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Abstract – Earth observations are one way to reduce the risk 
to standing forests from damages caused by wild fires, since 
they enable early warning systems, preventive actions and 
faster extinguishing of fires, before they spread out. Another 
channel through which fire hazard can be reduced is the 
thinning of the forest, so the risk of a fire occurring becomes 
partially endogenous. In order to shed more light on optimal 
forest management under such endogenous fire risk, we 
develop a real options model, where the price of biomass is 
stochastic and the harvesting decision needs to be timed 
optimally in the face of these uncertainties. We find that there 
is a positive value of information. In other words, there is a 
positive willingness to pay for Earth observations by forest 
managers. 
Keywords: value of information; Earth observation; endogenous 
risk; real options 
 

1. INTRODUCTION 
 

The recent upsurge in large-scale wild fires as for example in 
Austria has raised the public’s awareness of the need to establish 
mechanisms to accelerate fire extinguishing, evacuation and – if 
possible – the prevention of the fire in the first place. However, 
such mechanisms are useless, if there is not sufficient information 
about the incidence and location of the fires. Khabarov, 
Moltchanova and Obersteiner (2008) conduct simulation studies to 
estimate the benefits of a finer grid of weather stations and more 
frequent patrols in forest areas, so that wild fires can be detected 
earlier and – if not prevented – at least limited or extinguished 
before they can spread to a larger area and thus cause economic 
damage and endanger the life of humans and animals. They find 
that the addition of more weather stations indeed reduces the 
fraction of the area burnt by wild fires. The value of Earth 
observations is thus substantial for the information of wild fire 
containment activities and will have decisive influence on forest 
management issues such as optimal rotations.  
 
1.1  Motivation 
The forest sector is characterized by irreversible decision-making 
(the cutting of trees) under uncertainty (the risk of fire and the 
price of biomass). The problem setup therefore qualifies for the 
application of real options theory (Dixit & Pindyck, 1994). The 
main idea behind real options is that sufficiently large uncertainty 
makes it worthwhile to postpone irreversible decisions. In the case 
of forestry management, the decision to cut trees will be 
postponed until more information about the price that can be 
earned by selling the wood becomes available. In other words, the 
option to cut has a “waiting” value, which initially exceeds the 
immediate profits from cutting and selling trees. The real options 
approach then enables the determination of the optimal timing of 
this decision.  

The other source of uncertainty we want to consider and actually 
focus upon in this study is fire hazard and the potential impact of 
Earth observations in this context. In fact, if the incidence of fire 
can be reduced due to quick extinguishing or even prevention 
actions, then this will have substantial impacts on profits and – as 
will be shown in the analysis – behavioral patterns will change as 
well.  
In this paper we model fire risk to be increasing in stand age, 
which is of course dependent on the rotation decisions. The fire 
risk is therefore partially endogenous to the optimization of the 
forest manager’s behavior, as will be seen in the results. The 
analysis is thus not only useful to evaluate the benefits from Earth 
observation, but it is also interesting from the theoretical point-of-
view: González Olabarria (2006), for example, finds in his 
doctoral thesis that an increase in fire risk leads to shorter rotations 
if fire risk is purely exogenous. If the risk is considered to be 
endogenous to stand management, a clear effect of risk on the 
thinning regime was observed, with earlier and more intensive 
thinning as fire risk rises. This shows that the endogeneity of fire 
risk is a decisive factor in forest management and should therefore 
not be neglected in optimal rotation analyses.  
This study builds on earlier work by Huang and Jana Szolgayova 
(2007), conducted at IIASA. The framework is extended to 
include stochastic biomass prices and models fire risk differently. 
This makes the model suitable to investigate the benefits of Earth 
observation in a novel way, while at the same time making a 
contribution to the existing literature on real options modeling of 
forest management. 

 
1.2 References to Related Work  
Optimal forest management modeling has a long history in 
forestry economics, going back as far as the mid-19th century, 
where Faustman’s (1854) seminal work set off an ongoing debate 
about the right approach for determining optimal rotations in 
forests. An excellent overview of the related literature can be 
found in Chladna (2007). In this section we rather want to focus 
on the application of real options to forestry management and on 
the literature concerned with fire risk in particular. 
Morck et al. (1989) was probably the first paper introducing real 
options to forestry economics. While Morck et al. (1989) used the 
contingent claim approach to value forestry lease under 
uncertainty about timber prices and timber inventories, later work 
by Thomson (1992) modeled these decisions in a discrete 
framework and used the lattice method. Most of the more recent 
real options literature in forestry management decision-making 
focuses on stochastic biomass prices and forest growth or 
combinations of the same (e.g. Insley, 2002; or Saphores, 2003). 
Alvarez and Koskela (2004) have further investigated the impact 
of stochastic interest rates. A more elaborate review of these 
studies can be found in Chladna (2007). Her work differs from the 
other studies insofar as she considers the optimal rotation period 



under the assumption of stochastic wood and stochastic carbon 
prices, regarding the forest as a potential carbon sink giving it 
some value beyond the supply of biomass. 
With respect to fire risk and its impact on forestry management, 
there are several studies computing the rotation age maximizing 
the profits from selling timber. Seminal work includes Martell 
(1980), Routledge (1980) and Reed (1984). While Martell (1980) 
and Routledge (1980) use discrete time and fire probabilities, 
which are dependent on stand age, Reed (1984) considers optimal 
rotation in a continuous time framework, where fire risk is 
independent of stand age. Later work also included other aspects 
to the analysis. Caulfield (1988), for example, incorporated risk 
aversion. 
As regards the methodologies employed in these frameworks, a 
diversity of approaches can be observed: Cohan et al. (1986) use 
decision trees to analyze different sources of uncertainty, 
including fire, to find optimal decisions concerning fuel and 
timber management. Reed and Errico (1986), make use of Monte 
Carlo simulations to determine the optimal harvesting schedule. 
Gassmann (1989) optimizes the expected harvested timber volume 
of timber over a finite planning horizon, where random parts of 
the forest can be lost due to fires. Boychuk and Martell (1996) 
employ multistage stochastic programming methods to optimize 
forest management given that timber supply should be maintained 
in the long run.1 A more comprehensive overview can be found in 
González Olabarria (2006). 
The work presented in this paper will differ from the reviewed 
literature in various points: it will include both a stochastic timber 
price and stochastic endogeneous incidence of fire dependent on 
stand age and density; at the same time maintaining a wide range 
of decisions available to the forest owner. It will also explicitly 
employ a real options approach and the associated valuations and 
interpretations thereof; and the model will be formulated so as to 
enable an analysis of decreased fire hazard due to Earth 
observation and the impact of this on income and forestry 
management behavior.    

 
2. MODELING FRAMEWORK 

 
2.1  Forest management data 
Similar to Huang (2007), we use the Forest Inventory and 
Analysis (FIA) database, documentation on which can be found at 
(http://www.ncrs2.fs.fed.us/4801/FIADB/fiadb_documentation/S
NAPSHOT_DB_V2pt1_JULY_2006.pdf). FIA data are collected 
on a periodic basis. The database has a uniform data structure for 
forestry inventories. It contains extensive data on stand age, stand 
size, diameter, stocking status, height, species and other attributes. 
Table A shows the data extracted from the FIA database for one 
the 12 southern states of US. Using a statistical software package, 
plot level data were used to generate descriptive statistics for 
loblolly pine.   
 
 
 
 
                                                           
1 Multi-stage optimisation problems can be formulated in such a way as to 

answer the same questions as real options models. However, they have 
the tendency to become computationally intensive when there are many 
periods and scenarios, since it requires decision-making at each stage 
depending on the prior history of states. Cheng et al (2004) compare 
the two approaches and their advantages and disadvantages in more 
detail. 

Table A.  Descriptive statistics for loblolly pine 
Variables unit mean std. dev.
Growing stock volume cubic feet/acre 1333.5 1110.89 
Stand age Years 18 7.771 
Stand density 100 trees/ acre 3.92 3.396 
Site productivity class - 3.8 0.992 

 
For the estimation of the forest’s growth, we first use the basic S-

shaped Richard’s function: c
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average growing stock volume (GSV) per tree on plot i depends 
on the stand age on plot i, where a is the maximum value of GSV 
per tree, which is about 143 cubic feet in our case. Parameter b 
refers to the shape and c is the maximum age. 
Since a  single tree on a forest stand will obviously grow faster 
(because of the ample supply of water, light and nutrients) than a. 
tree in a full-stocked stand, we extend the single tree model to a 
model of a stand by employing the self-thinning line used in 
Huang (2007). Finally, since two thinnings of prescribed intensity 
during one rotation period are available as a managerial decision 
in the real options model, we extend the volume function to 
describe the volume for each stand age and each thinning decision 
possible.  
We also use the same method as Huang (2007) to estimate the 
diameter as a function of GSV per tree, which is an increasing 
relationship (but at a diminishing rate) given the data. 
 
 2.1  Real Options Model 
Given the growth model referred to in the last section, we can now 
turn to the real options model to determine the optimal forest 
management schedules in the face of fire risk. X defines the 
current status of the forest stand. It is thus a vector including stand 
age and thinning status, where the latter is described by the 
year/years of thinning. Knowing Xt therefore implies knowing the 
site-specific stand GSV and the average diameter at time t.  
The wood price is modeled as a stochastic, mean-reverting 
process, where the stumpage price data are assembled from 
Timber Mart-South (TM-S). The data is for three product classes, 
which are specified as (1) pulpwood (PW) at a d.b.h. of 4 to 9 
inches, (2), chip-n-saw (CNS) at a d.b.h of 9 through 11 inches, 
and (3) saw timber (ST) with a d.b.h greater than 11 inches. For 
products that are smaller than pulpwood the biomass value is 
considered. The price per tin in US$ is 6.42 for PW, 25.8 for CNS, 
40.97 for ST and 1 for the biomass value. Using these data, the 
product price is modeled as a function of the diameter, where we 
will use both a step-function and a continuous function and 
compare the results.  
We consider both the state X and price P to be Markov processes, 
which means that the information for determining the probability 
distribution of future values of X is summarized in the current 
state Xt and is independent of past states. 
Following Huang (2007), planting costs are linear in planting 
density. Per-acre costs of growing trees are based on current 
loblolly pine plantation practice. The cost on burned land is lower 
than that on unburned land because less soil preparation is 
required. 
Forest fires occur according to a Poisson process with arrival rate 
λ. The impact of the fire is the destruction of the total stock 
volume. The probability that a fire occurs is (1-e-λ ). λ is modeled 
as a function of stand age and stand density. λ is assumed to be 
decreasing with stand age, since older trees will be more resistant 

http://www.ncrs2.fs.fed.us/4801/FIADB/fiadb_documentation/SNAPSHOT_DB_V2pt1_JULY_2006.pdf
http://www.ncrs2.fs.fed.us/4801/FIADB/fiadb_documentation/SNAPSHOT_DB_V2pt1_JULY_2006.pdf


to fire. As fires are more probable on a denser forest stand, λ is 
increasing with stand density. Thinning thus helps to reduce fire 
risk in addition to fostering forest growth.   
We assume the decisions can be made on a yearly basis.  There are 
three managerial actions the forest manager can perform in each 
time period: (1) thin, (2) harvest and (3) do nothing. The action 
performed and the resulting state of the forest stand will then 
determine the immediate profits, i.e. the difference between the 
income from selling the harvested wood and the costs of doing so. 
The model determines the decisions (in the optimal control sense) 
that maximize the sum of expected  dicounted profits. 
The associated optimal control problem can be solved recursively 
by fixing the terminal value to zero and choosing the optimal 
action, at

2, to maximize the following value function for all 
possible future states (depending also on fire occurrence) and 
wood price instances:  
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This so-called Bellman function is composed of the immediate 
profits denoted by that are received upon harvesting and the 
continuation value (second part of the sum), which is the expected 
value of the value function in all possible future states and for all 
possible future prices given today’s prices and state. The second 
part is thus the value from waiting and we compute it by using 
Monte Carlo simulation. This method was chosen, since it remains 
computationally efficient for a high degree of complexity and is 
rather precise when the discretization of the price is sufficiently 
fine. The output of the process is a table with the optimal action 
for each time period t, for each possible state X and for each 
possible wood price at that time, Pt. To obtain the final outcome, 
we conduct 10,000 simulations and extract the corresponding 
decisions from the output table. 

)(•π

 
3.  RESULTS: OPTIMAL ROTATIONS & LOSSES DUE TO 

LACK OF EARTH OBSERVATIONS 
 
3.1 Optimal rotations & the impact of different product price 
functions 
The optimal rotations have been computed with the above model 
for both a step-wise price function and a continuous price function 
for a range of different fire arrival rates. Figures 1 and 2 show the 
median of optimal forest management decisions for these 
continuous and step-wise price functions respectively. 
What can clearly be seen from both Figures is that higher fire risk 
(i.e. a larger probability that a fire will destroy the stand) leads to 
earlier harvesting, i.e. shorter rotations, and also to earlier 
thinning. In the continuous case, these relationships are smoother 
than in the step-wise case, since the harvesting time drops more 
drastically, once a threshold is surpassed, and stays constant until 
the next “step” of the price is reached. Note also that the 
continuous case starts out with an optimal harvesting time of 33, 
which falls to 29, as the fire risk increases, while the step-wise 
case starts out at 40, dropping to 26 with higher risk. The 
magnitude of the impact is thus also larger when stepwise prices 
are used. 

                                                           
2 The actions are element of the set of feasible actions, At, where e.g. 

thinning is not a feasible action in the year following a harvest, i.e. it is 
not element of At in that time period. The action determined is a 
function of state and price in that year. 
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Figure 1. Fire risk impact on decisions with continuous prices. 
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Figure 2. Fire risk impact on decisions with step-wise prices. 
 
Reducing fire risk by obtaining better information through EO will 
therefore lead to longer rotations and thus also higher-quality 
wood output: in Figure 2, the share of saw timber rises with 
falling fire risk. Since saw timber commands a higher price than 
chip-n-saw wood, this could lead to higher expected profits. The 
following section will therefore be devoted to analyzing the 
impact of fire risk on expected profits and the associated 
distributions. 
 
3.2 Value of information & analysis of distributions 
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Figure 3. Impact of fire rate on profits in $/acre. 
 
Earth observation can be represented in the model by its impact on 
fire risk. As already mentioned, earlier studies (Khabarov et al., 
2008) show that Earth observation shortens response times, i.e. 
fires can be extinguished before major damage has occurred. Since 
fire risk in our model implies the loss of the whole stand, Earth 
observation results in lower fire risk. Therefore, we can determine 
the value of information from Earth observation by comparing 
profits for different fire risk rates. 



Figure 3 shows that expected profits fall, as the rate of fire 
increases, which is in line with our considerations from the 
previous section. In addition, we can analyze the the impact of 
Earth observation (through a decrease in the rate of fire) on risk in 
terms of expected profits, measured by the Conditional Value-at-
Risk (CVaR). The CVaR of profits is a risk indicator calculated as 
the average of the lowest 5% of profits and Figure 3 shos that 
CVaR-risk is rising with increasing fire risk. For high rates of fire 
risk, we see that the CVaR of the profits might even be negative, 
since for simulations with more frequent forest fires, you would 
harvest so early that the costs exceed the income from selling 
chip-n-saw wood.   
 

 
Figure 4. Profit distributions with different degrees of fire risk. 
 
These insights are confirmed in Figure 4, where the distribution of 
expected profits for low fire risk (yellow) is much narrower than 
the one for larger fire risk (upper panel). Furthermore, the lower 
panel indicates that the average harvesting time increases 
substantially, as fire risk decreases. Together with the fact 
observed in the previous section – that the share of saw timber 
increases with falling risk – this observation explains the gains in 
expected profits that can be seen in the upper panel of the same 
panel and in Figure 3. 
 

4. CONCLUSION 
 
This paper has presented the results of a study on optimal rotations 
in a real options framework, where the major source of uncertainty 
is fire risk. The fire risk being defined as loss of a forest stand in 
case of fire, the results have shown that Earth observation can lead 
to considerable gains in terms of expected profits and risk by 
reducing the fire risk. Rotations will be longer as a result of more 
security and the share of saw timber can be increased 
substantially. 
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