assumes that infection results in
complete and persistent protection. By definition, an
individual is fully susceptible to all strains not included in
its immune status. The immune status determines the rate at
which the compartment is populated and depopulated when
individuals acquire immunity against new strains. In partic-
ular, after an infection with a new strain, individuals move to
new immune status classes with rates that are determined by
the probabilities of acquiring cross-immunity against other
strains. Thus, after an infection with a particular strain,
different individuals with the same immune status change
their immune status in different ways. This approach to
capturing the probabilistic aspect of cross-immunity is called
polarized immunity.

The second dichotomy is the permission or prohibition of
coinfections. Coinfection is an event through which an
individual, while already being infected with one strain, gets

simultaneously infected with a second strain. Unrestricted
permission or complete prohibition of coinfections are, of
course, mathematical abstractions. One or the other may be
more plausible for any particular pathogen.
The third dichotomy refers to the way protective

immunity works. As mentioned above, either the chance
for an immune host to get infected or the infectivity of an
immune host during a secondary infection is reduced.
Within the history-based approach, models constructed
under both assumptions were shown to behave qualitatively
similar, at least in simple systems [32,33]. A mathematical
formulation of a status-based multi-strain model usually
forces the modeler to make a choice between the reduced-
susceptibility assumption and the reduced-infectivity as-
sumption. The latter is more convenient from the mathe-
matical standpoint, as such models easily yield themselves to
state-space reduction. This is because the rate at which hosts
acquire infection and, hence, immunity is assumed to be
independent of the immune status (or disease history, in
history-based models). However, within the status-based
framework, this assumption is somewhat problematic from
the biological standpoint.
In general, infection of a host with a virus results in two

effects: (a) the host becomes sick and transmits the virus, and
(b) the immune system of the host develops protective
antibodies against the infecting variant. If the host is already
partially immune to the infecting strain, that is, protective
antibodies had been developed prior to the infection, then (a)
the severity and the duration of infection are reduced, and (b)
the production of new types of antibodies is slowed down. In
the limit case, when the host has full immune protection
against the infecting strain, it is capable of completely
fending off the infection with the existing arsenal of
antibodies, resulting in no infectiousness and no production
of new types of antibodies. In the simplest version of status-
based models, individuals are either fully susceptible to a
strain or fully immune against it, so this limit case should
apply. The assumption of reduced infectivity within this
framework correctly captures the first effect but neglects the
second effect. In other words, hosts that are fully immune
against a particular variant do not transmit it, but, paradoxi-
cally, still increase their repertoire of antibodies in exactly
the same way as do susceptible individuals, upon an infection
with this variant (see Protocol S1 for mathematical implica-
tions of this assumption). Evidently, this results in an over-
immunization of the host population. In this light, the
assumption of reduced susceptibility seems more plausible,
at least within the status-based framework. In the remainder
of this study, we will therefore work under this assumption,
even though our approach is applicable to models with
reduced infectivity as well.
Full history-based or status-based multi-strain SIR models

are cumbersome in terms of their analytical treatment [33,34]
and numerical analysis [35], mainly due to the enormous size
of their state spaces. Therefore, reduced models are necessary
and have been proposed in the past. However, as mentioned
above, only models that allow for coinfections and work
under the reduced-infectivity assumption yielded themselves
so far to reduction [15,30,32], whereas models that prohibit
coinfections and those that work under the assumption of
reduced susceptibility remained intractable. With a view
toward filling this gap within the status-based framework, we
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propose a new state-space reduction approach that is based
on two key observations:

1. When attempting to infect a potential host, an infecting
strain does not in any way ‘‘perceive’’ the host’s entire
immune status or disease history. What it does perceive is
simply whether or not this potential host possesses any
immunity against the focal strain. This consideration suggests
a natural set of state variables: it is helpful to keep track of the
proportions of a population that are immune to each strain,
or combinations thereof. It turns out to be possible to
reformulate any full status-based model in terms of such new
immunity variables. Below we refer to this transformation as
an ‘‘expansion in immunity variables.’’

2. The utility of this transformation becomes clear when we
recognize that, at any moment in time and for most diseases,
many hosts will be immune to only a few of the strains
currently circulating, while only a few hosts will be immune to
many of these strains. Consequently, the immunity variables
that describe the latter small proportions of the host
population need not be tracked exactly and independently
but can instead be approximated, without much disturbing
the overall disease dynamics. Higher-order immunity varia-
bles can thus be approximated by functions of lower-order
immunity variables. Below we refer to this approximation as
truncating or ‘‘closing’’ the disease dynamics at a desired
order.

The approach presented in this article introduces a
general representation of status-based multi-strain models
in terms of immunity variables. This representation is useful
because it produces a hierarchical structure of equations
describing the dynamics of a multi-strain system. The
equations at any given order ‘ of this hierarchy are
decoupled from equations at all orders above ‘ þ 1, under
the assumption of reduced susceptibility, or even above ‘,
under the assumption of reduced infectivity. Thus, this
hierarchy can easily be truncated at any order, either by
approximating higher-order immunity variables with func-
tions of lower-order variables under the former assumption,

or by simply ignoring higher-order variables under the latter
assumption. The resultant truncated models provide either
approximate or exact reduced descriptions of the original
system.

Model Description
We now proceed to the mathematical formulation of our

framework. For the sake of clarity, we develop our reasoning
for the model with coinfections; the model in which
coinfections are prohibited is outlined in Protocol S1. The
following notations are used throughout (see Table 1 for a full
summary): K is the set of all n strains; individual strains from
this set are referred to by their index i; SA is the proportion of
individuals in the host population that possess immune status
A�K and that, therefore, are currently fully susceptible to all
strains in the subset KnA (we refer to these individuals as
being in state A); SB thus denotes the class of naive individuals,
i.e., individuals that have no immunity whatsoever; and Ii is
the proportion of individuals in the host population that are
currently infectious with strain i. Since all host individuals
naturally fall in exactly one of the SA classes, we have RA�K SA
¼1. Here, the summation is taken over all subsets of the set of
strains, including the empty set.
Based on this notational framework, we can specify the

disease dynamics of a multi-strain pathogen in three steps, (a)
to (c) below, by considering the three processes that cause
host individuals to enter and exit classes defined by their
immune status.
(a) Births and deaths. We assume that hosts are born at per

capita rate l, being uninfected and susceptible to all strains.
Accordingly, all newly born hosts enter the population
through class SB. The birth rate into class SA is thus given
by ldA,B, where

dA;B ¼
1 if A ¼ B;
0 otherwise:

�

We further assume that infections do not alter the death
rate of hosts and that the host population is at its

Table 1. Notations Used Throughout This Study

Category Notation Description

Parameters K Set of all pathogen strains

bi Transmission coefficient of pathogen strain i 2 K

m Probability of pathogen mutation during infection

Mi Mutational neighborhood of pathogen strain i 2 K, i.e., the set of all strains that

can mutate into i (and to which i can mutate)

m Per capita recovery rate of host

l Per capita birth and death rate of host

C(A,i,B) Fraction of hosts that when being immune against strains in A � K and becom-

ing infected with strain i 2 K become immune against strains in B � K after the

infection

rij Probability that hosts obtain immunity against strain j 2 K after an infection with

strain i 2 K

Variables SA Fraction of hosts that are immune against strains in the set A � K

Ii Fraction of hosts infectious with strain i 2 K

Ki Force of infection for strain i 2 K

ni1i2� � �i‘ Fraction of hosts that are immune against strains i1,i2,...,i‘ 2 K

doi:10.1371/journal.pcbi.0030159.t001
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demographic equilibrium. This implies a constant per capita
death rate l for all classes.

(b) Acquisition of immunity. The crucial ingredient in this type
of model is to specify how an infection changes the immune
status of the infected host. We assume that hosts recover from
an infection at per capita rate m. The proportion of hosts that
recover to a state B � K, having been in state A � K when they
were infected by strain i 2 K, is denoted by C(A,i,B). Following
Gog and Swinton [9], we assume that C(A,i,B) is allowed to
take non-zero values only if: 1) i =2 B, which means that each
strain confers total immunity to itself; 2) A � B, which means
that immunity is only gained; 3) i =2 A, which means that, to get
infected, hosts must be susceptible to the infecting strain.

Any chosen set of functions C also has to fulfill the
consistency conditionX

B�K
CðA; i;BÞ ¼ 1 for i =2 A;

since there are no deaths from infection. Note that point 3
above is the mathematical formulation of the reduced-
susceptibility assumption (compare the three assumptions
to those of Gog and Grenfell [15] provided in Protocol S1).

(c) Acquisition of infections. The force of infection for strain i,
describing the per capita rate at which host individuals
susceptible to stain i get infected by strain i, is Ki¼ biIi, where
bi is the transmission coefficient for strain i. Note that
mutations between strains can be easily incorporated into
this dynamics, by adjusting the force of infection,

Ki ¼ bi ð1� mÞIi þ
X
j2Mi

m
jMjj

Ij

 !
;

where Mi � K is the mutational neighborhood of strain i, i.e.,
the set of all strains that can mutate into i. Depending on the
chosen description of the pathogen, Mi can be, for example,
the set of all point-mutation neighbors or a set of neighbors
in a phenotype space. jMij denotes the number of strains in
this neighborhood. We assume that all neighborhoods are
mutual, i.e., i 2 Mj if and only if j 2 Mi for any i, j 2 K. We
assume that mutations can occur with probability m during
the infection period.

Based on (a) to (c), we obtain the following system of
equations [9],

_SA ¼ lðdA;B � SAÞ þ
X
k2K

X
B�Knfkg

SBKkCðB; k;AÞ �
X
k2KnA

KkSA

for allA � K;

ð1Þ

_I i ¼ Ki

X
B:i2KnB

SB � ðmþ lÞIi for all i 2 K: ð2Þ

where dots denote derivatives with respect to time. Alto-
gether, this system contains 2n þ n � 1 equations, where n is
the number of strains.

To complete the definition of our multi-strain model, we
further specify the process of immunity acquisition. We
introduce the probability C�i1i2���i‘ (A,k), ‘ ¼ 1,2,. . ., n of
acquiring immunity against strains i1,i2,. . .,i‘ (all different)
after an infection with strain k for a host that had immune
status A prior to the infection,

C�i1i2���i‘ðA; kÞ ¼
X
B�K:

i1 ;i2 ;...;i‘2B

CðA; k;BÞ:

We assume that (a) the chance of obtaining immunity
against strain i after the infection with strain k does not
depend on the previous immune status of the individual, and
(b) if strain k can potentially confer cross-immunity to strains
i and j, then obtaining immunity against i and obtaining
immunity against j are independent. According to (b), the
chance that a host becomes immune to strains i and j after
being infected with strain k is simply rkirkj, where rki and rkj

are the chances of acquiring immunity against strains i and j,
respectively. Mathematically, these assumptions determine
the shape of the C*-functions defined above. All functions
C�i1i2���i‘ (A,k) vanish if k 2 A and, if k =2 A we have

C�i1i2���i‘ðA; kÞ ¼
Y

j¼1;2;...;‘:ij =2 A

rkij ;

where, by definition, Pj2B rkj ¼ 1. Based on these assump-
tions, cross-immunity is entirely characterized by the matrix
of pairwise cross-immunity coefficients, r ¼ (rij), i,j 2 K [9].
The elements of r are all probabilities, so that rij 2 [0,1] and
rii ¼ 1.

Expansion in Immunity Variables
To derive the approximations of model (1)–(2), we rewrite

that system in terms of the immunity variables,

ni ¼
X

A�K:i2A
SA; nij ¼

X
A�K : i;j 2 A

SA; � � � :

Each immunity variable has a clear intuitive interpretation:
ni1i2���i‘ describes the proportion of hosts that currently have
immunity against strains i1,i2,. . .,i‘ 2 K. We will refer to
immunity variables ni1i2���i‘ as being of order ‘. Evidently, all
immunity variables are symmetric with respect to the
permutation of their indices. Immunity variables with
duplicate indices i remain unchanged when the duplicate
index is removed, n� � �i� � �i� � � ¼ n� � �i� � �. By definition, the
immunity variables satisfy monotonicity conditions, 1 � ni1
� ni1i2 � . . . for all pairwise different i1,i2,. . .2 K.
Recalling that RA�K SA ¼ 1, we easily obtain the new

equations for İi,

_Ii ¼ Kið1� niÞ � ðmþ lÞIi for all i 2 K: ð3Þ

Derivation of the equations for _ni, _nij etc., is more technical.
Here we restrict ourselves to an explicit derivation of the
equation for _ni. For this purpose, we apply the time derivative
to the definition of ni and use (1), to obtain

_ni ¼ l
X

A�K : i2A
ðdA;B � SAÞ þ

X
A�K : i2A

X
k2K

X
B�Knfkg

SBKkCðB; k;AÞ

�
X

A�K : i2A

X
k2KnA

KkSA: ð4Þ

The first term in Equation 4 accounts for the depletion,
due to deaths, of healthy host individuals that are immune to
strain i,

l
X

A�K : i2A
ðdA;B � SAÞ ¼ �lni:
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The second term in Equation 4 can be simplified as
follows,X
A�K : i2A

X
k2K

X
B�Knfkg

SBKkCðB; k;AÞ ¼
X
k2K

X
B�Knfkg

SBKkC�i ðB; kÞ

¼
X
k2K

X
B�Knfkg: i2B

SBKkC�i ðB; kÞ

þ
X
k2K

X
B�Knfk;ig

SBKkC�i ðB; kÞ

¼
X
k2K

X
B�Kfkg: i2B

SBKk

þ
X
k2K

X
B�Knfk;ig

SBKkrki

¼
X
k2K

Kkðni � nikÞ

þ
X
k2K

Kkrkið1� ni � nk þ nikÞ:

The last equality is satisfied due to the inclusion–exclusion
principle [36]. Finally, the third term in Equation 4 can be
rewritten asX
A�K:i2A

X
k2KnA

KkSA ¼
X

k2Knfig

X
A�Knfkg:i2A

KkSA ¼
X
k2K

Kkðni � nikÞ:

Collecting the three results above, we obtain the equation
for _ni expressed in terms of the new variables,

_ni ¼
X
k2K

Kkrkið1� ni � nk þ nikÞ � lni for all i 2 K: ð5Þ

The equations for _ni,j are obtained analogously,

_nij ¼
X
k2K
fKkrkjðni � nik � nij þ nijkÞ

þ Kkrkiðnj � njk � nij þ nijkÞ
þ Kkrkirkjð1� ni � nj � nk þ nij þ nik þ njk � nijkÞg
� lnij for all i; j 2 K; i 6¼ j: ð6Þ

Fortunately, it is not necessary to rewrite the full system of
Equations 1–2 in terms of immunity variables, since our goal
is to reduce it. The equations for the immunity variables of
order ‘ depend on the immunity variables of order ‘ and ‘þ
1, but not on any immunity variables of higher orders. To
truncate this hierarchy of equations at order ‘, we thus need
to approximate the n-variables of order ‘þ 1 by a function of
immunity variables of lower orders. This procedure is similar
to moment-closure techniques widely used in, e.g., spatial
ecology and epidemiology [37,38]. To distinguish the true n-
variables from their approximations, we add a hat to the
latter ones, as, e.g., in n̂ij. Each approximation must satisfy
three conditions that directly follow from the definition of
the n-variables:

1. Symmetry condition:

n̂ij ¼ n̂ji for all i; j 2 K;

n̂ijk ¼ n̂ikj ¼ n̂jik ¼ n̂jki ¼ n̂kij ¼ n̂kji for all i; j; k 2 K; . . .

2. Monotonicity condition:

n̂ij � minðni;njÞ for all i; j 2 K;

n̂ijk � minðnij;nik;nkjÞ for all i; j; k 2 K; . . .

3. Redundancy condition: the approximate immunity

variables with duplicate indices must be equal to the
corresponding immunity variables of the previous order
when the duplicate index is removed, n̂���i���i��� ¼ n���i���:
Below we introduce and discuss two simple closures of

order 1 and one simple closure of order 2.
(a) Order-1 independence closure:

n̂ij ¼
ninj if i 6¼ j
ni if i ¼ j

for all i; j 2 K:
�

ð7Þ

The symmetry and redundancy conditions are evidently
met, and the monotonicity condition is satisfied because, by
definition, nk � 1 for all k 2 K. The motivation underlying this
closure is the following. If the cross-immunity interference
between strains is small, and if the time that hosts spend in
the infectious state is small compared with the time they
spend in the healthy state, then hosts immune to each strain
will be almost independently distributed among all hosts. We
expect this closure to underestimate the level of immunity in
the host population especially for high values of cross-
immunity when correlations in the population immunity
structure are high. However, even when cross-immunity
between strains is absent altogether, the independence
closure is not exact because of host aging (this can easily be
checked for a simple system with two strains). It would be
interesting to know whether there exists an exact closure in
this special case.
(b) Order-1 interpolation closure:

n̂ij ¼ >
ninj 1�

rij þ rji

2

� �
þ

rij þ rji

2
minðni; njÞ if i 6¼ j

ni if i ¼ j;

8<
:

ð8Þ
for all i ; j 2 K

Again, the symmetry and redundancy conditions are
evidently met, and the monotonicity condition is satisfied
because n̂ij � maxfninj, min(ni,nj)g, and 0 � (rij þ rji)/2 � 1
for all i,j 2 K. If we rewrite this approximation for the case of
a symmetric cross-immunity matrix r,

n̂ij ¼
ninjð1� rijÞ þ rijminðni; njÞ if i 6¼ j
ni if i ¼ j;

�

it is easy to see the motivation underlying this closure. It
results from the linear interpolation between two extreme
cases: absent cross-immunity and full cross-immunity. If, in
the one extreme, rij ¼ 0, the order-1 interpolation closure
will coincide with the order-1 independence closure. If, in
the other extreme, rij ¼ 1, all hosts who have been infected
with strain i (strain j) will be immune also to strain j (strain i).
We approximate the fraction of hosts that have been
infected with strain i (strain j) by ni (nj), which motivates
the minimum term. This approximation is crude because we
neglect cases in which immunity to strain i is mediated
through a third strain k that may not provide cross-immunity
to strain j.
(c) Order-2 independence closure:

n̂ijk ¼
1
3
ðnijnk þ niknj þ njkniÞ if i 6¼ j 6¼ k 6¼ i

nij if i ¼ kor j ¼ k
nik if i ¼ j

8><
>:
for all i; j; k 2 K: ð9Þ

The motivation underlying this closure is analogous to that
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of the order-1 independence closure. All conditions are
fulfilled.

Models truncated at first order have 2n remaining
variables, while models truncated at second order have n(n
þ 3)/2 variables. Thus, our approximation has enabled a
switch from an exponential to an algebraic scaling of the
number of state variables with the number n of strains.

It is interesting to compare the obtained first-order
equations under, say, the independence closure, with the
reduced model proposed by Gog and Grenfell [15]. The latter
is an exact reduced representation of the full status-based
model with coinfections and reduced infectivity (we demon-
strate this in Protocol S1), and, as such, can be used as an
approximation for the full model with coinfections and
reduced susceptibility. Gog and Grenfell’s equations [15] are

_I i ¼ KiSi � ðmþ lÞIi; ð10Þ

_Si ¼ l� SiKi � Si
X

k2Knfig
rkiKk � lSi: ð11Þ

Now, we define the fraction of susceptibles to strain i as Si¼
1 � ni and rewrite Equation 3, and Equation 5,

_Ii ¼ KiSi � ðmþ lÞIi;
_Si ¼ l� SiKi � Si

X
k2Knfig

rkiKkSk � lSi:

These equations are very similar to Equations 10 and 11,
with the only difference occurring in the summation term in
the equation for _Si. As expected from the initial assumptions,
immunization of the host population happens at a faster rate
in Gog and Grenfell’s model.

We have thus demonstrated how our framework of
approximation—based on transformation to, and expansion
in, immunity variables—provides simplified disease dynamics
of multi-strain pathogens, in particular under the assumption
of reduced susceptibility. In the next section we will compare,
for a pathogen with four strains, the dynamics of the full
system with that of the proposed approximations and Gog
and Grenfell’s model.

Implementation Details
All numerical analyses were carried out using the MATLAB

computing environment (The Mathworks, http://www.
mathworks.com) with numerical accuracy 10�7. Code is
available upon request.

Results

Comparison of Closures for a Pathogen with Four Strains
We consider a simple system of four strains along a line.

The strain space is given by K¼f1,2,3,4g, and strains adjacent
on the line constitute the mutational neighborhood,

M1 ¼ f2g; M2 ¼ f1; 3g; M3 ¼ f2; 4g; M4 ¼ f3g:

Adjacent strains also confer cross-immunity to each other,
resulting in a tridiagonal cross-immunity matrix,

r ¼

1 s 0 0
s 1 s 0
0 s 1 s
0 0 s 1

0
BB@

1
CCA:

The functions C(A,i,B), describing the probability that a
host’s immune status changes from A to B owing to infection
with strain i, are determined according to Gog and Swinton
[9],

CðA; i;BÞ ¼

Y
j2BnA

rij

Y
j=2B
ð1� rijÞ if i =2 A and A � B;

0 otherwise:

8<
:

With such a small number of strains, the behavior of the
full SIR model is tractable and can be used as a baseline
reference. We can also examine how Gog and Grenfell’s
reduced infectivity model performs if we consider it as an
approximation to the full model with reduced susceptibility.
We numerically solve the following equations for the time
interval [0,T] and for a range of parameters: 1) the full SIR
system: Equations 1 and 2; 2) the Gog and Grenfell model:
Equations 10 and 11; 3) the approximation based on the
order-1 independence closure: Equations 3 and 5, where nij
are substituted according to Equation 7; 4) the approxima-
tion based on the order-1 interpolation closure: Equations 3
and 5, where nij are substituted according to Equation 8; 5)
the approximation based on the order-2 independence
closure: Equations 3, 5, and 6, where nijk are substituted
according to Equation 9.
The following parameters are kept fixed: m¼ 1, l¼ 0, and T

¼ 40. We choose bi ¼ R0 for all i. We vary the transmission
coefficient R0, the cross-immunity coefficient s, and the
mutation probability m in the following ranges: R0 2 f2,3,4,5g,
s 2 f0,0.1,0.2,. . .1g, and m 2 f10�8,10�6,10�4g. Initially, 99% of
the host population is fully susceptible to all strains, while 1%
is infected with strain 1, is immune against it, and is fully
susceptible to all other strains.
To assess how well the reduced models approximate the full

model, we introduce one qualitative and one quantitative
accuracy measure. We consider an epidemic detection
threshold e ¼ 10�4, describing the smallest proportion of
infected hosts at which the disease can still be detected in the
population. The results presented below are not particularly
sensitive to the exact value of this parameter within three
orders of magnitude (unpublished data). We denote by fi(t)
the fraction of individuals infected with strain i as predicted
by the full model, and by gi(t) the same fraction as predicted
by one of the reduced models. We consider four situations. 1)
Neither fi(t) nor gi(t) exceed the epidemic detection threshold
within the considered time interval. In this case, we say that
the approximation correctly captures the dynamics of the
real system, both qualitatively and quantitatively. 2) Only fi(t)
exceeds the epidemic detection threshold within the consid-
ered time interval, while gi(t) always stays below it. In this case,
there is a qualitative difference in predictions, because the
full model predicts an epidemic, while the reduced model
does not. Then, if Yi � [0,T] is the set of moments in time at
which fi(t) . e, we define the qualitative accuracy measure as
qi ¼ L(Yi)/T, where L(Yi) is the sum of the lengths of time
intervals during which such qualitative difference is observed
for the ith strain; in other words, L(Yi) is the Lebesgue
measure of the set Yi. 3) Only gi(t) exceeds the epidemic
detection threshold within the considered time interval, while
fi(t) always stays below it. In this case, again, there is a
qualitative difference in predictions, because the reduced
model predicts an epidemic, while the full model does not.
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Then, if Yi � [0,T] is the set of moments in time at which gi(t)
. e, we define the qualitative measure analogously to the
second case, qi ¼ L(Yi)/T. 4) Both fi(t) and gi(t) exceed the
epidemic detection threshold within the considered time
interval. In this case we say that there is no qualitative
difference in the model predictions, but there still could be a
quantitative difference between them. We quantify the latter
by the absolute error of gi(t) with respect to fi(t),

Di ¼
Z T

0
jfiðtÞ � giðtÞjdt:

To obtain the overall qualitative error, q, we average qi over
all strains, q ¼ 1/4 R4

i¼1 qi. This accuracy measure is suitable
when we care most about determining which strains will
cause epidemics and which will not, while ignoring quanti-
tative differences in epidemic size and timing.

To obtain the overall quantitative accuracy measure, D, in a
way that we could compare across models with different
parameter values, we normalize Di by the total size of all
epidemics, Z¼R4

i¼1
R T
0 fi(t)dt, and sum over all strains, D¼R4

i¼1
Di/Z. This accuracy measure is suitable when we care most
about correctly capturing the shape and timing of major
epidemics, while ignoring possible mistakes in minor epi-
demics.

The results of this comparison are shown in Figures 1–3. As
could have been expected, the order-1 interpolation closure
performs better than the order-1 independence closure, both
qualitatively and quantitatively. The order-1 independence

closure is quite accurate for small cross-immunity coeffi-
cients, but is problematic for medium and large cross-
immunity coefficients. The order-1 interpolation closure, in
turn, is most problematic for intermediate cross-immunity
coefficients, which is again consistent with expectations.
Indeed, owing to the nature of the interpolation that we used
to determine nij, we expect this closure to be more accurate
for extreme values of cross-immunity and less accurate for
intermediate values. As expected, the order-2 approximation
performs substantially better than both order-1 approxima-
tions and Gog and Grenfell’s model, making no qualitative
errors at all and incurring quantitative errors on the order of
a few percent. Gog and Grenfell’s model is problematic for
small and intermediate values of the cross-immunity coef-
ficient, but, quite surprisingly, its error converges to zero for
high values of cross-immunity where it becomes superior to
the order-1 independence closure. This may have to do with
the fact that the independence closure underestimates the
level of cross-immunity of the population, especially for large
values of cross-immunity.
We have conducted the same type of analysis for a circular

four-strain system and for two six-strain systems (see Protocol
S1)—the results turn out to be qualitatively similar to those
presented here. Based on these numerical investigations, we
conclude that the approximate model resulting from the
order-1 interpolation closure offers a good compromise
between accuracy and computational effort. The proposed
order-2 approximation can be used if higher accuracy is
required. Although Gog and Grenfell’s model can also be used
to approximate the dynamics of systems developed under the
reduced-susceptibility assumption, if the degree of cross-
protection between strains is high, we find that models
developed under different assumptions lead, in general, to
qualitatively different dynamics (see also Protocol S1).

Figure 1. Qualitative Accuracy Measure q for the Performance of Four

Models

Qualitative accuracy measure (vertical axis) is shown in dependence on
the cross-immunity coefficient s (horizontal axis), the transmission
coefficient R0 (rows), and the mutation probability m (columns). Each
panel shows the performance of four models: Gog and Grenfell’s model
(circles), order-1 independence closure (pluses), order-1 interpolation
closure (squares), and order-2 independence closure (triangles). The
highlighted region indicates the parameter combination m¼ 10�6, R0¼
5, and s¼ 0.6, for which the system’s dynamics are shown in Figure 3.
doi:10.1371/journal.pcbi.0030159.g001

Figure 2. Quantitative Accuracy Measure D for the Performance of Four

Models

Details as in Figure 1.
doi:10.1371/journal.pcbi.0030159.g002
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Despite the robustness of our conclusions on the quality of
proposed closures with respect to key parameters within a
sensible parameter region, further research is necessary to
establish rigorous error bounds throughout the parameter
space. In particular, we have not investigated the dependence
of closure quality on the birth/mortality rate l—performance
may worsen for large l. A more difficult, but equally
important, question is how the topology of the strain space
and of the cross-immunity structure alter the dynamics and
the resultant performance of approximations in comparison
with the full model.

Application to Antigenic Drift in Influenza A
The application presented in this section illustrates how

one could capture some aspects of the phenomenon of
antigenic drift in influenza A’s subtype H3N2 using models
capable of tracing hundreds of variables. This is an attempt to
extend the work by Gog and Grenfell [15] to the case of a two-
dimensional viral phenotype space: those authors had shown
that the dominant phenotype of the virus would move along a
one-dimensional line in a two-dimensional strain space if it
was assumed that viable phenotypes are concentrated in a
narrow region along one of the axes. The structure of the
influenza A phenotype space is not known, and it would be
very surprising if all viable phenotypes were located only
along a one-dimensional manifold. It is more likely that

immuno-selection reduces the relative fitness of certain
phenotypes at certain points in time [17]. Here, we construct
an immunity-based mechanism that restricts the virus from
explorg the whole phenotype space even if this space is
mostly viable. We did not attempt to fit any parameters to
real data, so that a quantitative correspondence, or even a
close qualitative match, are not intended here.
We assume that the strain space of the considered

influenza-like virus is a two-dimensional rectangular lattice,
i.e., each variant of the virus is characterized by a pair of
integers (i,j) 2 Z2 and the phenotypic mutational neighbor-
hood is given by the next-neighbor relation on the lattice,
M(i,j)¼f(i – 1,j),(iþ1,j),(i,j – 1),(i,jþ1)g. While it is clear that the
true strain space spanned by all viable conformations of the
hemagglutinin protein does not resemble anything as simple
as a two-dimensional rectangular lattice, by considering this
example we still hope to shed some light on the mechanisms
that govern the complicated evolutionary process of anti-
genic drift. This hope is not entirely unfounded. Plotkin et al.
[39] have observed that changes in the influenza A hemag-
glutinin occur ‘‘along a different epitopic axis every 2–5
years.’’ Earlier, Wilson and Cox [29] noticed that amino acid
substitutions in two epitopes on average were necessary to
produce a new antigenic type. In addition to that, Smith et al.
[19] have argued that the antigenic space of influenza A’s
subtype H3N2 is principally two-dimensional. Bringing these
ideas together, we investigate influenza A evolution in an
abstract two-dimensional phenotype space. We associate the
movement along each dimension of this space with changes in
states of a viral ‘‘effective epitope’’ (referred to as A and B
below). The effective epitopes may not correspond to actual
epitopes on the surface of the influenza A hemagglutinin
protein (of which five are currently known) because not all
epitopes may be immunogenic at all times. Below we drop the
word ‘‘effective,’’ but it is always implied in the context of our
model. In our interpretation, each pair of indices (i,j) 2 Z2

characterizing a particular strain implies that epitope A is in
its ith conformation while epitope B is in its jth conforma-
tion.
By the same token, it is natural to incorporate another

idea, introduced by Gupta and colleagues [3,30]—the
assumption that each individual that has been infected with
strain (i,j) develops immunity against both epitopes, and thus
gains full protection against all strains that possess the same
conformation of either epitope. In other words, r(i,j)(k,‘) ¼ 1 if

Figure 4. Cross-Immunity Structure

Strains to which strain (0,0) confers full, 37%, 2%, or no cross-immunity
are shown in white, light gray, dark gray, and black, respectively.
(A) Our model. (B) Gog and Grenfell’s model [15].
doi:10.1371/journal.pcbi.0030159.g004

Figure 3. Dynamics of the Full Four-Strain SIR Model (Black Curves)

Compared with Its Approximations (Thick Gray Curves)

Solution of the full model, Gog and Grenfell’s model, order-1
independence closure model, order-1 interpolation closure model, and
order-2 independence closure model are denoted by F, GG, O1A, O1B,
and O2, respectively. Parameter values: m ¼ 10�6, R0 ¼ 5, and s¼ 0.6.
doi:10.1371/journal.pcbi.0030159.g003

PLoS Computational Biology | www.ploscompbiol.org August 2007 | Volume 3 | Issue 8 | e1591521

State-Space Reduction in Multi-Strain Models



either i¼ k or j¼ ‘, resulting in a cross-shaped cross-immunity
structure (Figure 4). The specificity of antibodies determines
how fast cross-immunity decays when the epitopes of the
challenging strain differ from the epitopes of the immuno-
genic strain. We follow [15] in choosing a Gaussian function
for the decay of cross-immunity, with mean zero and standard
deviation a, implying that a is the cumulative number of
conformation changes in one epitope that reduces cross-
immunity to e�1/2 ¼ 60.7%,

rði;jÞðk;‘Þ ¼ exp � 1
2

minðji� kj; jj � ‘jÞ
a

� �2
( )

: ð12Þ

The cross-immunity matrix r thus specified is sufficient for
generating a one-dimensional trajectory of strain evolution:
variants along the diagonal of strain space cause epidemics,
whereas other variants do not (see Protocol S1). This
conforms with intuition. Indeed, once a strain causes an
epidemic, the host population acquires immunity not only
against it but also against all the strains that share at least one
epitope conformation with it, i.e., against all strains that have
either the same x-coordinate or the same y-coordinate. Thus,
the phenotypically closest mutant that can cause the next
epidemic must differ from the current epidemic strain in
both epitopes—so that this mutant can only be its diagonal
neighbor.

In this simple model, one strain strictly dominates the host
population at each epidemic season. In a slightly more
general setting, several strains can coexist within an epidemic
season [19]. To account for this possibility, we introduce some
heterogeneity in the transmission coefficients of strains. This
is indeed as expected in reality, since some strains are likely
to be slightly more virulent than others, because the
conformation of the hemagglutinin protein influences how
effectively a virus can penetrate target cells [28,29]. The
amount of heterogeneity determines how many strains can
coexist. In this version of our model, one to three strains
usually coexist during an epidemic, while the principal
component of the evolutionary trajectory remains one-
dimensional (Figure 5). However, we conjecture that, if we
considered an infinite rectangular lattice and started from
the same initial condition, we would have observed either two
lineages evolving in opposite directions along one of the two
diagonals, or even four lineages evolving along both
diagonals. We did not investigate this scenario in detail
because it presumes that there is no immunity in the
population whatsoever at the initial time point. This may
be true for real influenza right after a reassortment event, but
the evolutionary forces active during and right after reassort-
ment are probably quite different from those governing the
subsequent antigenic drift, and go far beyond the subject of
our concern here. Thus, considering only the first quadrant
of the phenotype space when starting viral evolution at the
origin is equivalent to assuming that antigenic drift has
already been going on for some time. The question thus
addressed is how antigenic drift with limited diversity can be
sustained.

To show that this result is a consequence of the immunity
structure suggested here, rather than just a peculiarity of the
considered equations, we have simulated exactly the same
system for Gog and Grenfell’s equations and for the model
with no coinfections. We thus can show that the results

reported above are qualitatively robust to model choice (see
Protocol S1). Moreover, the assumptions of our model can be
relaxed along two directions: (a) we may allow for mutations
to more and more distant neighbors, with decreasing
probabilities; and (b) cross-immunity may be allowed to
decay slowly along the epitopic axes. As long as the immunity
neighborhood extends farther along the epitopic axes than
the mutational neighborhood, our qualitative conclusions
hold (unpublished data). On the contrary, if the local cross-
immunity structure suggested in [15] is used instead of the
epitope-based one, viral evolution is no longer contained to a
one-dimensional manifold (see Protocol S1).
The real influenza virus, which is likely to live in an

approximately two-dimensional strain space, appears to
experience a selection regime that, while allowing for the
temporary coexistence of a small number of variants,
constrains the long-term evolution of the virus to a single
branch. Our model suggests a possible mechanism for
explaining this surprising reduction. In particular, we
conjecture that two ingredients are responsible for the
associated evolutionary dynamics. 1) The first ingredient is
the non-local nature of the immune response after an
infection. This results from the fact that cross-immunity
protects hosts not only against strains that are very similar to
the infecting strain, but also against strains that are quite
distant from it in strain space, as long as at least one of their
epitope conformations resembles that of the infecting strain.
Non-locality of the immune response prevents the virus from
conquering the entire trait space. 2) The second ingredient,
which enables temporary coexistence of several strains, is the
heterogeneity of transmission coefficients in trait space.
Paradoxically, this heterogeneity occasionally leads to tem-
porary parity among the effective reproduction ratios of
different strains. The effective reproduction ratio of a
particular strain is the quantity that determines whether this
strain takes off and causes an epidemic or dies out without
ever reaching the epidemic threshold [40]. In our model, the
effective reproduction ratio R(i,j) of strain (i,j) equals b(i,j)S(i,j)/m.
When all strains possess the same transmission coefficient,
effective reproduction ratios thus depend only on the
fractions of susceptible individuals. Clearly, the pool of
susceptibles to the diagonal strains is larger than the pool
of susceptibles to nearby off-diagonal strains, because past
infections have induced low cross-immunity against the
former and high cross-immunity against the latter. Hence,
the diagonal strains successively cause epidemics, while the
off-diagonal strains do not—accordingly, no polymorphism
can emerge, not even in the short term. By contrast, in a trait
space that is heterogeneous with respect to the transmission
coefficient, relatively small values of S(i,j) for off-diagonal
strains may occasionally be compensated by high values of
b(i,j). In this manner, the effective reproduction ratios for off-
diagonal strains may become comparable to those for
diagonal strains. If, in addition, strains with comparable
effective reproduction ratios start from comparable initial
conditions, they reach epidemic values around the same time.
This leads to short-term polymorphisms.

Discussion

The approach introduced here enables systematic reduc-
tions in the complexity of status-based models of multi-strain
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pathogens. It is applicable to models with or without
coinfections, with reduced susceptibility or reduced infectiv-
ity. If coinfections are allowed and reduced infectivity is
assumed, our approach coincides with that of Gog and
Grenfell [15]. The key is to depart from the traditional
compartment models by adopting the viewpoint of the
pathogen. This allows restating full status-based models in
terms of immunity variables and truncating the hierarchy of
resultant equations at the desired order. Overcoming the
exponential explosion of state variables in traditional models
of multi-strain pathogens, we have shown that the complexity
of our approximation grows only algebraically, i.e., propor-
tionally to powers of the number of strains in the system.
Numerically solving the resulting approximate equations, we
show that they mimic relatively well the dynamics of full
systems, even when the first-order closures are used.

It would be interesting to perform a rigorous mathematical
analysis of the behavior of our approximations and compare
it with the behavior of the full system [9]. In theory, the

behavior of the full model should be mimicked more and
more accurately when the chain of equations for immunity
variables is truncated at higher and higher orders. Indeed,
when sufficiently many of them are satisfied exactly, one
obtains the original full model expressed in terms of
immunity variables.
In this work we presented a state-space reduction approach

that applies only to the class of status-based models. We
focused on this class of models for two reasons. Apart from
easier mathematical treatment, there is an important
conceptual difference that favors status-based models, at
least under the reduced susceptibility assumption. Consider a
situation when a host is repeatedly challenged with a strain.
In the history-based approach, the probability for a host to
acquire an infection remains the same across successive
challenges. Thus, a host that has successfully used cross-
reacting antibodies to repel one or more challenges from a
particular pathogen is just as likely to be infected at the next
challenge as is a host with the same infection history that has
never seen this particular pathogen. To us, the status-based
assumption—that, if antibodies fend off the first challenge,
subsequent challenges will fail too—seems more realistic.
Nevertheless, it would be interesting to know whether a state-
space reduction approach similar to the one presented here
could also be applied to history-based models.
Using our framework, we have investigated a potentially

general mechanism for constraining viral evolution to one-
dimensional manifolds when the underlying strain space is
two-dimensional. Based on general knowledge about the
antigenic space of the real influenza virus, we considered a
hypothetical influenza-like virus whose phenotype space was
given by a regular lattice with the same dimensionality as the
number of principal components of the virus’ antigenic
space. We associate the movement along the axes of the
resultant phenotype space with changes in the conformation
of the viral ‘‘effective epitopes.’’We based our analysis on two
plausible qualitative assumptions: (a) during an infection,
immunity is independently generated against all effective
epitopes, and (b) immunity against one effective epitope
suffices for full protection against viruses with similar
epitopes. The resultant cross-shaped cross-immunity neigh-
borhood drives the evolution of the virus along the diagonal
of the phenotype space. This observation offers a concep-
tually simple approach to understanding single-trunk phy-
logenies of infectious pathogens.
Qualitatively different hypotheses for explaining the

single-trunk phylogeny of influenza were introduced earlier
on by Ferguson et al. [10] and, recently, by Koelle et al. [26].
Ferguson et al.’s hypothesis was later given a theoretical
justification by Andreasen and Sasaki [24]. Ferguson et al.
suggested that a presumed strain-independent short-lived
form of cross-immunity could be the decisive factor for
restricting the diversity of influenza strains. In their model,
strains were described by genetic sequences and an ad hoc
rule was considered to translate the genetic distance between
strains into an antigenic distance. In reality, however, this
translation must be expected to be (a) highly degenerate—the
antigenic space has only two principal dimensions—and (b)
highly nonlinear—small genetic changes will sometimes cause
large antigenic changes and vice versa [19]. Failure to take
into account these two factors results in an inflation in the
dimensionality of the strain space of influenza, which, in turn,

Figure 5. Approximate Dynamics of Antigenic Drift in Influenza A, Based

on the Order-1 Interpolation Closure

Parameter values: l ¼ 0, m ¼ 1, m ¼ 10�4, and a ¼ 1/
ffiffiffi
2
p

; the
heterogeneous transmission coefficients b(i,j) were drawn from a normal
distribution with mean 3 and standard deviation 0.5. The numerical
solution for the time interval t 2 [0,100] was obtained for a strain space
given by a 20 3 20 rectangular lattice. The initial condition was given by
all state variables being zero except for I(1,1)(0)¼ 0.01 and n(1,1)(0)¼ 0.01,
corresponding to a healthy and fully susceptible host population with
1% of hosts infected with strain (1,1).
(A) Strains whose maximum epidemic size exceeded 0.01 are shown. The
gray shade indicates the maximum epidemic size; the number above
each shaded square indicates the time when the maximum of the
epidemic for that particular strain was reached. Circles indicate strains
whose transmission coefficients are less than 3; crosses indicate strains
with transmission coefficients greater than 3.
(B) The sum of all proportions of infectious hosts as a function of time.
doi:10.1371/journal.pcbi.0030159.g005
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may lead to a necessity for introducing additional assump-
tions such as the existence of strain-independent short-lived
cross-immunity. Koelle et al.’s recent work [26] is an excellent
demonstration of this point. The authors explicitly modeled
the highly nonlinear and highly degenerate mapping from
genotypes to phenotypes and thus were able to obtain single-
trunk phylogenies without the assumption of strain-inde-
pendent cross-immunity. Their results constitute an impor-
tant step toward understanding the evolution of influenza A.
However, it still remains to be understood exactly how the
influenza virus moves through the phenotype space in such a
way that its diversity remains restricted. In particular, what
are the crucial properties of the phenotype space’s topology
that allow for such a peculiar evolution? Our work outlines
one possible set of such properties. Namely, if each
independent direction of the antigenic space is associated
with an effective epitope, and if the effective epitopes are
immunogenically independent, then a one-dimensional tra-
jectory of antigenic drift naturally emerges from the epitope-
based cross-immunity structure. Our model is, of course,
simplistic, and much more needs to be done to improve our
understanding of the phenotype evolution of influenza. In
particular, large-scale immunological experiments, as well as
further studies of the protein folding process, will be
necessary to uncover the actual topology of the influenza

virus strain space, its cross-immunity structure, and the types
of immunity that need to be considered.

Supporting Information

Protocol S1. Supporting Information Text and Figures

Found at doi:10.1371/journal.pcbi.0030159.sd001 (661 KB PDF).
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