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Foreword

Practically all important decisions involve analysis of several (or even many), typically
conflicting, criteria. Analysis of trade-offs between criteria is difficult because such trade-
offs for most problems are practically impossible to be defined a-priori even by analysts
experienced in Multi-Criteria Analysis (MCA). Therefore the trade-offs emerge during an
interactive MCA which actually supports a learning process about the trade-offs. How-
ever, in some situations an objective MCA is desired, i.e., the trade-offs are elicited rather
from the data than from preferences of actual decision-makers. Therefore effective MCA
methods are important for actual support of decision-making processes, especially those
related to policy-making.

IIASA has been developing novel methods for MCA since mid 1970s, and success-
fully applying them to many practical problems in various areas of applications. However,
there are new practical problems for which the existing MCA methods (developed not
only at IIASA but also in many centers all over the world) are not satisfactory. In particu-
lar, discrete decision problems with a large number of criteria (as compared to the number
of alternatives) demand new methods. For example, MCA analysis of future energy tech-
nologies involves about 40 criteria and over 30 discrete alternatives; a careful requirement
analysis of this application has proven that none of the existing MCA methods is suitable
for effective support of the corresponding MCA problem.

The paper introduces new methods for MCA of discrete alternatives together with
several associated concepts, including objective versus subjective decision selection, com-
pensatory versus non-compensatory criteria, preservation of Pareto-nondominance in hi-
erarchical aggregations. The methods are illustrated by practical examples.
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Abstract

Discrete decision problems with a large number of criteria (as compared to the number
of alternatives) present specific difficulties, for example, most of decision alternatives
tend to be Pareto-nondominated, some criteria might have binary character, etc. For
these reasons, classical methods such as weighted sum aggregation or full utility elici-
tation are barely applicable for such problems. Methods that might be applied include
reference point approaches, particularly if appropriately modified, equitable aggregation
approaches and special hierarchical aggregation schemes.

The paper presents descriptions and necessary modifications of such methods, to-
gether with associated concepts of objective versus subjective decision selection, com-
pensatory versus non-compensatory criteria, preservation of Pareto-nondominance in hi-
erarchical aggregation, etc. Examples show that methods effective in most difficult cases
are based on reference point approaches combined with equitable aggregation and objec-
tive decision selection.

Keywords: discrete decisions, large numbers of criteria, reference point approaches, eq-
uitable aggregation, objective decision selection
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Discrete Decision Problems with Large Number of
Criteria

Andrzej P. Wierzbicki(a.wierzbicki@itl.waw.pl)
Janusz Granat~ (j.granat@itl.waw.pl)
Marek Makowski (marek@iiasa.ac.at)

1 Motivation and scope of the paper

There are many decision problems that involve very large numbers of criteria - for exam-
ple, facility location problems with very large numbers of customers, dynamic optimiza-
tion problems with objective functions in every time interval treated as separate criteria,
some formulations of ranking technologies of energy production, and many others. The
problem of large numbers of criteria was addressed before - e.g., as a problem of multiob-
jective trajectory optimization, see (Wierzbicki 1977, 1988), or a large number of criteria

in engineering design, see (Nakayama 1994); these approaches deal however with con-
tinuous decision variables, therefore the corresponding decision problems have infinite
number of alternative solutions.

On the other hand, if the decisions are discrete and we select between a given number
of alternatives (or classify, rank them, etc.; these are quite different problems, but we shall
discuss these distinctions later), then the situation changes substantially. In some appli-
cations (for example, if the criteria are selected in a discourse, by a political process) the
number of criteria might even exceed, sometimes significantly, the number of alternatives.
This has several important consequences:

e First, almost all alternatives tend to be Pareto-nondominated: for most alternative
decisions with a large number of criteria we can usually find several such crite-
ria that cannot be improved by other alternatives without worsening other criteria
values.

e Second, almost all alternatives tend to correspond to the best values of some criteria
(this implies Pareto-nondomination, hence it is actually a stronger property than the
first one): each criterion has its best value at some alternative and only for very
degenerated or artificial examples these best values would be concentrated at a very
small number of alternatives.

e Third, almost all alternatives tend to correspond to the worst values of some (obvi-
ously other than above) criteria, by a similar argument. This is especially the case,
if the criteria have binary character - their values are either very large, or very low.

*National Institute of Telecommunicationsz&&howa 1, 04-894 Warsaw, Poland.
™ Integrated Modeling Environment Project, IASA.
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e Fourth, if all alternatives are Pareto-nondominated, then the worst values of criteria
define the nadir point (since the nadir point can be equivalently defined as the col-
lection of worst values, restricted to non-dominated alternatives - see, e.g., Ehrgott
and Tenfelde-Podehl 2000). This is related to the difficulty that, when we want to
distinguish the worst alternative; we might have several alternatives corresponding
to the worst values, each for several criteria.

Therefore, discrete decision problems with large numbers of criteria deserve special
attention and might require special analysis and solution methods. We review in this pa-
per some methods that might be applicable and some classical or popular methods that
are definitely not applicable for such a case. Between methods that are not applicable
for diverse reasons, we mention classical methods based on weighted sum aggregation or
on nonlinear utility identification. We discuss the use of weighting factors understood as
scaling factors, or as classical preferential weighting coefficients, or as importance fac-
tors, utilized differently than weighting coefficients. Between applicable methods, we
distinguishreference point approaglpossibly accompanied by an objectifying definition
of aspiration and reservation levegjuitable aggregationr lexicographic minimax ap-
proach, either based on Lorentz ordering of criteria or on ordered weighted averaging
(OWA); andhierarchical aggregation of criterigapplicable, however, only under rather
restrictive assumptions). We compare these approaches on some examples and derive
conclusions.

2 Basic formulations and assumptions

We assume that we have a decision problem wittriteria, indexed byi = 1,...,n
(also denoted by € I), andm alternative decisions called also alternatives, indexed by
j=1,....morj = A,B,..., H (also denoted by € J). The corresponding criteria
values are denoted hy;; we assume that all are maximized or converted to maximized
variables. The maximal values

max gi; = ¢;"

JjeJ

are called upper bounds for criteria, and are equivalent to the components of so-called
ideal or utopia poing“°® = ¢*? = (¢\?,...,¢",...,q"?) - except for cases when they
were established a priori as a measurement scale, see further comments. The minimal
values l
I}.lel? dij = q;

are called lower bounds and, generally, are not equivaterthe components of so called
nadir pointg™® > q'° = (¢°,...,q%, ..., q?).

An alternative; € J is Pareto optimal (Pareto-nondominated or shortly nondomi-
nated, also called efficient), if there is no other alternatige. that dominateg*, that s,
if we denoteqj = (qu, vy Qg e s qnj), there is ng € J such thaqu > qj+, q; 7£ g

While there is an extensive literature how to select the best alternative (usually be-
tween nondominated ones) or to rank or classify all alternatives in response to the prefer-
ences of a decision maker, this literature usually makes several tacit assumptions:

The nadir pointg™®? is defined similarly as the lower bound poigt, but with the minimization
restricted to the Pareto optimal or efficient or nondominated alternatives.
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1. A standard and usually undisputed assumption is that therelégigion maker
(DM) that does not mind to reveal her/his preferencesthera priori, before the
computer system proposes her/his supposedly best decision (in this case, we should
actually not speak aboudtecision supportonly aboutdecision automatioy or in-
teractively exchanging information with a computerized decision support system
(in this case, truly supporting decisions). In group decision making, it is often as-
sumed that the group members do not mind discussing their preferences. However,
highly political decision makers might intuitively (using their experience in politi-
cal negotiations) refuse to discuss their preferences, and do not have time for a long
interaction with the decision support system. There are also many rational reasons
why a decision maker might want to obtain an advice on the best decision or ranking
of decisions that igs objective as possihléhus independent from her/his prefer-
ences, particularly if the final decision will be highly political, or there is actually a
large group of decision makers stakeholdersn the decision situation.

2. Another standard and usually undisputed assumption is that theramabstthat
knows well decision theory and practice, interacts with decision makers on the
correct definition and modeling of the decision situation, thus influences e.g., the
choice of criteria, further programs or fine-tunes the decision support system, etc.
(even if the role of the analyst might be hidden just by an assumed approach used
for constructing the decision support system). However, the role of an analyst is es-
sential even if it should not be dominant; for example, the choice of criteria might
be a result of a political process, and even if the analyst would know the extensive
literature how to select criteria reasonably from decision theoretical point of view,
she/he has just to accept even unreasonable criteria.

In further discussions, we assume that there are decision makers and analysts, but their
roles should be interpreted more broadly than in standard approaches.

3 Why classical approaches are not applicable in this case

We discuss here two classes of methods taught usually - for historical reasons - as "the
basic approach” to multiple criteria decision making. The first of them is the weighted
sum aggregation of criteria: determining by diverse approaches, between which the AHP
(Saaty 1982) is one of the most developed, weighting coefficigntsr all : € I, with

the additional requirement on the scaling of weighting coefficients that

Zwi = 17
iel
and then using them to aggregate all criteria by a weighted sum:
o' =) wids (1)
iel

We use the aggregated valugs™ to select the best alternative (maximizing™ over

J € J) or torank alternatives (ordering them from the largest to the lowest valig'oj.

Such an aggregation might be sometimes necessary, but it has several limitations, partic-
ularly for large numbers of criteria. The most serious between them are the following:
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1. The weighted sum is based on a tacit (unstated) assumption that a compensatory
trade-off analysis is applicable to all criteria: a worsening of the value of one cri-
terion might be compensated (at the rates constant for the whole ranges of criteria
values) by the improvement of the value of another one. While often encountered
in economic applications, this compensatory character of criteria is usually not en-
countered in interdisciplinary applications.

2. Changes of weighting coefficients in interactive decision processes with more than
two criteria often lead to counter-intuitive changes of criteria values (Nakayama
1995); with large numbers of criteria, this might result in totally unpredictable
changes of results.

3. The linear aggregation of preferences expressed by the weighted sum tends to pro-
mote decisions with unbalanced criteria, as illustrated by the Korhonen paradox
guoted below; in order to accommodate the natural human preference for balanced
solutions, a nonlinear aggregation is necessary.

The Korhonen paradéxcan be illustrated by the following example. Suppose we
select a product and consider two criteria: quality and cost, while using an assessment
scale O - 10 points for both criteria (O points for cost means very expensive, 10 points
means very cheap products). Suppose we have three alternative decisions:

e alternative A has 10 points for quality, O points for cost,
e alternative B has 0 points for quality, 10 points for cost,
e alternative C has 4.5 points for quality and 4.5 points for cost.

It is easy to prove that when using a weighted sum for ranking the alternatives, alter-
native C will be never ranked first - no matter what weighting coefficients we use. Thus,
weighted sum indeed tends to promote decisions with unbalanced criteria values; in order
to obtain a balanced solution (the first rank for alternative product C), we have either to
use additional constraints or a nonlinear aggregation scheme.

Educated that weighting coefficients methods are basic, the legislators in Poland intro-
duced a public tender law. This law requires that any institution preparing a tender using
public money should publish beforehand all criteria of ranking the offers and all weight-
ing coefficients used to aggregate the criteria. This legal innovation backfired: while the
law was intended to make public tenders more transparent and accountable, the practical
outcome was opposite because of effects similar to the Korhonen paradox. Organizers of
the tenders soon discovered that they are forced either to select the offer that is cheapest
and worst in quality or the best in quality but most expensive one. In order to counteract,
they either limited the solution space drastically by diverse side constraints (which is dif-
ficult but consistent with the spirit of the law) or added additional poorly defined criteria
such as the degree of satisfaction (which is simple and legal but fully inconsistent with
the spirit of the law, since it makes the tender less transparent and opens hidden door for
graft).

The example of counter-intuitive effects of changing weighting coefficients given by
Nakayama is simple: suppose= 3 and the criteria values for many alternatives are

2Not published by Pekka Korhonen in print, but discussed many times at conferences, the original
formulation of this Paradox was not quite acceptable for feminists: it involved criteria such as sex-appeal
and ability to cook when selecting a partner of life.
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densely (or continuously) spread over the positive part of the surface of a Spffere,

g3 + q¢> = 1. Suppose we select first; = w, = wz = 1/3, which results in the
best alternative with criteria valugs = ¢» = ¢3 = 0.5770. Suppose we want next

to increase the values qf strongly and ofg, slightly, while agreeing to decreasge;

what modifications of weighting coefficients would do the job? If we chaose- 0.55,

we = 0.35 andws = 0.1, the result will be a strong increase@f= 0.8338 accompanied

by a decrease of botj = 0.5306 andqsz = 0.1516; in order to increaseg, strongly andy,
slightly we must increase, almost as strongly as;. If we have more criteria, it might

be sometimes very difficult to choose a change of weighting coefficients resulting in a
desired change of criteria values.

Both such theoretical examples and recent practical experience presented above show
that we should be very careful when using weighted sum aggregation. In short sum-
mary, a linear weighted sum aggregation is simple mathematically but too simplistic in
representing typical human preferences that are usually nonlinear; using this simplistic
approach resulted in practice in adverse and unforeseen side-effects. Thus, we should
rather look for nonlinear approximations of the preferences of decision makers. There are
many highly developed methods of the elicitation of nonlinear utility or value functions,
see e.g. (Keeney and Raiffa 1972), (Keeney 1992). However, these classical methods
might be also not applicable for decisions involving political processes and large numbers
of criteria, because of several reasons:

1. Asnoted above, politically minded decision makers might be adverse to a disclosure
and detailed specifications of their preferences;

2. Such elicitations of utility or value functions require a large number of pairwise
comparisons of alternatives, done in the form of questions addressed to the decision
maker and her/his answers; this number is nonlinearly growing with the number of
criteria, thus such elicitations are not practical for problems with large numbers of
criteria.

For these and other reasons, we should further look for more ad hoc and rough non-
linear approximations of preferences of decision makers, which do not require much time
nor a detailed specification or identification of preferences.

4 Reference point approaches, objective ranking and eq-
uitable aggregations
The large disparity between the opposite ends of the spectrum of preference elicitation -

full value or utility identification versus a weighted sum approach - indicates the need for
a middle-ground approach, simple enough and easily adaptable but not too simplistic.

3The fact that we use a nonlinear function - the equation of the surface of a sphere - in this example
is not essential: we could as well approximate the sphere by a regular polyhedron with sufficiently many
facets and thus represent this example as a lineltrabjective optimization problem.
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4.1 Reference point approaches

The first type of such rough approximation of decision maker preferences is provided by
reference point approaches. In these approaches, we note that:

1. The preferences of decision maker can be approximated using several degrees of
specificity, and the reference point approaches assume that this specification should
be as general as possible, since a more detailed specification violates the sovereign
right of a decision maker to change her/his mind.

2. The most general specification of preferences contains a selection of outcomes of
a model of decision situation that are chosen by the decision maker (or analyst) to
measure the quality of decisions, called criteria (quality measures, quality indica-
tors) or sometimes objectives (values of objective functions) and denoted here by
g, © € I. This specification is accompanied by defining a partial order in the space
of criteria - simply asking the decision maker which criteria should be maximized
and which minimized, while another option, stabilizing some criteria around given
reference levels, is also possible in reference point approaches, see (Wierzbicki et
al. 2000). Here we consider the simplest case when all criteria are maxifnized.

3. The second level of specificity in reference point approaches is assumed to consist
of specification ofeference points generallydesired levels of criteriaThese ref-
erence points might be interval-type, double, includieservation levelsdenoted
here byr; (worst levels of criteria values still acceptable for the decision maker)
andaspiration levels; (levels of criteria values that should be achieved according
to the decision maker). Specification of reference levels is treated as an alternative
to trade-off or weighting coefficient information that leads usually to linear rep-
resentation of preferences and unbalanced decisions as discussed below, although
some reference point approaches - see, e.g., (Nakayama 1994), (Granat, Makowski
2000), (Ruiz et al. 2007) - combine reference levels with trade-off information.

4. While the detailed specification of preferences might include full or gradual iden-
tification of utility or value functions, as shortly indicated above, this is avoided
in reference point approaches that striessning instead of value identification
according to the reference point philosophy, the decision maker should learn dur-
ing the interaction with a decision support system, hence her/his preferences might
change in the decision making process and she/he has full, sovereign right or even
necessity to be inconsistent.

5. Thus, instead of a nonlinear value function, reference point approaches approxi-
mate the preferences of the decision maker by a nonliaelsievement function
which is an ad hoc, easily adaptable nonlinear approximation of the value function
of decision maker consistent with the information contained in criteria specifica-
tion, their partial order and the position of reference point (or points) between the
lower and upper bounds for criteriaAs opposed to goal programming, similar in

4This assumption is made only in order to simplify the presentation of diverse methods of decision
analysis; but all these methods can be easily adapted to analysis of problems with criteria of different types,
including minimized, maximized, achieving a given target value, following a specified trajectory; see e.g.,
(Makowski 1994).
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approach to reference point methods but using distance concepts instead of achieve-
ment functions, the latter functions preserve strict monotonicity with respect to the
partial order in criteria space.

6. The particular form of this nonlinear approximation of value function is determined
essentially by max-min terms that favor solutions with balanced deviations from
reference points and express the Rawlsian principle of justice (concentrating the
attention on worst off members of society or on issues worst provided for, see
(Rawls 1971); these terms are slightly corrected by regularizing terms, resulting
in nondomination (Pareto optimality) of alternatives that maximize achievement
functions. It can be shown (Wierzbicki 1986) that such achievement functions have
the property of full controllability, independently of convexity assumptions. This
means that, also for discrete decision problems, any nondominated (Pareto optimal)
alternative can be selected by the decision maker by modifying reference points and
maximizing the achievement function; this provides for thié sovereignty of the
decision makersee e.g., (Wierzbicki et al., 2000).

While there are many variants of reference point approaches, see (Makowski, 1994),
(Miettinen, 1999), (Granat, Makowski, 2000), (Ruiz et al. 2007), we concentrate here
on a reference point approach that requires the specification of interval-type reference,
that is, two reference levels (aspiration and reservation) for each criterion. After this
specification, the approach uses a nonlinear aggregation of criteria by an achievement
function that is performed in two steps.

e We first compute achievements for each individual criterion or satisfaction with its
values by transforming it (monotonically and piece-wise linearly) e.g., in the case
of maximized criteria as shown in Eq. (2) below. For problems with a continu-
ous (nonempty interior) set of options, for an easy transformation to a linear pro-
gramming problem, such a function needs additional specific parameters selected
to assure the concavity of this function, see (Wierzbicki et al. 2000). In a discrete
decision problem, however, we do not necessarily need concavity and can choose
these coefficients to have a reasonable interpretation of the valuespairtiad (or
individual) achievement functiosince the range of [0; 10] points is often used for
eliciting expert opinions about subjectively evaluated criteria or achievements, we
adopted this range in Eq. (2) below for the values of a partial achievement function

O-i(qi7 i, Ti):

a(g — ¢°)/(ri — ¢°), for g <g<m
0i(gi,ai,m) = ¢ o+ (8 —a)(q —ri)/(a; —15), for r<g¢g<a (2)
B+ (10— 5)(qi — ai)/(¢;" — as), for  a; <q < g

The parameters andg3, 0 < a < 8 < 10, in this case denote correspondingly the
values of the partial achievement function &pr= r; andq; = a,. The valuer;; =
oi(qi;, ai, ;) Of this achievement function for a given alternative J represents
the satisfaction level with;; (i.e., thei-th criterion value forj-th alternative). Thus,
the above transformation assigns satisfaction levels fidma (say,a = 3) for
criterion values betweegl® andr;, from « to 3 (say,3 = 7) for criterion values
betweenr; anda;, from (3 to 10 for values between; andg;”.
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¢ After this transformation of all criteria values, we might use then the following form
of the overall achievement function:

o(g,a,r)= Hlel}l oi(qi,ai, ;) + e/nZai(qi, iy T5) 3)
¢ iel

where;:

q=(q,---,4,---,q,) isthe vector of criteria values,

a=(a1,...,04...,0p) @ndr = (rq,...,r;, ..., r,) are the vectors of aspiration
and reservation levels, respectively,

e > 0 is a small regularizing coefficient.

The achievement values = o(qj, a, r) for all j € J can be used either to select
the best alternative, or to order the options in an overall ranking list or classification
list, starting with the highest achievement value.

The formulae (2), (3) do not express the only form of an achievement function; there
are many possible forms of such functions as shown in (Wierzbicki et al. 2000). All
of them, however, have an important property of partial order approximation: their level
sets approximate closely the positive cone defining the partial order in criteria space (see
Wierzbicki 1986). As indicated above, the achievement function has also a very important
theoretical property of controllability, not possessed by utility functions nor by weighted
sums: for sufficiently small values @f given any pointg* in criteria space that is{
properly) Pareto-nondominatednd corresponds to some alternative decision (such as
the alternative C in the Korhonen paradox), we can always choose such reference levels -
in fact, it suffices to set aspiration levels equal to the componemts-dhat the maximum
of the achievement function (3) is attained precisely at this point. Conversely; if,
all maxima of achievement function (3) correspond to Pareto-nondominated alternatives -
because of the monotonicity of this function with respect to the partial order in the criteria
space, similarly as in the case of utility functions and weighted sums, but not in the case of
a distance norm used in goal programming, since the norm is not monotone when passing
zero. As noted above, precisely the controllability property results in a fully sovereign
control of the decision support system by the user.

4.2 Objective selection and ranking; importance coefficients

We already indicated that the decision maker in diverse situations might be reluctant to
specify her/his preferences and would rather consider then a most objective selection of
the best alternative or ranking or classification of all alternative decisions - while reserving
the right to correct the selection or classification in her/his final decision; such are, in fact,

5By an e-properly Pareto-nondominated alternative we understand a Pareto-nondominated alternative
with trade-off coefficients bounded by the numbder 1/¢, see Wierzbicki et.al. (2000). The prop-
erty that anye-properly Pareto-nondominated alternative can be selected as the best by maximizing an
achievement function is called the controllability property and is much stronger then the efficiency property
(that any maximum of a function, which is strictly monotone with respect to the partial order, is Pareto-
nondominated). The controllability property is possessed by functions such as (3) that are not only strictly
monotone with respect to the partial order, but also have level sets approximating the positive cone that
defines the partial order. This property does not depend on convexity assumptions, see Wierzbicki (1986).
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the most frequent situations in any political decision making. Thbgctive selection or
even rankings often required in practical decision making.

However, most decision theory is concentratedsahjective selection and ranking
wheresubjectivedoes not meamtuitive or a-rational but rational although concentrated
on the preferences of the decision maker. This has diverse historical and also some deep
philosophical reasons; we add here some comments on them. The industrial era episteme
- sometimes called not quite precisely positivism or scientism - valued objectivity; to-
day we know that absolute objectivity does not exist, see e.g., (Wierzbicki 2005, 2007).
The destruction of this episteme started early, e.g., since Werner Heisenberg (Heisenberg
1927) has shown that not only a measurement depends on a theory and on instruments,
but also the very fact of measurement distorts the measured variable. This was followed
by diverse philosophical debates, summarized, e.g., by Van Orman Quine (Quine 1953)
who has shown that the logical empiricism (neo-positivism) is logically inconsistent itself,
that all human knowledge "is a man-made fabric that impinges on existence only along
the edges”. This means that there is no absolute objectivity; however, this was quite differ-
ently interpreted by hard sciences and by technology, which nevertheless tried to remain
as objective as possible, and by social sciences which, in some cases, went much further
to maintain that all knowledge is subjective - results from a discourse, is constructed, ne-
gotiated, relativist, depends on power and money, see, e.g., (Latour 1987). This has led to
a general divergence of the episteme - the way of constructing and justifying knowledge
- of the three different cultural spheres (of hard and natural sciences, of technology, and
of social sciences and humanities), see (Wierzbicki 2005). Full objectivity is obviously -
after Heisenberg and Quine - not attainalidet in many situations we must try to be as
much objective as possibl&his concerns not only technology that cannot advance with-
out trying to be objective and, in fact, pursues Popperian falsificationism (Popper 1972)
in everyday practice when submitting technological artifacts to destructive tests in order
to increase their reliability - while post-modern social sciences ridicule falsificationism as
an utopian description how science develops. However, objectivity is needed also - as we
show here in further examples - in management. For an individual decision maker, this
might mean that she/he needs some independent reasons for selection or ranking, such as
a dean cannot rank the laboratories in her/his school fully subjectively, must have some
reasonable, objective grounds that can be explained to entire faculty. For a selection or
ranking that expresses the preferences of a group, diverse methods of aggregating group
preferences might be considered; but they must be accepted as fair - thus objective in the
sense of inter-subjective fairness - by the group.

However, it is not obvious how to define the grounds of an objective selection or rank-
ing. In multiple criteria optimization, one of similar issues was to propmsapromise
solutions see, e.g., (Zeleny 1974); however, such solutions might depend too strongly
on the assumed metric of the distance from the utopia or ideal point. (Wierzbicki 2006)
proposes to define objective selection and ranking as dependent only on a given set of
data, agreed upon to be relevant for the decision situation and independent of any more
detailed specification of personal preferences than that given by defining criteria and the
partial order in criteria space. The specification of criteria and their partial order (whether
to minimize, or maximize them) can be also easily be agreed upon, be objective in the
sense of inter-subjective fairness.

It is also not obvious how an objective selection and ranking might be achieved, be-
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cause almost all the tradition of aggregation of multiple criteria concentrated on rational
subjective aggregation of preferences and thus subjective selection and ranking. While
we could try, in the sense of inter-subjective fairness, identify group utility functions or
group weighting coefficients, both these concepts are too abstract to be reasonably de-
bated by an average group (imagine a stakeholder meeting trying to define their aggregate
utility function under uncertainty). Thus, neither of these approaches is easily adaptable
for rational objective selection or ranking. The approach that can be easily adapted for
rational objective selection and ranking, also classification, is reference point approach as
described above, because reference levels needed in this approach can be either defined
subjectively by the decision maker, or established statistically - as objectively as possible
- from the given data set.

Now, the question is: how to define aspiration and reservation levels in order to ob-
tain rational objective ranking? Several ways were listed in (Granat et al. 2006): neutral,
statistical, voting; we shall concentrate here on statistical determination. A statistical de-
termination of reference levels concerns valyg€sthat would be used as basic reference
levels, a modification of these values to obtain aspiration leyeknd another modifica-
tion of these values to obtain reservation levejgthese might be defined (for the case of
maximization of criteria) as follows:

@’ = qi/m; ri = 0.5(¢° + ¢); a; = 0.5(¢;" + ¢i"*) 4)
JjeJ

Recall thatm is just the number of alternative decision options, hejféas just an
average (for all alternatives) criterion value; the aspiration and reservation levels are just
averages of these averages and the lower and upper bounds, respectively. However, as
shown by examples presented later, there are no essential reasons why we should limit
the averaging to the set of alternative options ranked; we could use as well a larger set of
data in order to define more adequate (say, historically meaningful) averages, or a smaller
set - e.g., only the Pareto-nondominated alternatives. Even if the decision maker might
require first advice that is as objective as possible, she/he might also want to have some
interaction with the computerized decision system. This interaction might be organized
in different ways. Classically, when supporting an analysis of Pareto-nondominated solu-
tions, we used (see, e.g., Granat and Makowski 2000) changes of aspiration and reserva-
tion points through a graphical interface; this interface, called ISAAP, was used in many
and diverse applications and found very effective. Weighting coefficients might be also
used, but allowing for diverse interpretation of their meaning. (Ruiz et al. 2007) analyzes
in detail the relations of weighting coefficients to changes of reference points, while taking
into account two functions of weighting factors: the scaling function and the preferential
function (the former one converts all criteria ranges to a common, say, percentage scale,
the latter expresses the preferences of the decision maker). Many versions of scaling and
preferential properties of diverse reference point approaches are analyzed in that paper,
but interval-type reference point approaches - found by us the most effective in diverse
applications - are not analyzed in detail there.

Here we propose another interpretation of weighting factors - we suggest using them
asimportance factorghat influence the shape of achievement functions rather than as
weighting coefficients that are used directly to modify criteria values by multiplication.
Thus, we limit the use of classical weighting coefficients to their scaling role. However,
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the decision maker can express her/his wishes by specifying importance factors for cri-
teria, e.g., using the scalery low importance - low importance - normal importance -
high importance - very high importancéfterwards, the partial achievement functions
are computed as in Eqg. (2), but with parameteesid3 depending on importance factors,
e.g., as specified by the following table:

importance factor very low | low | normal| high | very high
o 5 4 3 2 1
g 9 8 7 6 5

Table 1: Parameter values for partial achievement functions depending on importance
factors.

This modification of achievement values might seem counter-intuitiveinerease
the achievement for criteria with lower importanc&his is consistent, however, with
the form of the overall achievement function as given in Eqg. (3): its value is determined
mostly by the worst partial achievements, hence more important are criteria which have
lower achievements. We propose here a linear scale of modifying achievement values,
even if (Lootsma 1996) indicated that weighting coefficients should be spaced nonlin-
early (e.g., using an exponential scale) when they are implied by importance factors. Our
experience with modifying aspiration and reservation levels also shows their strongly non-
linear impact on the selection of solutions when they are becoming close to the upper or
lower bounds for criteria. We expect similar nonlinear effect of changing the parame-
tersa and; obviously, the ranges of changes suggested in Table 1 might be modified if
desired.

Thus, we are ready to propose one basic version of an objectified reference point
approach for discrete decision alternatives with very large numbers of criteria and possibly
political character of the decision process. Here are our advises for the analyst:

1. Accept the criteria and their character (which to maximize, which to minimize)
proposed by decision maker(s), but insist on a reasonable definition of their upper
and lower bound$.

2. Gather (the evaluation of) all criteria values for all alternative decisions. In the case
that some criteria have to be assessed by expert opinions, organize an objectify-
ing process for these assessments (e.g., voting on these assessments as if judging
ski-jumping, with deleting extreme assessments or even with using mediarf score,
allowing for a dispute and a repeated vote in cases of divergent assessments).

3. Compute the averages of criteria values, the statistically objective reservation and
aspiration points as in Eq. (4). Assuming the neutrality of all critésia= 3 and
G = 7 for all criteria) and using the achievement functions as defined by Eq. (2),

81t is not reasonable to set upper and lower bounds equal to infinity and minus infinity, respectively; or
to their arbitrary approximations e.g., B9'°; consider for example the problem of nuclear waste: it will
most probably not last sa)0'° years, because even after 50 years we might devise quite new ways of its
disposal, say, sending it with space vehicles into the Sun.

"Median score is equivalent to repeated deletion of extreme assessments, until only one or two assess-
ments remain (taking the average between the two in the latter case).
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(3), compute achievement factars for all alternatives and order alternatives in a
decreasing fashion of these factors (say, randomdy if= ¢,’ for some j and j;

we shall suggest in the next Section a way of improving such ordering). Use this
ordering either for a suggested (objective and neutral) selection of the best alterna-
tive, or a classification of alternatives (say, into projects accepted and rejected), or
an objective and neutral ranking.

4. Discuss with decision maker(s) the suggested objective and neutral outcome. If
she/he wants to modify it, suggest a definition of importance factors for every crite-
rion, and use them to define (e.g., as proposed in Table 1) the values of parameters
a and g for the corresponding criterion. Then, re-compute achievement factors
o; as defined by Eq. (2), (3) with and 3 individualized for every criterion; use
these factors for ordering, selecting, classifying or ranking the alternatives. If there
are many decision makers, they might either vote on importance factors for every
criterion using an objectifying process as in point 2 above, or investigate first indi-
vidually the impact of changing importance factors, then debate the resulting issues
and prepare a vote on final importance factors.

4.3 Equitable aggregation and lexicographic minimax approach

The decision process described above needs to be modified in case when two or many
alternatives have the same achievement faetgnsarticularly if these factors are close to
zero: when there are many criteria, many alternatives might have one or several criteria
close to their lower bound, thug might be close to zero. In such cases, instead of in-
creasing and letting actually the sum in Eq. (3) determine the aggregated achievement, it
is better to set = 0 or close to 0 and use one of a group of approaches related to equitable
aggregation, see (Ogryczak 2006), (Kostreva et al. 2003). In such approaches we consider
first the minimal, worst individual criterion achievementcomputed as in Eq. (2) with
e = 0; if, however, two (or more) alternativgsandj’ have the same worst achievement
value, we order them according to the second worst individual criterion achievement, and
so on. This approach is calléekicographic minimaxhowever, there are several equiva-
lent or almost equivalent formulations of this approach that can be conveniently applied
or modified for the problem considered here, including the questions of selection, ranking
and classification.

An important equivalent formulation to the lexicographic minimaxesimulative or-
dering mapeading to d_orentz curve Ordering map is such a rearrangement of indices
1 of criteria and their partial achievementsthatt; < 6, < ... <0, <0, < ... <0,
while each¥; corresponds to the value of some partial achievemgr@umulative order-
ing map and Lorentz curve correspond to the arrangement of consecutive syms of

0;" = N b, L; =06/, vel (5)

1<k<i

Thus, Lorentz curvé,; is the graph of the dependenceldf™ /i oni (actually, assum-
ing a scaling of both axes to obtain intervals between 0 and 1, but this normalization is not
necessary in our application). The lexicographic minimax is equivalent to the selection of
best alternative according to the highest first nonzero value of the Lorentz curve.
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However, we can as well take into account other values of achievement functions by
ordering the alternative decisiopgccording to a Lorentz quantile, i.e., the Lorentz value
L;; (meaning the value of Lorentz curve for alternatjydor some larget for example
i = [n/3] or i = [n/2], where[-] denotes the whole part of a number. This results in an
equitable aggregation possibly different than the lexicographic minimax, but preserving
equitability: preference for alternatives with a distribution of criteria that is as close to a
uniform one as possible. Another possibility is to use ordered weighted averaging (OWA),
see e.g. (Yager 1988) and (Kostreva et al. 2003). We average the ordering map (or
the cumulative ordering map, which is equivalent up to a transformation of weighting
coefficients) using a sequence of weighting coefficients decreasing, i ,.w; = 2.

Note that
Z w; =~ 1
1<i<n
for sufficiently largen. Then we use the OWA achievements to order all alternatives:
o= %" 270 (6)
1<i<n
whered,; denotes the value of ordering map on positiofor alternativej. Such an
ordering of alternatives also preserves equitability.
Thus, we can propose two alternative modifications of the decision procedure outlined
in the previous section. Instead of using the overall achievement function (3) in points
3. and 4. of the procedure, we use the partial achievement ingjf€sdefined as in (2)
for alternativeg, then use either
e the cumulative ordering mag;" and Lorentz curved.;; defined as in (5) with =
[n/3] ori=[n/2], or

e the OWA achievements$* defined as in (6) for ordering of alternativgss J, the
ordering implies then either the selection of the best alternative, or ranking, or a classi-
fication.

5 Hierarchical aggregation of criteria

Both weighted sum approaches and value and utility elicitation methods devoted much
attention to hierarchical aggregation of criteria. Criteria are arranged in a hierarchical (in-
verted tree-like) structure: criteria relevant for a given aspect are considered as a group.
For example, very often a group of criteria might indicate economic aspects, another
group - environmental aspects, yet another group - social aspects. Groups can be sub-
divided further into subgroups, as, for example, economic aspects into financial part and
resource-related part; but we omit this complication here in order to simplify presentation.
If either weighting or importance coefficients are specified in an inverted tree-like struc-
ture, consistency of their normalization becomes crucial (e.g., if we start with the root, the
top of the inverted tree and assign the weighting coefficients, then they should sum upto 1
in each group and subgroup, while the resulting weighting coefficients should correspond
to products of coefficients along each branch of the tree). We have a set of alterdatives
and a set/ of indexesj € J, which identify alternatives. On each hierarchy level we can
distinguish groups of criteria

Li={Li,...,Lig},
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whereg; - is a number of groups olth level of the hierarchy. As before, we denote the
value of a quality indicatog; for the decision optiopby g¢;;; its upper bound by;”, and

its lower bound by;l°. Itis also assumed that all criteria or quality indicators are scaled
down to a relative scale by the transformatfon:

;= (¢ — 4°) ) (@" — ¢°) )

We assume that such a transformation is performed and will not later indicate the upper
indexr, stipulating that all further values of quality indicators are measured in a common,
relative percentage scale. Moreover, we assume that such a transformation is performed
once, before the analysis, and later small changes of the problem - e.g., deleting one of
the alternative decisions in consideration - are not followed by the change of measure-
ments scales. This is consistent with the historical practice of measurement systems: we
do not change measurement units every time new data arrive - if we did, we should be
prepared for diverse inconsistencies resulting not from the method of analysis, but from
the inconsistency of measurements.

5.1 Compensatory versus non-compensatory criteria

Apart from many technical and theoretical drawbacks of using weighting coefficients in
multiple criteria analysis as discussed above, we should be aware that all criteria (and the
corresponding weighting coefficients) can be divided into two essentially distinct types:

1. Compensatory criteriare such that a given improvement - increase of the value
of one quality indicator by a given number in the relative percentage scale - can be
rationally substantiated to compensate a deterioration of another quality indicator
- its decrease by a unit or by one percent in the relative scale. The (inverse) ratio
of these changes can be used as a basis for determinirgjitheally substantiated
weighting coefficientscalled alsocompensatory weighting coefficients basic
example of such compensatory criteria is given by two financial quality indicators
(both of minimized type): operational costs and investment costs. If we know what
is the cost of a banking credit, then we can rationally substantiate the trade-off,
thus a weighting coefficient converting the investment costs into an addition to op-
erating cost$. The popularity of the use of weighting coefficients is based on an
(erroneous) economic intuition that all criteria are of the compensatory character.

2. Non-compensatory criteriare such that no rational substantiation exists for defin-
ing weighting coefficients. A basic example of non-compensatory criteria are costs
and loss of human life; many decision-makers and/or analysts refuse on princi-
pal grounds to give a value for such a compensation, even if some economists try

8Moreover, it is consistent with measurement theory, see Barzilai (2004) - who points out that all utility
and value theory in this respect is not necessarily consistent with measurement theory. We must also stress
that the practice of measurement systems requires stable definitions of measurement units: once we defined
the meter as 1: 40 000 000 part of a meridian, we obtained a certain standard exemplar every time the
meridian is measured and turns out to be slightly different than 40 000 000 meters.

9Two criteria might be compensatory even if they are positively linearly correlated, e.g., one criterion is
a sum including the other criterion; we must admit only possibly negative compensatory weighting coeffi-
cients for such cases.
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to define such values for insurance firms. Weighting coefficients defined for non-
compensatory criteria are not substantiated rationally, they are a result of an estima-
tion of trade-offs for a given decision situation, while this trade-offs might change
with the context, thus this estimation is often subjective or intuitive. As such, they
do not define coefficients that might be objectively used in a weighted sum, they
estimate only local relative importance of criteria.

Itis important to understand well the naturenoihcompensatory weighting coefficients
interpreted as importance factors related to non-compensatory criteria. Comparing rela-
tive importance of (local) increases of criteria is not equivalent to the assumption that a
weighted sum might be applied for aggregation of the criteria, for many reasons (only one
of the reasons being that a local approximation is usually not good for the whole ranges
of criteria values). For the example of the cost of saving human lives, we might submit
to the argument that there is simply no more money to be spent on a rescue program,
or debate the argument by showing that a small increase of the expenditure can save a
considerable number of human lives. Thus we might agree to treat the economic aspect
as a constraint, while never accepting the conclusion that saving one more human life is
preferentially equivalent to a given sum of money, thus never treating such two criteria as
compensatory.

This is one of the reasons that we proposed above to use importance coefficients in a
different way than weighting coefficients. This basic distinction is also important when
considering a hierarchical structure of criteria. An aggregation of quality indicators be-
longing to a group of criteria might be performed by a weighted sum only if all criteria
in this group are of compensatory type. For non-compensatory criteria, other ways of ag-
gregation - such as an achievement function based on the reference point method - must
be used.

5.2 Approaches to hierarchical criteria aggregation

Following this basic distinction, we shall distinguish the following approaches to criteria
aggregation in a hierarchical structure of criteria (while we discuss here only two hierar-
chical levels, additional lower levels can be similarly considered):

1. Compensatory aggregation on lower levabn-compensatory analysis on upper
level In this case we assume that all criteria are compensatory within their groups
and thus weighting coefficients and weighted sums can be used to aggregate criteria
in each group. This results in aggregated group quality indicators or aggregated
criteria:

gc = > wig; C={Li,...,Lig} (8)
i€C
wherew; are compensatory weighting coefficients. We stress that these coeffi-
cients correspond to relative percentage scales of criteria changes, thus are also
dimension-free and should sum up to unity,

Zwi: 1, C:{Ll,1>--->Ll,gl}-

i€C
The values)¢ of these aggregated criteria for all alternatiyes J can be used to
order them (select the best one, classify them, form a group ranking list, etc.). It
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must be stressed that this list orders the alternative decisions only from the point
of view of the given group of criteria, e.g., from the perspective of environmen-
tal criteria. On the other hand, it is difficult to substantiate the assumption that
the aggregate criterig: will be also compensatory (for example, environmental-
ists would never agree to consider an aggregated environmental quality indicator
as compensatory to an economic quality indicator). Therefore, we assume that a
non-compensatory multiple criteria analysis is needed on the upper level, which is
possible when applying the reference point approach. For this purpose, the upper
and lower bounds for all aggregated critejfd andgls forall C = {L;1,...,Li 4}

are first determined. Then we define reference point for each aggregated criterion.

These data help to define partial achievement function for each aggregated criterion
oc(qe, ac, o) computed as in Eqg. (2) for a given alternatjve J signifies the
satisfaction level with the aggregated quality indicator for this alternative decision
(say, expressed in the assessment scale 0 - 10); thus, they can be further aggregated
as in Eq. (3) or by equitable aggregation methods as described in Section 4. Aspi-
ration and reservation levels;, rc can be either defined statistically as in Eq. (4)

in order to be as objective as possible, or defined and changed subjectively by the
decision maker in order to control the multiple criteria analysis of the problem.

. Non-compensatory aggregation both on lower and on upper.létlere are non-
compensatory criteria in a group on lower level, the use of weighting coefficients
for aggregating them is most doubtful. But we can always use the reference point
approach also on the lower level and treat the resulting value of an achievement
function as the aggregated (though somewhat transformed) criterion or quality in-
dicatorgq for the group. In this case, instead of Eq. (8), we use:

. €
o(q,a,r)= min oc(qe,ac,re) + el > oclgesac,re),  (9)
'€ | | C=Li1,.,Lug

or its relative percentage value after establishing its upper and lower bgratsd

q%. If we use statistically defined aspiration and reservation levels for all criteria,
computed as in Eq. (4), then the resulting values of aggregated quality indicators
are defined in a sense objectively.

The analysis on the upper level can be then performed in the same way as in the
previous case, because we do not assume compensatory character of the aggregated
quality indicators. Using statistically defined aspiration and reservation levels also

on the upper level, we obtain an objective overall ordering list of all alternatizes

J. This list depends on parameters derived from data which do not reflect detailed
preferences of the decision maker. Sometimes, however, the decision maker wants
to take into account also weighting coefficients, but treated differently than in the
case of compensatory aggregation.

. Non-compensatory aggregation with weighting coefficients treated as importance
factors If the criteria are non-compensatory but weighting coefficients are given
and are interpreted as importance factors, we can use them in a modification of
achievement values and g for reservation and aspiration levels as suggested in
Table 1. Further analysis can be performed similarly as in the case above.
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5.3 Pareto-nondominance in the hierarchical aggregation of criteria

When analyzing a multiple criteria decision problem, or making a ranking list of options,
we normally require that the solutions considered or option ranked as first are Pareto-
nondominated, that they cannot be improved in one criterion without deteriorating other
criteria. Observe, however, that such a property could be lost in a hierarchical aggregation
of criteria.

Suppose we consider a group of criteria, e.g., environmental quality indicators, and
select some alternative decisions as Pareto-nondominated with respect to these criteria, or
select top alternatives that are Pareto-nondominated. If we add another group of criteria,
or even a single criterion, such as the cost of introducing new technologies, a new set of
Pareto-nondominated alternatives emerge. The alternatives that are Pareto-nondominated
with respect to the original group of criteria will remain Pareto-nondominated (but, in a
sense, on a boundary of the new set of Pareto-nondominated options). However, many
new Pareto-nondominated alternatives might emerge for the new set of criteria (including
added ones); and, in some of thethe components of the original group of criteria
will have values that are not Pareto-nondominated with respect to the original group of
criteria. This property is obvious when we consider optimizing one criterion first and then
adding a second criterion: some Pareto-nondominated solutions might be not optimal for
either of the single criteria. However, this obvious property has important consequences
for a hierarchical aggregation of criteria.

Suppose we have a large number of criteria and optimize them on a single level, in-
cluding all of them in the definition of Pareto optimality. The larger is the number of
criteria, the more Pareto-nondominated alternatives are possible (since each new crite-
rion might provide for additional nondominated alternatives). If there is not a very large
number of alternatives and a large number of criteria, there is a significant chance that
all options are Pareto-nondominated. Suppose we aggregate groups of a large number of
criteria into aggregate group criteria. This means actually two effects. First, we add new
criteria. However, the added criteria are of a special type, because they are usually mono-
tone with respect to the partial order in the space of original criteria, thus their addition
might not add new Pareto optimal solutions. Second, in a sense we subtract many criteria,
since we confine the analysis to the space of aggregated criteria - and the subtraction of
criteria might obviously remove from the list of Pareto-nondominated points many alter-
natives that were Pareto-nondominated in the original space of all criteria on the lower
level.

However, a converse question is following:a hierarchical aggregation of criteria,
what are the conditions that the alternatives which are Pareto-nondominated in the space
of aggregated criteria remain also Pareto-nondominated in the space of all criteria on the
lower level? For example, the balanced alternative that presents a compromise between
aggregated criteria, as selected at the top of the overall ordering list based on the values
of the overall achievement function with statistically defined aspiration and reservation
levels, is obviously Pareto optimal with respect to aggregated criteria; but when is it also
Pareto optimal with respect to all original criteria on the lower level? This issue has been
actually studied in diverse formulations in the history of decision analysis, but we recall
here the answer as specified by the following theorem, see also (Granat et al. 2006):

Theorem 1 In a hierarchical aggregation of criteria, suppose that the functions used to
aggregate criteria in groups on the lower level (such as the functions (8) or (9) above) are
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strictly monotone with respect to the partial orders defining the multiple criteria problems
on lower level. Then any decision option that is Pareto-nondominated in the space of
aggregated criteria is also Pareto-nondominated in the original space of all lower level
criteria (with respect to the overall partial order induced by the partial orders for all groups
of criteria).

Proof. Assume the converse. Then an alternative decisiarhich is Pareto-nondo-
minated in the space of aggregated criteria is at the same time Pareto-dominated in the
original space of all lower level criteria. This means that we can find another alterna-
tive decision; that improves some original criteria without deteriorating remaining ones.
Since the aggregating functions are strictly monotone, at least one of them will have
a larger value at this other optignthan atj* without decreasing the values of other
aggregating functions. This means, however, that the original opties also Pareto-
dominated in the space of aggregated criteria, which contradicts the assumption.

In the following examples, where the number of criteria is large as compared to the
number of options, this property does not play an important role because most options are
anyway Pareto optimal.

6 Examples

We present here two examples, both corresponding to practical problems but severely
simplified and distorted for confidentiality reasons. The first example is more illustrative,
shows that even a small number of criteria (4) can be relatively large when compared to
the number of alternatives (6); we shall use it also to illustrate the concepts of objective
ranking or classification, of equitable aggregation and hierarchical aggregation on a very
simple case. The second example is more demanding, with a small number of decision
alternatives (4) but a larger number of criteria (15) which results in all the difficulties of
problems with large numbers of criteria.

The first example concerns international business management. Suppose an inter-
national corporation consists of six divisioAs B, ..., F' characterized by diverse data
items, such as name, location, number of employees etc. However, suppose that the CEO
of this corporation is really interested in ranking or classification of these divisions taking
into account the following attributes used as criteria:

1. profit (in % of revenue),

2. market share (m.share, in % of supplying a specific market sector, e.g., global mar-
ket for a type of products specific for this division),

3. internal collaboration (i.trade, in % of revenue coming from supplying other divi-
sions of the corporation), and

4. local social image (l.s.i., meaning public relations and the perception of this division
- e.g., of its friendliness to local environment - in the society where it is located,
evaluated on a scale 0-100 points).

All these criteria are maximized, i.e., improve when increased. An example of de-
cision table of this type is shown in Table 2, while Pareto-nondominated divisions are
distinguished by mark *.
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Division | Name | Location | Employees profit | m.share| i.trade| |.s.i
A Alpha USA 250 11 8 10 40
B* Beta Brasilia 750 23 40 34 60
C* Gamma| China 450 16 50 45 70
D* Delta Dubai 150 35 20 20 44
E* Epsilon | C.Europe 350 18 30 20 80
F Fi France 220 12 8 9 30

Table 2: Data for an example on international business management.

The CEO obviously could propose an intuitive, subjective ranking of these divisions -
and this ranking might be even better than a rational one resulting from the table above, if
the CEO knows all these divisions in minute detail. However, when preparing a discussion
with her/his stockholders, (s)he might prefer to ask a consulting firm for an objective
ranking.

Thus, we first illustrate the issue of objective ranking and statistical determination of
reservation and aspiration levels. The principle that all criteria improve when increasing
is easy to agree upon; similarly, the stockholders would easily accept the principle that
the details of ranking should be determined mostly by the data contained in Table 1 (on
page 11), and not by any personal preferences. The question how to statistically define
reservations and aspirations is actually technical, but interesting for illustration. There are
no essential reasons why we should limit the averaging to the set of alternatives ranked;
we could use as well a larger set of data in order to define more adequate (say, histori-
cally meaningful) averages, or a smaller set - for example, only the Pareto-nondominated
alternatives denoted by * in Table 2 - in order to define, say, more demanding averages
and aspirations. For the data from Table 1, we can thus present two variants of objective
ranking: A - based on averages of data from this table; B - based on averages from Pareto
optimal options - see Table 3. We use here the achievement function from Eg. (3) with
e=04 (n=4).

We do not observe any changes of ranking and classification when shifting from av-
erage A to more demanding B aspirations and reservations; this is confirmed by other
applications and shows that objective ranking gives rather robust results. Generally, we
might expect rank reversals, although usually not very significant, when shifting to more
demanding aspirations; this is, however, a natural phenomenon: average aspirations favor
standard though good solutions, truly interesting solutions result from demanding aspi-
rations. Note that we did not change the estimates of the lower and upper bounds and
thus measurement ranges when averaging over Pareto-nondominated solutions; although
the lower bounds for Pareto-nondominated alternatives (so called nadir point) are in this
case different than the lower bounds for all alternatives, a change of ranges would mean
a change of measurement units and should be avoided. In further analysis of this exam-
ple, we shall not compute the more demanding averages, since they give in general rather
similar results.

Suppose now that the decision maker (the CEO of the corporation) would ask the
consulting company that prepares the ranking for taking into account her/his importance
coefficients for criteria, classifying, andg, as having normal importance; as much
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Criterion q1 g2 q3 ga
Upper bound 35% | 50% | 45% | 80
Lower bound 11% 8% 9% 30
Referenced (average) 19.2%| 26% | 23% | 54
Aspiration A 27.1%| 38% | 34% | 67
ReservatioM 15.1%| 17% | 16% | 42
ReferenceB (Pareto average) 23% | 35.0% | 29.7%| 63.5
AspirationB 29% | 42.5%| 37.4%| 71.7
Reservatiom3 17% | 17% | 19.4%| 46.7
RankingA: Division o1 o9 o3 04 o | Rank| Class

A 0.00 | 0.00 | 0.37 | 250|029 5 1]

B 563 | 750 | 7.00 | 588|823 1 |

C 330 | 100 | 100 | 7.62|6.39| 2 Il

D 10.0 | 3.57 | 3.89 |3.32|540| 4 Il

E 397 | 548 | 3.89 |10.0/6.30| 3 Il

F 0.73 | 0.00 | 0.00 | 0.00|0.07| 6 1]

RankingB: Division o1 o9 o3 04 o | Rank| Class

A 0.00 | 0.00 | 0.29 | 1.80|0.21| 5 1]

B 500 | 661 | 6.24 |513|7.30| 1 |

C 250 | 100 | 10.0 | 6.73|5.42| 2 Il

D 10.0 | 347 | 3.13 | 251|442 4 I

E 3.33 | 5,04 | 3.13 |10.0|5.28| 3 Il

F 0.50 | 0.00 | 0.00 | 0.00|0.05| 6 1]

Table 3: An example of objective ranking and classification for the data from the Table 2.

less important angd, as much more important (e.g., caring much for the local images
of the corporation). Suppose we use coefficientand 5 from Table 1 to express the
importance of criteria. The data from Table 3 change then as shown in Table 4.

We see that the change is essential: alternative E, third in ranking when all criteria
have the same importance, becomes first in ranking - since it is best in the most important
objectiveq,, while other alternatives have much lower achievement values for this deci-
sive criterion. However, alternatives B and C, formerly first and second in ranking, stay
rather close to alternative E and should be considered as practically equivalent, at least,
belonging to the same class I.

Suppose now that the analyst (the consulting firm), just in order to check the robust-
ness of the conclusions, decided to apply as well an equitable aggregation by computing
the values of a Lorentz quantile for all alternatives and the values of an OWA aggregation.
Since the worst alternatives have zero achievement values for many criteria, we might use
in this case Lorentz values

Lij= > O/

1<k<i
whered; are just achievement valugsreordered in an increasing sequence, for rather

largei = 3 (if the number of criteria were really large, a lower quantile of the Lorentz
curve could be used). The OWA aggregatigfi® is computed as in Eq. (6). The results
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Criterion q1 g2 q3 ga
Upper bound 35% | 50% | 45% | 80
Lower bound 11% | 8% | 9% | 30
Referenced (average) 19.2%| 26% | 23% | 54
Aspiration A 27.1%| 38% | 34% | 67
ReservatioM 15.1%| 17% | 16% | 42
RankingA: Division o1 o9 o3 04 o | Rank| Class

A 0.00 | 0.00| 0.71|0.83|0.29| 5 1]

B 563 | 7.50| 9.00| 3.88|6.48| 2 |

C 3.30 | 10.0| 10.0| 6.15|6.24| 3 |

D 10.0 | 3.57|5.89|1.32|3.40| 4 Il

E 3.97 | 5.48|5.89|10.0{6.50| 1 I

F 0.73 | 0.00| 0.00| 0.00| 0.07| 6 1]

Table 4: An example of objective ranking and classification with importance coefficients
(e =3,8="Tforq; andge, a = 5,3 =9 forgs, a = 1,3 =5 for ¢y).

Criterion q1 g2 qs3 ga
Upper bound 35% | 50% | 45% | 80
Lower bound 11% | 8% | 9% | 30
Referenced (average) 19.2%| 26% | 23% | 54
Aspiration A 27.1%| 38% | 34% | 67
Reservatio 15.1%| 17% | 16% | 42
RankingA: Division o1 o9 o3 04 o Lsj c°wa | Class
(rank) | (rank) | (rank)

A 0.00 | 0.00| 0.71| 0.83| 0.29(5)| 0.24(5)| 0.14(5)|

B 5.63 | 7.50| 9.00| 3.88| 6.48(2)| 5.67(2)| 4.85(2)| |

C 3.30 | 10.0| 10.0| 6.15]| 6.24(3)| 6.48(1)| 5.06(1)| |

D 10.0 | 3.57| 5.89| 1.32| 3.40(4)| 2.76(4)| 2.91(4)| Il

E 3.97 | 5.48|5.89|10.0| 6.50(1)| 5.11(3)| 4.72(3)| |

F 0.73 | 0.00| 0.00 | 0.00| 0.07(6)| 0.00(6)| 0.01(6)| 1N

Table 5: An example of objective ranking and classification with importance coefficients
as in Table 4, but augumented with Lorentz quantiles and OWA aggregation.

of such computations are given in Table 5.

We see that alternatives B, C, E, anyway close in overall achievement, might change
between themselves their position in the ranking list, but remain together in class I. This
is, however, expected: small changes of parameters or of the method of aggregation can
change the detailed position of an alternative in the ranking list, if the differences in over-
all evaluation between alternatives are small. Thus, it is better to avoid detailed ranking
of alternatives (and speak about ordering alternatives instead), while classifying alterna-
tives gives usually robust results. We see that the worst options are also rather robustly
classified despite of diverse changes of parameters and aggregation methods.

In some management applications the worst ranked options are the most interesting,
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because they indicate the need of a corrective action. Objective ranking was originally
motivated by an actual application when evaluating scientific creativity conditions in a
Japanese research university, JAIST. The evaluation was based on survey results. The
detailed results of the survey were very interesting theoretically, but also very useful for
university management, see (Tian et al. 2006), (Wierzbicki and Nakamori 2007). It was
found that seven questions ranked as worst practically did not depend on the variants of
ranking; thus, the objective ranking gave robust results as to the problems that required
most urgent intervention by the university management. The best ranked questions were
more changeable, only three of them consistently were ranked among the best ones in
diverse ranking variants.

The second example concerns the management of electromagnetic spectrum. This is a
highly political issue today: electromagnetic spectrum - with its use for mobile telephony,
satellite television, radio, GPS, military, intelligence, radioastronomy etc. - becomes one
of the most contested problems and profitable resources today; governments of all coun-
tries organize tenders for assigning parts of the spectrum to diverse purposes, institutions
and companies. Because of diverse parties interested and involved and highly political
pressures exerted, such tenders must rely on specific plans of managing electromagnetic
spectrum, prepared beforehand and approved by proper authorities. Typically, there are
only a few variants of such plans submitted for selection, but the number of criteria,
expressing the interests of diverse parties involved, might be quite high. We present be-
low modified, for confidentiality reasons, data concerning such a problem of selecting a
plan of managing electromagnetic spectrum, with 4 alternatives (versions of the plan) and
15 criteria. In this case, all alternatives are Pareto-nondominated; and for all alternatives
we can have some criteria with values at the lower bound. This is, as we shall see, an
essential difference from the former example.

The data for this example, together with statistics defining objective aspiration and

reservation points, partial and overall achievement values (the latter computed with rather
largee = 0.75, recall that n = 15) for normal importance of all criteria, Lorentz quantiles
Ls; (for i = n/3), OWA achievemen#$“* computed as in Eg. (6), are given in Table 6.
The criteria are arranged in hierarchical groups: 4 criteria of economic character, 3 criteria
of environmental character, 8 criteria of socio-political character. Such an arrangement
is convenient and even necessary for organization of criteria, however, as we shall see,
hierarchical aggregation of criteria should not be used for such a highly political example.

In Table 6., the original values of criteria were converted to a common scale O - 100;
but the lower bound was determined by a larger number of alternatives, some of which
have been deleted from the list, while the measurement scale was not adjusted again (we
should not change measurement units, as we commented earlier). The use of overall
achievement function (3) is doubtful, since its first (min) term is equal to zero for all
alternatives; hence the valuesamgfare defined by the second term (which in the function
has the regularizing role, therefore its values are relatively small, and similar for each
alternative). Therefore the resulting ranking is de-facto defined by the weighted sum of
component achievements scaledebgnd it thus sensitive to small changes of data. Fig. 1
shows the values the of overall achievement for each alternative.

A much more robust classification can be done using the Lorentz quantiles. Fig. 2
shows the graphs of ordered values of partial achievements for all alternatives. Fig. 3
shows the Lorentz curves and Fig. 4 shows the values for Lorentz quantile for each al-
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statistics Alternative A B C D
Criteriont qfv T a; in ;A ¢;B | 0;B qu o;C qD | o;D
Economic
1 68 | 34 84 100| 10.0| 89 | 7.94| 85 | 7.19| O | 0.00
2 81 | 40 90 62 | 4.76| 100| 10.0| 88 | 6.84| 75 | 5.80
3 30 | 15 65 100| 10.0| O |0.00| 21 | 3.48| 0 | 0.00
4 10 | 5 55 17 | 3.96| 23 |4.44| 0 | 0.00| 0 |0.00
Environmental
5 96 | 48 98 98 | 7.00| 100| 10.0| 99 | 8.50| 92 | 6.52
6 94 | 47 97 96 | 6.92| 100| 10.0| 97 | 7.00| 86 | 6.12
7 86 | 43 93 100| 10.0| 75 | 556| 93 | 7.00| 79 | 5.88
Socio-political
8 96 | 49 99 96 | 6.76| 99 | 7.00| 100 | 10.0| 99 | 7.00
9 84 | 42 92 92 | 7.00| 87 | 6.60| 88 | 6.68| 68 | 5.08
10 30 | 15 65 O [0.00| 18 |3.24| 2 | 0.40/| 100] 10.0
11 74 | 37 87 0O [0.00| 100| 10.0| 100 | 10.0| 100 10.0
12 96 | 48 98 100| 10.0| 98 | 7.00| 98 | 8.00| 91 | 6.52
13 64 | 32 82 67 | 5.80| 48 | 4.28| 38 | 3.48| 100 | 10.0
14 72 | 36 86 0O [0.00] 99 | 9.79| 99 | 9.79| 92 | 8.29
15 74 | 37 87 O [0.00| 96 | 9.08| 100| 10.0| 99 | 9.54
Overall
achievement 411 5.24 4.86 454
o; (rank) 4) ) 2) 3)
Lorentz
guantile 0.65 3.50 2.80 2.17
Lsj (rank) 4) ) 2) 3)
OWA
achievement 0.30 2.02 1.12 0.69
o7 (rank) 4) ) 2) 3)

Table 6: Data and analysis for an example of spectrum management; normal importance
of criteria.

ternative. Note that while the alternative (plan) B remains ranked first, Lorentz quantile
gives it a more decisive margin - while alternative C and D, by overall achievement func-
tion ranked second and third with similar achievement values, by Lorentz quantile gives
a more decisive margin.

This order (B-C-D-A) is strongly confirmed by OWA achievement ranking which
gives most clear classification. Fig. 5 shows OWA graphs and Fig. 6 graph of OWA
achievements.

We shall not repeat this example for changed importance of criteria, since such a
change gives rather obvious results. For example, we could improve slightly the position
of alternative A (which is good in most economic criteria) if we declared all economic
criteria as very important; however, alternative A could not be ranked first by the analyzed
approaches even in this case, since it is ranked worst, with zero achievements, on many
socio-political criteria.

The situation changes entirely, if we agree to a hierarchical compensatory aggrega-
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Figure 1: Values of the overall achievement (using the RFP method) for each alternative.

o — o

Figure 2: Ordered values of partial achievements for all alternatives.

tion of criteria: if we assume that all criteria in each group are compensatory, we can
use weighting coefficients for lower level aggregation. In actual political situation, such
an aggregation is not applicable, for many reasons; e.g., socio-political criteria represent
interests of diverse political groups that would never agree to treat their criteria as com-
pensatory and consider them jointly. Nevertheless, we present below such aggregation
just to illustrate possible dangers related to it. In Table 7, such an aggregation was per-
formed when assuming normal and equal importance, thus equal weights, for all criteria
in each group.

Because there are only 3 aggregated criteria, we use here Lorentz quantile L2j. The
results of hierarchical aggregation seem to confirm the earlier analysis, although the two
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Figure 4: Values of Lorentz quantiles.

last alternatives (D and A) exchange their rank. However, there is a deeper danger in
linearly averaging assessment data and preparing a decision based on averages: since
human preferences are essentially nonlinear, details important for preferential assessment
might get lost in averaging. For example, after averaging we know only that alternative

A is slightly worse on socio-political criteria, not that is it is very bad on half of them.
Therefore, after averaging, if we declared that economic criteria are very important, the
alternative A could be even ranked first - which was impossible with nonlinear assessment
of not aggregated data. For this reason, aggregation is a tool of political manipulation used
quite often - after a suitable aggregation, data might indicate much better assessment than
actually applicable.
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Figure 6: Achievement values for the OWA method.

7 Conclusions

This paper presents some aspects of multiple criteria analysis of discrete decision prob-
lems with large numbers of criteria, including a critique of classical methods. It pro-
poses modifications of reference point approaches, statistical determination of reservation
and aspiration levels, treatment of weighting coefficients as importance factors, equitable
aggregation approaches, hierarchical aggregation of criteria - all motivated by practical
needs resulting from the specificity of problems with large numbers of criteria, but intro-
ducing, in our opinion, some important distinctions and concepts. To these belong:

1. The modification of reference point approaches with treatmeimpdrtance fac-
tors as achievement values for reservation and aspiration levels.
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Alternative Statistics A B C D
Criterioni | ¢?” | r; | a; | ¢ia | 054 | @B | 0iB | %ic | 0ic | %D | 0D
Economic

1 100 89 85 0 | 0.00

2 62 100 88 75

3 100 0 21 0

4 17 23 0 0
Aggregated | 48 | 24| 74| 69 | 6.60| 53 | 5.32| 49 | 5.00| 19 | 2.37
economic
Environmental

5 98 100 99 92

6 96 100 97 86

7 100 75 93 79

Aggregated | 92 | 46| 96| 98 | 8.50| 92 | 6.68| 96 | 7.00| 86 | 6.20
environmental

Socio-political

8 96 99 100 99
9 92 87 88 68
10 0 18 2 100
11 0 100 100 100
12 100 98 98 91
13 67 48 38 100
14 0 99 99 92
15 0 96 100 99

Aggregated | 92 | 46| 96| 98 | 8.50| 92 | 6.68| 96 | 7.00| 86 | 6.20
socio-political | 76 | 38| 88| 44 | 3.48| 80 | 6.36| 78 | 6.20| 93 | 8.25

Overall
achievement 4.41 6.24 5.91 3.21
o; (rank) 3) () 2) 4
Lorentz
guantile 5.04 5.84 5.60 4.28
Lsj (rank) 3) () 2) 3)
OWA
achievement 4.45 5.06 4,92 3.77
o7 (rank) 3) 1) 2) 4)

Table 7: Data and analysis for an example of spectrum management; hierarchical aggre-
gation assuming compensatory character and equal importance of all criteria in a group.

2. The use of statistical determination of reservation and aspiration levels for obtain-
ing decision selection, classification or ranking based on dataahobjective as
possible.

3. The modification ofequitable aggregation approaches combined with objective
ranking (statistical determination of reservation and aspiration levels

4. In the problem of hierarchical aggregation of criteria, the distinction beteeen
pensatory and non-compensatgnpups of criteria, depending on the possibility of
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rational substantiation of the values of weighting coefficients.

5. The distinction of three approaches to a hierarchical aggregation of criteria in mul-
tiple criteria decision analysis:
e Compensatory aggregation on lower level, non-compensatory analysis on upper
level;
e Non-compensatory aggregation both on lower and on upper level;
e Non-compensatory aggregation with weighting coefficients treated as importance
factors.

6. The discussion and a theorem on the preservation of Pareto-nondominance after
hierarchical aggregation with strictly monotone aggregating functions.

7. Two realistic (even if distorted for confidentiality reasons) examples of problems
with relatively large numbers of criteria. The examples indicate also that while
a hierarchical organization of criteria is an important and even necessary tool for
discrete decision problems with large numbers of criteria, hierarchical aggregation
of criteria has rather limited applicability. In particular, compensatory aggregation
on lower levels might hide important details and allow political manipulation.
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