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Abstract.   We present eco-genetic modeling as a flexible tool for exploring the course and 

rates of multi-trait life-history evolution in natural populations.  We build on existing modeling 

approaches by combining features that facilitate studying the ecological and evolutionary 

dynamics of realistically structured populations.  In particular, the joint consideration of age 

and size structure enables the analysis of phenotypically plastic populations with more than a 

single growth trajectory, and ecological feedback is readily included in the form of density 

dependence and frequency dependence.  Stochasticity and life-history trade-offs can also be 

implemented.  Critically, eco-genetic models permit the incorporation of salient genetic detail 

such as a population’s genetic variances and covariances, the corresponding heritabilities, as 

well as the probabilistic inheritance and phenotypic expression of quantitative traits.  These 

inclusions are crucial for predicting rates of evolutionary change on both contemporary and 

longer timescales.  An eco-genetic model can be tightly coupled with empirical data and 

therefore may have considerable practical relevance, in terms of generating testable predictions 

and evaluating alternative management measures.  To illustrate the utility of these models, we 

present as an example an eco-genetic model used to study harvest-induced evolution of 

multiple traits in Atlantic cod.  The predictions of our model – most notably that harvesting 

induces a genetic reduction in age and size at maturation, an increase or decrease in growth 

capacity depending on the minimum size limit, and an increase in reproductive investment – 

are corroborated by patterns observed in wild populations.  The predicted genetic changes 

occur together with plastic changes that could phenotypically mask the former.  Importantly, 

our analysis predicts that evolutionary changes show little signs of reversal following a harvest 

moratorium.  This illustrates how predictions offered by eco-genetic models can enable and 

guide evolutionarily sustainable resource management. 

Key words: life-history theory; phenotypic plasticity; density-dependent growth; evolution; 

fishing-induced adaptive change; fisheries-induced evolution; harvest; reproductive 
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investment; probabilistic maturation reaction norm; quantitative genetics; eco-evolutionary 

dynamics 

 

Introduction 

Throughout the natural world, tremendous diversity exists in the life histories of 

organisms.  The central goal of evolutionary ecology is to understand the processes that create 

and maintain this diversity (Roff 1992, Stearns 1992).  Such a goal is an important and worthy 

endeavor because the life-history characteristics of organisms influence biodiversity patterns, 

dictate the response of populations to anthropogenic environmental change, shape the 

exploitation patterns of humans, and play a crucial role in the success of invading exotic 

species.  Models are indispensable tools in all of these areas because they provide a basis for 

understanding the often intricate mechanisms involved in creating and altering life-history 

variation, and can be used to guide empirical work.  Models can, and should, also be used 

proactively to predict the effects of human activities (such as harvest, pollution, or habitat 

alteration) on organisms and their life-history characteristics.  In this article we describe a tool, 

eco-genetic modeling, that is based on building blocks that are mostly well established, but are 

here combined in a novel way.  Eco-genetic models are designed to study life-history evolution 

on contemporary timescales and to establish a tight coupling with empirical data, thus 

improving the practical relevance offered by many previous models. 

Several approaches have been devised for examining the evolution of life-history traits.  

Commonly employed theoretical tools include optimization models, quantitative genetics 

models, and adaptive dynamics models.  Optimization models (e.g., Cole 1954, Maynard 

Smith 1978, Law 1979, Orzack and Sober 1994, Day and Rowe 2002) are the most traditional 

and widely used type of life-history model (Mangel and Clark 1989, Roff 1992, Stearns 1992).  

In an optimization model, a chosen measure of fitness is maximized – usually either lifetime 
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reproductive output or a population’s rate of increase.  Optimization models can only predict 

evolutionary endpoints under frequency-independent selection, which correspond to maxima of 

a chosen fitness measure.  In a traditional optimization model, the life-history traits in question 

are represented as phenotypes and there is no consideration of underlying genetic detail (Bull et 

al. 2004).  Quantitative genetics models (e.g., Gomulkiewicz and Kirkpatrick 1992, Kirkpatrick 

1993, Van Tienderen 1997, Baskett et al. 2005) differ from optimization models by including 

such genetic detail.  A typical quantitative genetics model will permit a more detailed 

perspective on genetic mechanisms underlying life-history variation and, thereby, will allow 

predicting evolutionary rates over a few generations.  However, owing to the inevitable 

evolution of genetic variances and covariances, such models can usually not yield reliable 

predictions over longer timescales.  In adaptive dynamics models (e.g., Dieckmann and Law 

1996, Geritz et al. 1998, Nowak and Sigmund 2004), genetic detail is sacrificed in favor of 

ecological detail, and evolution is modeled as a successive process of invasions by variant 

phenotypes.  The power of adaptive dynamics models results from the fact that in these 

models, unlike in optimization models and in typical quantitative genetics models, selection 

can be density-dependent as well as frequency-dependent.  This is an advantage because, in the 

course of evolution, the fitness landscape on which individuals evolve must be expected to 

change as their environment and, in particular, the phenotypic composition of their 

conspecifics changes.  Selection in such settings is usually both density-dependent and 

frequency-dependent because the fitness of an individual is a function of its phenotype and 

environment, with the latter being affected by the type, density, and frequency of other 

phenotypes in the population (Metz et al. 1992, Heino et al. 1998).  Accounting for the 

complexities of frequency-dependent selection often rules out incorporation of genetic 

complexity, so that a typical adaptive dynamics model predicts evolutionary endpoints and the 

shape of evolutionary transients, but is not meant to forecast evolutionary rates in real time, as 

these rates not only depend on selection pressures but also on a population’s genetic variance. 
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While these evolutionary modeling approaches have provided the basis of most of our 

current understanding of life-history theory, they involve a number of simplifications.  First, 

most previous models (e.g., Law and Grey 1989, Getz and Kaitala 1993, Ernande et al. 2004, 

Tenhumberg et al. 2004, Baskett et al. 2005) do not include density-dependent growth, even 

though its importance for shaping life-history characteristics and population dynamics has been 

well documented (Ray and Hastings 1996, Lorenzen and Enberg 2002).  Another simplification 

has been the omission of phenotypic plasticity from many life-history models, even though it 

controls the phenotypic expression of genetically-based traits by forming a link with the 

environment (for introductory treatments of phenotypic plasticity see Scheiner 1993, Pigliucci 

2005).  A third simplification has been the lack of genetic detail: previous models, most 

notably adaptive dynamics and optimization models, have examined phenotypic evolution 

without including such information.  Predicting rates of evolutionary change in real time is 

then not possible, which limits thorough comparisons between observed trends and model 

predictions. 

Comprehensive modeling tools are needed if we wish to study the rates of multi-trait 

evolution while including features such as genetic detail and ecological feedback.  Here, we 

present eco-genetic modeling as an integrative tool for including salient genetic detail in 

conjunction with important aspects of the ecological setting.  The genetic component of an eco-

genetic model follows the evolution of the distribution of quantitative traits that are inherited 

by offspring from their parents.  The ecological setting of an eco-genetic model accounts for 

aspects of an individual’s environment that are pertinent to the evolutionary process, including 

structured population dynamics, phenotypic plasticity, environmental stochasticity, and 

ecological feedback through density-dependent and frequency-dependent processes.  As far as 

we are aware, eco-genetic modeling is the only tool that simultaneously enables, in the context 

of realistically structured population dynamics, (i) analyses of density-dependent and 

frequency-dependent ecological feedback, (ii) predictions of evolutionary rates, transients, and 
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endpoints, and (iii) incorporation of genetic detail such as mode of inheritance, distribution of 

genetic variance, and phenotypic expression of quantitative genetic traits.  An application of 

this modeling tool was presented by Dunlop et al. (2007), who used an eco-genetic model to 

predict the consequences of mortality-induced evolution in introduced populations of 

smallmouth bass Micropterus dolomieu.  Another recent application is the eco-genetic model 

of brook charr Salvelinus fontinalis designed to study fishing-induced evolution of anadromous 

migration and residency (Thériault et al. 2008). 

Below, we describe eco-genetic modeling in general and demonstrate its utility for 

studying life-history evolution.  Specifically, we outline the unifying concepts and building 

blocks underlying these models.  By examining harvest-induced evolution, we then highlight a 

particularly promising application of eco-genetic models.  This example is designed to address 

two questions.  First, what are the predicted contemporary consequences of harvesting for the 

joint evolution of multiple life-history traits?  Second, how fast do multiple traits recover 

following a harvest moratorium?  By addressing these questions, we hope to illustrate how eco-

genetic models can help us understand complexities of adaptation and predict anthropogenic 

impacts on natural resources. 

 

An Overview of Eco-genetic Modeling 

As the name implies, the goal of eco-genetic modeling is to provide a comprehensive 

methodology for modeling life-history evolution by including salient genetic detail in 

conjunction with critical ecological detail (Figure 1).  The ensuing eco-genetic dynamics 

describe how the distribution of genetic traits (not just of their means and variances) changes in 

the course of Darwinian evolution, as trait values promoting survival and offspring production 

are demographically favored.  Therefore, unlike many traditional life-history models, eco-

genetic models do not assume any fitness functions a priori, but, instead, as in adaptive 
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dynamics models, allow fitness to emerge naturally as a consequence of the underlying 

population dynamics.  It also follows that eco-genetic models allow examining the pathway of 

evolution, rather than only focusing on evolutionary endpoints, while many traditional life-

history models only permit the latter. 

Although substantially flexible, eco-genetic models are unified by several key concepts 

(Figure 1).  Below, we briefly outline these concepts and explain why their inclusion is often 

important for models of life-history evolution. 

Process-based description of demographic mechanisms 

Eco-genetic models are designed so that population-level and system-level properties 

emerge from the underlying and realistically modeled individual-level processes of growth, 

maturation, reproduction, and mortality.  Modeling processes in this way allows for a 

mechanistic approach to demographic change, in lieu of simply providing a phenomenological 

description of population properties.  This process-based approach also means that eco-genetic 

models can be closely linked with, compared to, and parameterized based on empirical data. 

Population structure 

Differential survival and reproductive success of individuals in a population will 

usually depend on aspects such as their age, size, maturation status, condition, sex, and 

phenotype. Incorporation of the resultant population structure is therefore necessary if we are 

to predict directions, rates, and magnitudes of life-history evolution with any satisfactory 

degree of realism and accuracy (e.g., Metz and Diekmann 1986). 

Density dependence and frequency dependence 

The traditional approach to modeling animal populations in general, and fish 

populations in particular, is to assume that density dependence acts only during early life 

stages.  When this assumption is made, optimization models can often be used to model life-

history evolution.  However, it is increasingly being recognized that density dependence also 

acts during other phases and in conjunction with other aspects of an organism’s life cycle.  For 
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example, density-dependent growth must be expected to occur at many stages because the 

presence of conspecifics alters food availability (Bromley 1989, Rijnsdorp and Van Leeuwen 

1992, Ray and Hastings 1996, Post et al. 1999, Lorenzen and Enberg 2002, Persson and de 

Roos 2006).  While it is evident that there are fitness implications of altered growth conditions 

for body size and thus for survival, maturation, and reproduction, the resultant evolutionary 

consequences are often intricate (e.g., Ylikarjula et al. 1999, Claessen and Dieckmann 2002, 

Ylikarjula et al. 2002).  Also, an overlap between the density-dependent and trait-dependent 

portions of an organism’s life cycle implies frequency-dependent selection.  This precludes the 

application of optimization models and of quantitative genetics models based on frequency-

independent selection, thus requiring another approach such as the one we are proposing here.  

Furthermore, harvest by humans, like any other type of predation, can be density-dependent 

(Hilborn and Walters 1992).  Comprehensive eco-genetic models must therefore consider the 

importance of population abundances, densities, and biomasses for shaping demographic and 

evolutionary processes. 

Phenotypic plasticity 

Many life-history traits exhibit phenotypic plasticity (Stearns 1989, Pigliucci 2005), 

such as when ambient temperature affects growth or when fast-growing individuals tend to 

mature younger.  As selection acts on the phenotypes of individuals, phenotypic plasticity can 

influence the rates and endpoints of evolution, especially in temporally or spatially 

heterogeneous environments (e.g., Ernande et al. 2004).  For example, in the quantitative 

genetics model of Baskett et al. (2005), including phenotypic plasticity in size at maturation 

produced rates of fisheries-induced evolution in Atlantic cod (Gadus morhua) that more 

closely matched empirical trends than when plasticity was not considered. 

Stochasticity 

The sources of stochastic variation potentially relevant in eco-genetic models span from 

genetic processes and the micro-environment of an individual to inter-annual variation in the 
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macro-environment experienced by a population.  Stochasticity can be incorporated in an eco-

genetic model so that the genotypes, phenotypes, events, demographic rates, or environment 

are affected, without a need for explicit modeling of the detailed mechanisms underlying such 

variability (e.g., Grimm and Railsback 2005).  Temporal autocorrelation of stochastic noise can 

also be incorporated, for example, if there is an interest in modeling time series of temperature 

effects (Steele 1985, Halley 1996).  Stochasticity is particularly important for the evolution of 

bet-hedging strategies such as dormancy, iteroparity, and dispersal (e.g., Murphy 1968, Levin 

et al. 1984, Venable and Brown 1988). 

Genetic variation 

Evolving traits in an eco-genetic model genetically vary between individuals, with a 

component of their phenotypic variation being heritable.  With heritable variability being a 

prerequisite for adaptive evolutionary change, genetic variance has a strong influence on the 

speed of such processes (Houle 1992, Dunlop et al. 2007).  In response to strong selection 

pressures, such as those resulting from severe anthropogenic environmental impacts, the 

distribution of genetic variation can deviate substantially from being normal, thus defying 

simplified descriptions merely based on means and variances.  Furthermore, for purposes of 

comparison and understanding, it is often illuminating to switch off evolution in eco-genetic 

models by making populations genetically monomorphic or by making variability non-

heritable. 

Trade-offs 

Life-history traits are typically traded off against one another, so that an increase in one 

component of fitness will cause a decrease in another (Stearns 1992).  A ubiquitous trade-off to 

be captured in an eco-genetic model is that between somatic growth and reproductive 

investment.  Other trade-offs might occur between growth and survival or between 

reproductive investment and survival.  These trade-offs are common in nature and lie at the 

heart of life-history theory because they crucially shape the life-history strategies, energy 
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allocation patterns, and behaviors of individuals (Law 1979, Roff 1992, Stearns 1992, 

Gunderson 1997, Lester et al. 2004). 

 

Building Blocks of Eco-genetic Models 

There are a number of basic considerations to make when constructing an eco-genetic 

model.  The paragraphs below give a summary of the essentials and, together with Table 1, 

provide guidelines for building models of this type. 

Evolving traits 

Perhaps the foremost decision is which evolving trait(s) to include.  As a consequence 

of their design, and to keep analyses simple, most previous life-history models have included 

only one evolving trait, or seldom, two evolving traits (e.g., Abrams and Rowe 1996, Doebeli 

and Ruxton 1997, Taborsky et al. 2003, Baskett et al. 2005).  It is obvious, however, that the 

interplay between multiple evolving traits will bring new insights.  For example, the 

evolutionary response in a trait evolving alone could well be larger than the response of that 

same trait in a model considering simultaneous evolution of other traits.  In explorations of life-

history evolution, common traits to include are genetic determinants of maturation tendency, 

growth capacity, and reproductive investment. 

When choosing to model multiple traits, genetic covariances between traits can be 

added explicitly or could emerge from the ensuing ecological and evolutionary dynamics.  The 

matrix of genetic variances and between-trait covariances (the G-matrix) can constrain the 

pathway of multi-trait evolution and undergo evolutionary change itself (Steppan et al. 2002).  

For an example of how to include genetic correlations explicitly and how to estimate the G-

matrix in an individual-based model, see Jones et al. (2003).  Quantifying the covariances will, 

however, usually present a challenge owing to a lack of empirical data.  For simplicity, 

covariances will thus often not be included in a model’s initial conditions, but will instead be 
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allowed to evolve as emergent properties of an eco-genetic model.  Using eco-genetic models 

to examine the influence of initial covariances on evolution and how the G-matrix is expected 

to evolve in response to realistic selection pressures is an exciting avenue for future research. 

Inheritance model 

An important feature of eco-genetic models is the inheritance of genetic traits from 

parents to offspring.  There are two commonly considered, alternative models of inheritance: 

allelic and quantitative genetic.  In an allelic model, as in classic population genetics (Hartl and 

Clark 2007), individual alleles are modeled as being passed on directly from parents to 

offspring (e.g., Getz and Kaitala 1993, Tenhumberg et al. 2004); the advantage is that no 

assumptions are made about the offspring trait distribution.  This choice also permits 

specification of haploid versus diploid inheritance of loci and the inclusion of non-additive 

effects such as dominance and epistasis.  However, a quantitative genetics approach is typically 

used in eco-genetic models because most life-history traits are regarded as polygenic 

quantitative characters (Roff 1992, Conner and Hartl 2004), which are assumed to be affected 

by a large number of genetic loci, each with small effects (Falconer and Mackay 1996, Lynch 

and Walsh 1998).  In a quantitative genetics model, offspring typically inherit the genetic traits 

of their parents from a normal distribution with a mean equal to the mid-parental value (i.e., the 

arithmetic mean trait value of the two parents) and a suitably chosen variance-covariance 

matrix 2
SR  reflecting the action of segregation and recombination among the underlying, and 

not explicitly modeled, loci (Roughgarden 1979).  The effects of mutations on the considered 

quantitative traits can be included in this matrix.  Denoting the maternal and paternal trait 

variance-covariance matrices by 2
M  and 2

F , respectively, the variance-covariance matrix 2
O  

of the offspring’s trait distribution is 2 2 2 21
O M F SR4 ( )       .  The factor 1

4  arises here 

because the sum of the two parental trait values is divided by 2 to obtain the offspring’s trait 

value; for the offspring variance, this division by 2 implies a division by 22 4 .  When 
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parsimoniously assuming that 2 2 2
M F M,F    , where 2

M,F  is known as the population’s G-

matrix, the offspring’s variance-covariance matrix is given by 

 2 2 21
O M,F SR2     . (1) 

After genetic traits are inherited from parents to offspring, they are expressed phenotypically.  

The phenotypic variance 2 2 2
P G E     of a trait depends on the additive genetic variance 2

G  

and on the environmental variance 2
E .  The corresponding heritability 2h  is defined by the 

ratio of these genetic and phenotypic variances, 2 2 2
G P/h   . 

Sometimes, it might also be desirable to combine the description of quantitative genetic 

life-history traits with an allelic representation of neutral genetic markers.  This enables 

analysis of genetic relatedness and diversity. 

Segregation-recombination variance-covariance 

If a quantitative genetics model is used, there are at least three possible options for 

modeling the variances and covariances of the trait values of offspring originating from a given 

pair of parents (Equation 1).  The first option is to assume a constant variance-covariance 

matrix 2
SR  that remains unchanged through time (corresponding to a constant segregation-

recombination kernel; Roughgarden 1979).  This assumes that the processes of segregation and 

recombination contribute a constant amount of variation even as trait values are evolving.  The 

second option is to assume that the population’s variance-covariance matrix is stable, 

2 2
O M,F  , implying 2 21

SR M,F2  , so that the segregation-recombination variance-covariance 

matrix always equals half the population’s G-matrix in the parental generation (e.g., Cavalli-

Sforza and Feldman 1976, Baskett et al. 2005).  This option thus assumes that the segregation-

recombination variance-covariance matrix 2
SR  changes in the course of evolution so as to 

exactly compensate any selection-induced changes in a population’s G-matrix 2
M,F .  While 

such an assumption is formally convenient, it may be deemed unrealistic – not only because 
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there is no mechanistic basis for expecting such exact compensation, but also because this 

option implies that, at one moment in time, the segregation-recombination variances and 

covariances for all pairs of parents are identical and determined by the current variances and 

covariances of the entire parental generation.  The third option allows variation of the 

segregation-recombination variances and covariances not only in time but also between pairs of 

parents.  This is achieved in two steps, by assuming that each of the offspring standard 

deviations SR ii  for traits 1, ,i n   (where i , just as j  below, is a trait index and n  denotes 

the total number of traits considered) equals half the difference in the corresponding parental 

trait values, and by scaling the offspring covariances 2
SR ij  proportionally 

( 2 1 1 2 -1 -1
SR SR SR M,F M,F M,Fij ii jj ij ii jj         for , 1, ,i j n  ).  This reflects the intuitive assumption that 

parents that vary greatly from one another will have offspring that also vary greatly.  In 

addition, it can be shown that the third option ensures the evolutionary invariance of normal 

distributions under segregation and recombination.  The first option above can be used to 

constrain or direct the evolution of a population’s G-matrix, whereas the second and third 

option can allow the population’s G-matrix to evolve more freely as an emergent property of 

the model. 

Growth model 

In eco-genetic models, somatic growth can be described using one of many existing 

growth models that incorporate the important trade-off between allocation to somatic growth 

and investment in reproduction.  One of these models is that of Lester et al. (2004).  In this 

model, length at birth is 0 cm (the model is readily generalized by incorporating this length as 

an extra parameter), and the somatic growth of immature individuals is linear, with an annual 

phenotypic length increment Dg .  For mature individuals, there is a trade-off between somatic 

growth and reproductive investment, 
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 1 D
P

3
( )

3a al l g
GSI  


 , (2a) 

where al  is body length at age a , PGSI  is the phenotypic gonado-somatic index (gonad weight 

divided by somatic weight), and   is a conversion factor to account for the higher energy 

density of gonad tissue relative to somatic tissue (Lester et al. 2004).  The above growth model 

is based on assuming that somatic growth and gonad development occur sequentially during 

each annual growing season and that the portion of an individual’s body weight given by 

gonads does not contribute to its weight acquisition.  Weight at age, aw , can be calculated from 

length at age, a aw l , with allometric constants   and  . 

An alternative growth model described by Roff (1983) is analogous to that by Lester et 

al. (2004), except that Roff (1983) assumed gonad weight to contribute to weight acquisition.  

This implies that larger gonads facilitate weight acquisition, which is generally unrealistic.  

Mature individuals in Roff’s model grow according to 

 1 D
3

P

1
( )

1
a al l g

GSI  


 . (2b) 

The growth model by West et al. (2001) was introduced based on fundamental 

physiological principles.  In this model, body weight aw  at age a  depends on asymptotic body 

weight w , body weight at birth 0w , and on a parameter b , 

 1/ 4 1/ 4 1/ 41
0 4( / ) 1 [1 ( / ) ]exp( )aw w w w abw

       . (2c) 

This relation might be less convenient for modeling evolution of traits like growth capacity and 

reproductive investment, because annual length increments and gonado-somatic indices here 

are an outcome of annual integration, whereas they serve as parameters in the models by Lester 

et al. (2004) and Roff (1983). 

The above models are based on fairly simple bioenergetics.  The advantage of using 

such growth models is that they possess fewer parameters than complex models and that the 
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values of their traits are often more readily compared with data.  Depending on needs and 

interest, the behavior and physiology underlying growth can of course be modeled in more 

complex ways.  For example, energy acquisition (in terms of willingness to forage and take 

risks) and allocation (in terms of internal processes causing investments in growth and 

reproduction) can be modeled more explicitly and based on additional evolving traits. 

The growth models above capture the ubiquitous trade-off between growth and 

reproduction.  Less commonly considered, but nonetheless potentially very influential, is the 

trade-off between growth and survival.  This trade-off applies when fast growth incurs a cost, 

for example, because rapidly growing individuals invest less energy into basal metabolism 

(Nicieza and Metcalfe 1999, Billerbeck et al. 2001, Carlson et al. 2004) or because fast growth 

is enabled by a more risky foraging strategy (Walters and Juanes 1993).  Both cases result in 

elevated mortality for individuals with a capacity for fast growth.  The simplest representation 

of this trade-off arises when the resultant annual mortality probability increases linearly with 

the genetic growth capacity Gg , from 0 to a maximum of 1, 

 g G max/m g g  . (2d) 

This trade-off can be adjusted in strength by altering the maximal annual growth increment 

maxg , at which annual survival would drop to 0. 

Density dependence 

Density dependence can be incorporated into an eco-genetic model in many forms, 

acting on newborn mortality, somatic growth, cannibalism, and/or harvesting.  For example, 

density-dependent mortality of newly born offspring can be described with the help of an 

appropriate relation such as the Beverton-Holt model (Beverton and Holt 1957), 

 0 T
r

1 T1

s f
N

c f



 , (3a) 

or the Ricker model (Ricker 1954), 
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 r 0 T 2 Texp( )N s f c f   , (3b) 

where rN  is the number of surviving offspring produced by the population, Tf  is the total 

fecundity of the mature female population, 0s  is the maximal fraction of offspring that survive, 

and 1c  and 2c  are parameters.  Notice that the two models above were originally introduced to 

describe empirical relationships between spawning stock abundance and recruitment; using 

them to represent density-dependent newborn survival allows for a more mechanistic approach. 

Generalizations of these stock-recruitment relationships include the Maynard Smith and 

Slatkin (1973) model, also known as the Shepherd (1982) model (which displays 

overcompensation similar to the Ricker model), 

 
  4
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r

3 T1
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s f
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c f



 , (3c) 

the Hassell (1975) model, 

 
6
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s f
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c f



 , (3d) 

and the Saila-Lorda model (Saila et al. 1988; see also Iles 1994, Needle 2001), 

 8
r 7 T 9 T( ) exp( )cN c f c f   , (3e) 

with parameters 3c  to 9c .  In contrast to the other relationships above, the Saila-Lorda model 

can describe depensation, that is, an Allee effect implying reduced offspring survival at low 

fecundity. To include such an effect in the other relationships, the term Tf  in the numerator of 

Equations 3a to 3d can be replaced with 10
T
cf , with 10 1c  .  In lieu of total fecundity Tf , 

Equations 3a to 3e could also be based on other fecundity measures such as the total biomass 

of the mature population or of the mature female population. 

When food and other resources are limiting, a negative relationship between population 

biomass and an individual’s somatic growth might arise.  In this case, the density-dependent 

annual phenotypic length increment Dg  can be modeled as follows, 



Eco-genetic models 

 17

 
12

P
D

111 ( )c

g
g

c B



 , (3f) 

where Pg  is the phenotypic growth capacity of an individual, B  is population biomass (an 

emergent property of the model), and 11c  and 12c  are parameters.  Somatic growth (i.e., growth 

of the somatic tissue as opposed to growth of gonads) could also be reduced by the biomasses 

of other species that feed on similar resources. 

Other sources of density dependence are cannibalism and harvesting.  Survival from 

cannibalism, 13 cexp( )c B , is always density-dependent, with cB  denoting the biomass of the 

cannibalizing part of the population.  An example of how to model (positively and negatively) 

density-dependent harvesting is provided by Ernande et al. (2004). 

Environmental variation 

Inter-annual variability in the environment influences the life-history traits of all 

individuals in a population as a whole.  For example, decreases in temperature or a reduction in 

food availability might depress somatic growth rates.  This type of variability has evolutionary 

implications because it affects bet-hedging life-history strategies.  Inter-individual 

environmental variation, by contrast, affects each individual in the population in a different 

way, often owing to small-scale environmental heterogeneity that influences individuals 

through local chance events.  Environmental variation can also be temporally autocorrelated: 

for example, recruitment can be positively autocorrelated in time because of the inter-annual 

persistence of environmental conditions that affect demographic processes (Planque and 

Fredou 1999, Fogarty et al. 2001).  A standard approach to incorporating such autocorrelation 

is based on first-order autoregressive models (e.g., Roughgarden 1975, Ottersen and Stenseth 

2001, Fischer et al. 2009). 
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Phenotypic plasticity 

In an eco-genetic model, the processes of growth, maturation, and reproduction can be 

modeled including phenotypic plasticity.  Resource-limited growth – as described, e.g., by 

Equation 3f – is a form of passive plasticity and is a common feature in eco-genetic models, 

while adaptive growth plasticity may be included in more specialized models. 

Growth-related maturation plasticity is very common and is included in eco-genetic 

models using maturation reaction norms (MRNs).  A MRN represents the phenotypes of age 

and size at maturation as a function of an individual’s juvenile growth rate (Stearns and Koella 

1986).  Changes in growth rates will cause a shift in the ages and sizes at maturation because 

the growth trajectories of individuals with different growth rates will then intersect the MRN at 

different positions.  Evolution of a MRN reflects genetically-based changes in an organism’s 

maturation schedule.  This concept can be extended to account for the probabilistic nature of 

maturation by using probabilistic maturation reaction norms (PMRNs), which describe the 

length- and age-specific probabilities of maturation between one season and the next (Heino et 

al. 2002a, Dieckmann and Heino 2007).  In an eco-genetic model, an individual’s annual 

maturation probability can be calculated as 

 1
m p50,[1 exp( ( ) / )]a a ap l l d      , (4a) 

where al  is length at age a , p50,al  is the length at 50% maturation probability for age a  (also 

known as the PMRN midpoint at age a ), and the parameter ad  determines how steeply 

maturation probability changes around p50,al , 

 u, l,

u llogit logit
a a

a

l l
d

p p





 . (4b) 

Here, logit ln( /(1 ))p p p  , and lp  and up  are probabilities – such as 25% and 75%, or 10% 

and 90%, respectively – used to characterize the lower and upper bounds of the probabilistic 

maturation envelope around p50,al . The envelope’s width u, l,a al l  (also known as the PMRN 
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width at age a ) thus describes the range of lengths al  over which maturation probability rises 

from lp  to up  at age a ; the smaller this width, the more deterministically the maturation 

process is described by age and length. PMRNs with linear midpoint curves and constant 

envelope width are described by 

 p50, P Pal i a s   and ad d  , (4c) 

where Pi , Ps , and d  are referred to as PMRN intercept, PMRN slope, and PMRN width, 

respectively (Figure 2a shows an example of a linear PMRN). 

Finally, while it is often convenient to assume an individual’s gonado-somatic index to 

be constant, assumptions implying phenotypic plasticity may readily be made to describe 

populations in which reproductive investment strategies vary with the intake of resources. 

Sex structure 

Eco-genetic models may or may not incorporate sex structure.  An absence of sex 

structure is acceptable in models of hermaphrodites, models of species with little sexual 

dimorphism in life history, or in generalized strategic models of life-history evolution.  On the 

other hand, modeling the sexes separately is necessary if there are large differences between 

males and females, if evolving traits of interest exhibit sex-specific expression or inheritance, 

or if sexual selection is strong. 

Mating system 

Three critical features affect the modeling of mating systems in eco-genetic models: (1) 

the choice of mates, (2) the number of mates individuals have, and (3) the number of offspring 

produced per mature individual.  For (1), the simplest option is to model random mate choice; 

this could be appropriate for broadcast spawners, for example, where actual mating pairs are 

not formed.  An alternative is assortative mating, which is common in nature, but often results 

from preferential mating with like phenotypes.  In general, assortative mating has two main 
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features that must be specified: the phenotypic character on which assortative mate choice is 

based (e.g., size), and the strength of assortativeness. 

For (2), the offspring of a given female could be sired by many different males and vice 

versa; this would be the case for broadcast spawners, multiple-batch spawners, and species that 

mate with more than one partner during a reproductive season.  Alternatively, some species 

might only mate with one other individual during a reproductive season (or even during their 

lifetime) and the eco-genetic model could be adjusted accordingly. 

For (3), the fecundity f  of a mature female can be made to depend on her reproductive 

investment, as measured by her phenotypic gonado-somatic index PGSI , and body size, 

 m Pf w GSI  (5) 

where mw  is the somatic weight of the mature female and   is the weight-specific oocyte 

density of the mature pre-spawning ovary.  For males, a similar relationship could be used 

when large body size and high reproductive investment lead to higher reproductive success via 

a larger numbers of gametes produced and offspring sired. 

All three elements above are related, and will need to be considered together, when 

implementing mating and reproduction in an eco-genetic model.  Typically, details of mating 

systems are difficult to quantify in the wild and simplifying assumptions will thus often have to 

be invoked. 

Implementation strategy 

A basic consideration concerns the overall implementation of eco-genetic models.  

Specifically, eco-genetic models can be implemented either as compartment-based models or 

as individual-based models.  In a compartment-based model, continuous state variables, 

including phenotypic and/or genetic trait values, have to be discretized into classes.  The 

modeled population is then divided into different compartments, each of which represents one 

of all the many possible combinations of classes.  The densities of individuals in these 
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compartments are then tracked through time.  Most of the compartments, however, will usually 

be practically empty, leading to computational inefficiency.  The decision to implement an eco-

genetic model in this manner thus depends on the number of evolving traits and other state 

variables such as age, length, maturation status, and sex: inclusion of more than four or five 

continuous variables that have to be discretized will lead to such a vast number of 

compartments that a compartment-based implementation becomes impractical. 

By contrast, in the individual-based implementation of an eco-genetic model (e.g., 

Dunlop et al. 2007, Thériault et al. 2008), the discrete or continuous variables characterizing 

each individual are tracked through time.  Discretizing continuous state variables is therefore 

not required, and instead of tracking all possible types of individuals that could possibly exist, 

only types that are actually present are tracked, resulting in higher computational efficiency.  

This conclusion mirrors related suggestions that individual-based models are particularly 

valuable when there are several important dimensions according to how individuals in a 

population differ from one another (DeAngelis and Mooij 2005, Grimm and Railsback 2005, 

Grimm et al. 2005).  In eco-genetic models, this is often the case because the details of 

phenotypic variation among individuals are crucial for the differential survival and 

reproductive success that drives evolution.  It should be emphasized that, in principle, any 

given eco-genetic model can be implemented either compartment-based or individual-based, so 

that the choice of the most convenient implementation strategy is an entirely practical one, as 

both implementation strategies, when used correctly, will yield equivalent results. 

Parameterization strategy 

Like any other model in ecology, eco-genetic models can be either strategic or tactical.  

The goal of a strategic model is to understand a phenomenon and the underlying mechanisms, 

whereas the goal of a tactical model is to make specific predictions for a particular population 

or species.  If tactical, an eco-genetic model can be parameterized with data collected for the 

population or species in question (e.g., Dunlop et al. 2007, Thériault et al. 2008).  A strategic 
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model, on the other hand, has to be parameterized more generally, depending on the focus of 

research: if the goal is to address general questions of life-history evolution, it might not be 

relevant (or even helpful) to parameterize the model for any one population. 

Values for some parameters will be more uncertain than for others, the worst case being 

an informed guess.  A robustness analysis is then needed to check how model results are 

influenced by parameter uncertainties (see below).  Alternatively, when model predictions can 

be compared with empirical observations, such as time series of life-history traits, an eco-

genetic model can be used to estimate parameters that are unknown or uncertain, just as 

process-based population models are used for assessments of fish stocks (e.g., Frøysa et al. 

2002).  Parameters that are most likely given the data, together with their confidence intervals, 

can then be found through numerical optimization of the match between predictions and 

observations, or in a Bayesian fashion by identifying likely parameter values based on an eco-

genetic model and plausible prior distributions of candidate values. 

Robustness analysis 

By definition, models simplify reality and purposefully omit extraneous variables and 

complicating assumptions.  Eco-genetic models will often have a relatively strong reliance on, 

and coupling to, empirical data.  Uncertainty in model predictions can arise depending on the 

availability and quality of key data used to parameterize the model and to support the structural 

assumptions on which the model is based.  We recommend robustness analysis, also referred to 

as sensitivity analysis (Bart 1995, Drechsler 1998), especially for tactical applications of eco-

genetic models.  A parametric robustness analysis alters parameter values and thus quantifies 

the parameter’s effect on model results.  A structural robustness analysis adds, removes, or 

alters structural assumptions and quantifies the assumption’s effect on model results.  If 

important model results are strongly affected by uncertain model parameters or assumptions, 

further research efforts can be targeted accordingly. 
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Example: An Eco-genetic Model for Studying Harvest-induced Evolution 

The applicability and utility of eco-genetic modeling is perhaps best appreciated by 

considering a concrete example.  Below, we present a specific eco-genetic model we have 

developed for examining harvest-induced evolution (Figure 2).  We developed this model 

based on recognizing the need for pursuing research directions in this area that can be 

investigated with the aid of an eco-genetic model, but not through previous approaches to 

evolutionary modeling.  For example, while evidence of harvest-induced evolution has been 

documented in several species (e.g., Haugen and Vøllestad 2001, Coltman et al. 2003, Grift et 

al. 2003, Olsen et al. 2004), it is not yet clear how difficult it is to slow down or reverse the 

evolutionary impacts of harvest.  Also, most theoretical work in this area (e.g., Law and Grey 

1989, Heino 1998, Ernande et al. 2004, Baskett et al. 2005) has focused on maturation 

evolution, and it remains to be established what harvest-induced life-history syndromes should 

be expected as multiple traits undergo simultaneous evolution.  The model below is 

parameterized for Atlantic cod (Gadus morhua), serving as a generic example for a late-

maturing and potentially long-lived harvested species. Whenever possible, we have selected 

parameter values for populations in the northern part of the range of this widespread and 

diverse species (Brander 2005); the construction of population-specific models will be a natural 

next target for future research, but is not our aim here. 

Model description 

For our example, we extended the model by Dunlop et al. (2007) to study the effects of 

harvest on the simultaneous evolution of four life-history traits: two characteristics of the 

probabilistic maturation reaction norm (PMRN), in addition to somatic growth capacity and 

reproductive investment.  The four traits are the genetic values of the PMRN intercept ( Gi ), 

PMRN slope ( Gs ), growth capacity ( Gg ), and gonado-somatic index ( GGSI ).  The eco-genetic 
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model involves annual updating, with events occurring at discrete time steps of 1 year.  Owing 

to the number of jointly evolving traits, an individual-based implementation was chosen. 

Initial population.  The initial population in our eco-genetic model consisted of 10,000 

age-1 individuals (we found no difference when initializing the population with 500 individuals 

and so we used a higher number to reduce the amount of simulation time needed for reaching a 

stable population abundance).  Genetic trait values in the initial population were assigned 

randomly to individuals by drawing them from normal distributions with means equal to the 

initial population mean of the trait in question, and variances 2
G  determined by the assumed 

initial genetic coefficient of variation GCV  (initial standard deviation of genetic trait values 

divided by their initial mean). 

Phenotypic expression.  The phenotypic expression of an individual’s genetic traits was 

based on two sources of environmental variation: inter-individual and inter-annual.  For each 

trait, the inter-individual environmental variance 2
E  was parsimoniously held constant through 

time and was calculated based on the population’s initial heritability 2h  and genetic variance 

2
G  for that trait, 2 2 2

E G ( 1)h    .  Each year, an individual’s phenotypic values ( Pi , Ps , 

PGSI , and Pg ) for all four genetic traits ( Gi , Gs , GGSI , and Gg ) were drawn from a normal 

distribution with means equal to the individual’s genetic trait values and variances equal to 2
E  

calculated for the trait in question.  Further inter-annual environmental variation in growth 

resulted from density-dependent resource limitation (Equation 3f).  Note that although 

heritability is assumed to be 0.2 in the initial year (Table 2), it becomes an emergent property 

of the model in subsequent years. 

Maturation and growth.  The probability of maturation for an immature individual in a 

given year was calculated from Equations 4a-c.  Once an individual became mature, it entered 

the reproductive stage of life, with reproduction occurring annually after the growing season.  
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The annual somatic growth of individuals followed the Lester et al. (2004) growth model: 

immature growth was linear and with annual phenotypic length increments Dg , whereas 

mature individuals grew according to Equation 2a. 

Reproduction and inheritance.  The fecundity of each female was a function of her 

phenotypic gonado-somatic index and body weight (Equation 5).  The number of surviving 

offspring (recruits) produced by the population was determined from a Beverton-Holt model 

(Equation 3a).  For each offspring, a mature male and female were randomly drawn with 

replacement as parents (thus assuming random mate choice), with the probability of each being 

chosen as a parent being proportional to their gonad weight.  We took this approach because 

individuals with large gonads (owing to their large body size and/or PGSI ) are expected to 

produce a higher numbers of gametes (eggs or sperm) and therefore more offspring.  Also, with 

this approach, a given female may mate with several males and a given male may mate with 

several females, in accordance with the expectation for batch spawners such as Atlantic cod 

(McEvoy and McEvoy 1992, Kjesbu et al. 1996). 

Each offspring inherited the evolving traits of its parents by receiving randomly drawn 

genetic trait values from normal distributions with means equal to the mid-parental trait values 

and variances equal to half of the trait’s genetic variance in the initial population (thus 

assuming a constant segregation-recombination kernel).  For the purposes of this example 

model, we decided not to add genetic trait covariances because there is virtually no empirical 

data from which such covariances could be estimated.  Sex was assigned randomly at birth 

assuming a 1:1 primary sex ratio. 

Natural mortality.  Natural mortality was introduced through a trade-off between 

growth and survival (Equation 2d).  An additional background natural mortality probability bm  

was used to raise the total instantaneous rate of natural morality to the 0.2 yr–1 commonly 

assumed for cod (Gunderson 1997, ICES 2007a).  Mortality probabilities in the model were 
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implemented as Bernoulli trials: if a random number drawn between 0 and 1 was less than or 

equal to the mortality probability, the individual died and was removed from the population.  

Natural mortality during the juvenile phase also included density-dependent offspring mortality 

(Equation 3a). 

Harvest mortality.  The model was run for 2000 years prior to harvest so that the 

population abundances and evolving traits could approach a pre-harvest equilibrium (we 

verified the stationarity and stability of this equilibrium by running some simulations for 1 

million years).  After 2000 years, size-selective harvest mortality was applied for 100 years and 

then a harvest moratorium was implemented for 100 years.  During the years of harvesting, we 

investigated an exploitation pattern with a constant harvest rate, in which all individuals above 

a minimum length limit had a given annual probability of being harvested.  We ran the model 

for different minimum length limits (between 20 cm and 100 cm in increments of 10 cm) and 

different annual harvest probabilities (0, 0.2, 0.4, 0.5, and 0.6). 

Parameterization.  We parameterized the model for Atlantic cod, a species 

characterized by high fecundity, intermediate age at maturation, and low natural mortality 

associated with long potential lifespan (Table 2).  Deliberately, the model presented here is not 

parameterized for any particular cod stock, but the chosen parameters best describe cod 

populations in the northern part of the species’ range, such as those in the Barents Sea and off 

Newfoundland–Labrador. 

Robustness analysis.  In addition to testing the effects of different minimum length 

limits and harvest probabilities, we also tested the robustness of model results to changes in 

several other functions and parameters.  These included the growth-survival trade-off 

(Equation 2d), the stock-recruitment relationship (Equation 3a), the strength of density-

dependent growth (Equation 3f), and the assumed genetic coefficient of variance GCV  in the 

initial population (see Appendix 1 for further details). 
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Response to harvest 

Harvest induced an evolutionary shift of the PMRN to younger ages and smaller sizes 

at maturation, indicated by the decreasing intercept of the PMRN (Figure 3).  The direction of 

evolution in the PMRN was similar to that observed for harvested populations in the wild 

(Grift et al. 2003, Olsen et al. 2004, Mollet et al. 2007) and predicted by previous models 

(Ernande et al. 2004, Dunlop et al. 2007).  In contrast, the PMRN slope did not evolve in 

response to harvest.  We also observed evolution of smaller genetic growth capacity (Figure 3).  

As no published model has previously examined the simultaneous evolution of genetic growth 

capacity and PMRNs, it is pertinent to point out that a dramatic downward shift of the PMRN 

occurred even when growth capacity evolved simultaneously with the PMRN. 

Reproductive investment (GSI) increased in response to size-selective harvest (Figure 

3).  This pattern was expected because when mortality rates are substantial, evolution favors 

those individuals that sacrifice future growth for higher investment into current reproduction 

(Roff 1992, Heino and Kaitala 1996, Lester et al. 2004).  However, like genetic growth 

capacity, GSI changed by only a small amount.  Instead, harvest had the largest impact on the 

PMRN intercept.  This finding is in agreement with empirical accounts of downward shifts in 

the PMRN (Grift et al. 2003), but no clear trend in the GSI (Rijnsdorp et al. 2005), of harvested 

North Sea plaice (Pleuronectes platessa). 

The evolution of traits was accompanied by changes in population abundance, biomass, 

and phenotypes.  Harvest caused a reduction in biomass of 74% and a reduction in abundance 

of 14% (means for 30 repeated model runs).  In addition, age at maturation and length at 

maturation decreased, while the phenotypic length increment first increased and then decreased 

(Figure 3).  The phenotypic changes occurred much quicker and sometimes in the opposite 

direction as the genetic changes, thereby partially masking the underlying evolutionary 

responses.  Managers and resource stakeholders must be concerned about the possibility that 
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masked evolutionary shifts induced by harvest could be difficult to detect during intermediate 

periods, while eventually still causing diminished economic returns. 

The robustness analysis indicated that factors such as density-dependent growth and 

recruitment, genetic variance, and life-history tradeoffs did have an effect on the amount of 

fisheries-induced evolution, thus pointing to the importance of including such features in 

evolutionary models designed to make quantitative predictions for specific populations 

(Appendix 1).  However, the qualitative predictions of our model were invariant with respect to 

these features: harvest had the largest impact on the PMRN, causing it to shift downwards, 

while at the same time inducing evolution of growth capacity and reproductive investment 

(Appendix 1). 

Response to a moratorium 

Perhaps the most worrisome finding of our analysis was that the recovery of life-history 

traits from harvest-induced evolution during a moratorium was slow to non-existent.  The rate 

of change in traits when harvest was applied was usually considerably faster than the rate of 

reversal once harvest ceased (Figure 3).  The striking difference in evolutionary rates during 

harvest, as opposed to once harvest was halted, can be attributed to the strong harvest-induced 

selection imposed on the population when harvest occurred, compared to the much weaker 

natural selection which acted when harvest was absent.  A similar asymmetry was already 

demonstrated in simpler adaptive dynamics models (Law and Grey 1989).  Our results further 

show that this slow reversal was not the result of reduced genetic variance: for example, the 

genetic variance in the PMRN intercept decreased only negligibly (by 2.5%) during 100 years 

of harvest.  Future work could aim at uncovering whether the traits will fully recover given an 

even longer moratorium, or if they will reach an alternative stable state (e.g., de Roos et al. 

2006).  The lack of recovery in evolving traits predicted from our model may provide one 

explanation as to why several commercial stocks of fish have failed to rebound following 

moratoria (e.g., Hutchings 2000).  
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Response to different harvesting patterns 

For the PMRN intercept and GSI, an intermediate length limit caused the largest 

amount of evolution (Figure 4).  Most intriguing was that the effect of harvest on the genetic 

growth capacity qualitatively depended on the minimum length limit.  When the minimum 

length limit was set well below the length at maturation, harvest induced an increase in genetic 

growth capacity, whereas the opposite effect was observed for higher minimum length limits 

(Figure 4).  These complex responses were likely the result of selective pressures acting on the 

age and size at maturation.  When the length limit was small, more immature individuals were 

captured and selective pressures favored those individuals that matured prior to being 

harvested; in this case, larger genetic growth capacities evolved because individuals growing 

faster matured earlier in life.  When length limits targeted primarily mature individuals, slower 

growth was selected for because individuals had already matured and there was a fitness 

advantage to avoiding the minimum length limit by growing slower.  Although it has been 

argued that fishing is likely to select for smaller growth capacities (e.g., Conover and Munch 

2002), our results show that this prediction is more complicated than has been commonly 

appreciated. 

Finally, and not surprisingly, increasing the constant harvest probability caused an 

increase in the evolutionary response: the genetic PMRN intercept shifted noticeably 

downwards (Figure 5), while the genetic GSI became slightly higher (after 100 years of fishing 

it equaled 0.119, 0.122, 0.125, and 0.127 for harvest probabilities 0, 0.2, 0.4, and 0.6, 

respectively), and the genetic growth capacity became slightly lower (after 100 years of fishing 

it equaled 12.9, 12.9, 12.6, and 12.0 cm for harvest probabilities 0, 0.2, 0.4, and 0.6, 

respectively).  At the same time, the phenotypic length increments became larger (Figure 5), 

again masking the underlying genetic change in growth capacity.  These results clearly indicate 

that reducing harvest rates is one viable management measure for reducing the evolutionary 

response to fishing. 
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Discussion 

Eco-genetic modeling is an integrative tool for studying life-history evolution, in 

particular at contemporary timescales and in realistically complex ecological settings.  Using 

an eco-genetic model to examine the processes that create life-history variation offers several 

advantages.  First, eco-genetic models can describe the simultaneous evolution of multiple life-

history traits in realistically structured populations.  Second, eco-genetic models predict the 

actual rate of evolutionary change, crucially increasing the applicability of predictions.  Third, 

eco-genetic models are easily applied to systems with density-dependent and frequency-

dependent selection, even when such selection pressures are strong.  Fourth, eco-genetic 

models are readily used, as a special case, for exploring ecological dynamics when no 

evolution of life-history traits occurs; this facilitates the identification of evolutionary effects.  

We contend that through this novel combination of features, eco-genetic modeling enables a 

fuller appreciation of the mechanisms and complexities governing a population’s adaptation to 

its environment and to anthropogenic perturbations. 

Development of eco-genetic models is currently progressing in two areas: (i) scientific 

analyses of fisheries-induced evolution and (ii) development of the underlying modeling 

methodology.  These two areas of research go hand-in-hand because a rigorous methodology is 

required for adequately examining specific questions about fisheries-induced evolution through 

model-based studies.  The two previously published eco-genetic models included 

methodological advancements, but were meant to explore specific scientific questions about 

the effects of mortality on the evolution of life-history traits.  The first study (Dunlop et al. 

2007), investigated the effect of selective mortality on evolution of the slope and intercept of 

the probabilistic maturation reaction norm of smallmouth bass populations.  The second study 

(Thériault et al. 2008), explored the effect of fishing on the evolution of anadromy in brook 
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charr.  The underlying models advanced methodology through the inclusion of multiple traits 

describing the evolution of reaction norms (of maturation in the first study and of migration in 

the second) over contemporary timescales (tracing traits on an annual basis over the course of 

100 years).  Other specific scientific questions related to fisheries-induced evolution currently 

being explored based on eco-genetic modeling include the influence of evolution on recovery, 

the efficacy of marine protected areas, the importance of spatial stock structure, sexual size 

dimorphisms, and the interplay between fisheries-induced and sexual selection. 

We see eco-genetic models as being used to address at least four different topics in the 

coming years.  These topics are listed here because, in our assessment, the current knowledge 

gaps hold particular promise for being addressed through applications of eco-genetic models.  

First is the modeling of sex-specific male and female life histories and resultant sexual 

dimorphisms.  Most previous life-history models, including the one presented as an example 

above, include no or only rudimentary sex structure and usually focus on the female life 

history.  This simplified treatment naturally poses a problem when there are large differences 

between males and females.  In such situations, one will also often try to understand the impact 

of harvesting on the exploited population’s sex ratio.  The second topic is the modeling of the 

evolutionary dynamics of trait covariances (i.e., technically speaking, of the G-matrix; see the 

section ‘Inheritance model’).  The largest challenge here is that relatively little empirical data is 

available on these covariances in the wild, which is why many eco-genetic models will assume 

them to be absent.  Evolution of genetic variance-covariance matrices in response to natural 

selection is an area of active research (Steppan et al. 2002, Jones et al. 2003) and one that could 

readily be explored more thoroughly with the help of eco-genetic models.  Such applications 

could also explore how anthropogenic selection pressures influence genetic variance-

covariance matrices and how, in turn, genetic covariances affect selection responses to 

anthropogenic pressures.  The third topic is the linking of eco-genetic models with other types 

of models.  The output of an eco-genetic model could easily be interfaced with stock-
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assessment models, socio-economic models, or models for decision analysis, increasing the 

utility of eco-genetic models in the wider context of resource management.  Model interactions 

across such interfaces will often be bidirectional, with the biological model driving socio-

economic or behavioral states, and vice versa.  The fourth topic of potential promise is the use 

of eco-genetic models in evolutionary impact assessments (EvoIA).  EvoIAs were introduced 

as a tool for investigating how alternative management measures change  the impacts of 

fisheries-induced evolution (ICES 2007b; Jørgensen et al. 2007).  Prospective EvoIAs project 

the impacts of evolution on utility metrics (such as profit, yield, or employment) into the future 

and thus require quantitative models that can predict evolutionary transients on contemporary 

timescales (Jørgensen et al. 2007); eco-genetic models provide an ideal platform for this type 

of application. 

Tactic eco-genetic models are tightly linked to, and rely on, empirical knowledge 

guiding the selection of model structure and parameterization. Important empirical data for the 

parameterization of such models includes: (i) time-series data to estimate stock-recruitment 

relationships and the density dependence of growth; (ii) data on life-history traits, such as 

maturation schedule, somatic growth capacity, and reproductive investment; (iii) general 

knowledge pertaining to a population’s life-cycle, including mating and spawning behavior; 

(iv) genetic data for quantifying generic variances, covariances, and heritabilities; and, for 

exploited populations, (v) harvest statistics such as catch, harvest rate, effort, and selectivity. 

While this list summarizes the information most commonly used in an eco-genetic model with 

a tactic emphasis, not all of these data are needed for each and every eco-genetic model, 

because data requirements will naturally vary with the focal questions being asked. 

Resources and time are not always available to collect all the information that could 

fruitfully be integrated in eco-genetic models.  Fortunately, there are several options available 

for dealing with missing or uncertain data in eco-genetic modeling.  Structural assumptions and 

quantitative parameters from closely related species or populations can often be substituted, 
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and an extensive robustness analysis can be carried out to evaluate the implications for model 

predictions.  The need for studying such implications based on a quantitative modeling 

approach will often be preferable to the inability to investigate them at all.  Alternatively, 

various forms of model fitting can be applied, as in stock-assessment models, for estimating 

values of unknown parameters (Hilborn and Walters 1992).  If only a few parameters are 

unknown for a specific population, the criterion of consistency between extensive empirical 

observations and theoretical predictions from whole-life-cycle modeling can indeed serve as a 

powerful tool for estimating such unknowns.  For example, the predictions of an eco-genetic 

model can be compared with available empirical data for different values of genetic variances 

and heritabilities, and those values giving the best fit could be identified.  A pattern-oriented 

modeling approach (Grimm and Railsback 2005), which allows researchers to identify those 

key patterns in a system that the model should reproduce, can of course also be applied to eco-

genetic modeling.  Alternative hypotheses can then be formulated (e.g., about which 

mechanism is driving the key patterns) and tested by comparing model output with observed 

patterns.  It is our experience that although tactic eco-genetic models can be data-hungry, one 

of their strong assets is that they can seamlessly integrate diverse levels of quantitative detail, 

by taking full advantage of comprehensive empirical information where available and 

combining this with more generic assumptions where needed. 

While eco-genetic models have potentially wide-ranging applications in life-history 

theory and ecosystem management, they have already proven their worth in the more specific 

context of studying fisheries-induced evolution.  The number of studies concluding that 

fisheries-induced evolution is a likely candidate for explaining components of observed life-

history changes is now quite large (see recent reviews by ICES 2007b, Jørgensen et al. 2007, 

Kuparinen and Merilä 2007, Fenberg and Roy 2008, Heino and Dieckmann 2008, Hutchings 

and Fraser 2008).  The strength of evidence afforded by these empirical studies remains 

debated, as it is never possible to exclude with certainty that observed phenotypic changes 
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were caused by unaccounted for factors in a population’s environment (see, for example, 

Hilborn 2006, Marshall and Browman 2007, Browman et al. 2008, Heino et al. 2008, 

Jørgensen et al. 2008, Kuparinen and Merilä 2008).  In this context, quantitative modeling 

assumes a particularly important role.  The eco-genetic model presented in this paper 

strengthens the theoretical evidence that fisheries-induced evolution can account for a 

significant component of observed trends in the life-history traits of exploited stocks. 

Model-based support in the evolutionary interpretation of empirical patterns naturally 

depends on how realistic the utilized model is.  All models are gross simplifications of reality, 

and it will always remain open to discussion how realistic a model needs to be before it can 

credibly support empirical hypotheses.  We would thus like to emphasize that the eco-genetic 

model presented as an example above accounts for what, in the context of modeling multi-trait 

life-history evolution, is probably an unprecedented degree of ecological detail and, hopefully, 

realism.  This includes, in particular, environmental variability, phenotypic plasticity, and 

density-dependent growth, all of which have been invoked to explain life-history changes in 

exploited fish populations, and indeed affect life-history changes in our model.  For example, 

the reduction of the population biomass as a result of fishing caused higher food availability 

and faster growth rates; this resulted in an earlier age at maturation.  The downward 

evolutionary trend in the PMRN midpoint also contributed to earlier maturation.  Thus, genetic 

and environmental factors jointly influenced the trend in age at maturation.  This also is likely 

to be true for the wild Atlantic cod stocks that have shown trends in maturation schedule and 

PMRN midpoints (Heino et al. 2002b, Barot et al. 2004, Olsen et al. 2004).  In this way, eco-

genetic models can help us understand how multiple factors, including evolution, contribute to 

fishing-induced changes, past and future. 

In summary, an eco-genetic model incorporates important life-history principles such as 

trade-offs between growth, reproduction, and survival, as well as population structure, density 

dependence, frequency dependence, phenotypic plasticity, stochasticity, and inheritance.  
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Inclusion of these features (i) allows a tight linkage between eco-genetic models and empirical 

data, (ii) enables the prediction of both genetic and phenotypic transients, and (iii) permits 

examination of the speed of evolution on empirically relevant and realistic timescales, thereby 

increasing the applicability and utility of life-history predictions. 
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Table 1.  Choices and guidelines for building an eco-genetic model. Listed choices are usually 

not exhaustive, but highlight the most commonly considered options. 

 
Building blocks Choices Guidelines for selection 

Standard set of traits 
for maturation, 
growth, and 
reproductive effort 

Recommended for general investigations of life-history 
evolution. 

Evolving traits 

Other sets of traits More specific investigations may require other traits, 
e.g., mate-choice traits for describing sexual selection. 
Parameterization will be easier for models with fewer 
evolving traits. Too few evolving traits, however, may 
unduly constrain the evolutionary process. 

Allelic Recommended when inheritance is known to be 
determined by only a few loci. Neutral loci can be used 
to track patterns of relatedness and genetic diversity. 

Inheritance model 

Quantitative genetic Recommended for quantitative traits, including 
essentially all life-history traits. 

Variances and 
covariances are 
constant 

Implies that segregation-recombination variances and 
covariances change neither with time nor with parental 
distance. 

Variance and 
covariances equal half 
of parental values 

Time-honored assumption: segregation-recombination 
variance can change with time, but not with parental 
distance. 

Segregation-
recombination 
variances and 
covariances 
(when assuming 
quantitative genetic 
inheritance) 

Standard deviations 
equal half of parental 
distances 

Realistic, but not widely used: segregation-
recombination variances and covariances can change 
with time and increase with parental distance. 

Lester et al. (2004) Recommended default choice. Applies to organisms in 
which somatic and gonad growth occur sequentially 
during each season and in which gonad weight does not 
contribute to weight acquisition. 

Roff (1983) Similar to the Lester et al. model, but not generally 
recommended. Applies only to organisms in which 
gonad weight contributes to weight acquisition. 

Growth model 

West et al. (2001) Alternative to the Lester et al. model. Recommended if 
the latter does not describe growth adequately (e.g., 
when juvenile growth is not linear in length). 

Newborn mortality Density dependence in many populations is generally 
believed to be most important for early life stages. This 
is typically modeled as density-dependent newborn 
mortality. 

Growth Resource-limited growth is recognized as being 
widespread in many populations. Inclusion of this 
process critically affects predictions on size structure 
and yield. 

Cannibalism Intraspecific predation is important for juvenile age 
groups in many populations. 

Harvesting Most harvesting regimes imply density-dependent 
harvesting mortality. 

Density 
dependence 

Depensation Positive density dependence (Allee effects) critically 
affect population dynamics at low densities. 
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Inter-annual Inter-annual variability is ubiquitous and crucially 
affects strategies involving bet-hedging. 

Inter-individual Inter-individual variability is ubiquitous and can be 
important for intraspecific interactions. 

Environmental 
variation 

Temporal 
autocorrelation 

Positive temporal autocorrelations are a common 
feature especially of aquatic environments. 

Growth Resource-limited growth is a trivial but omnipresent 
form of (passive) plasticity. In addition, adaptive 
growth plasticity may occur. 

Maturation Growth-related plasticity in maturation is ubiquitous: 
accounting for this through the use of maturation 
reaction norms is thus recommended. 

Phenotypic 
plasticity 

Reproduction Reproductive effort will often depend on resource 
intake. This can be included through reaction norms, 
which, however, may be difficult to parameterize. 

Only one sex Acceptable simplification when male and female life 
histories are not too different, so that the two sexes 
possess the same demographic and genetic structure. 
Also applicable for hermaphrodites. Two one-sex 
models together can describe sexually dimorphic 
populations, provided that trait expression is sex-limited 
and sexual selection is weak. 

Sex structure 

Males and females Required if there are important differences in male and 
female life histories, trait expression is sex-specific, or 
sexual selection is strong. 

Random mating Simple assumption that will usually serve as a null 
model in the absence of better information. 

Mating system: 
mate choice 

Assortative mating Assortative mating is ubiquitous, but quantitative details 
often remain unknown. The incorporation of assortative 
mating will be critical when sex-specific life histories 
are considered in conjunction with strong sexual 
selection. 

One mate per season Appropriate for monogamous species. Mating system: 
mate number More mates per season Appropriate for multiple-batch or broadcast spawners 

and for polyandrous or polygynous species. 
Sexes treated equally Applies if there is no sex structure. Typically, the 

number of offspring produced per parent individual will 
depend on its body size and current reproductive 
investment. 

Mating system: 
offspring number 

Sexes treated 
differently 

Important when it is known that the determinants of 
reproductive success differ between males and females. 

Individual-based Very flexible approach recommended as the first 
choice. Only computationally feasible option when 
more than about four continuous individual state 
variables are needed or a complex allelic inheritance 
model is used. 

Implementation 
strategy 

Compartment-based Applicable option when only a few continuous state 
variables are needed for characterizing individuals. 

Strategic Recommended for establishing generalizable insights, 
transcending the idiosyncrasies of specific populations. 

Parameterization 
strategy 

Tactic Required for conducting eco-genetic investigations of 
specific populations. 

Robustness 
analysis 

Parametric Recommended to systematically explore the effect of 
parameter values on model predictions. 
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Structural Recommended to investigate how specific mechanisms 
or assumptions influence model predictions. 
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Table 2.  Parameter values for an eco-genetic model of Atlantic cod. 

 

Description Symbol Equation Value

 Source 

Initial mean genetic PMRN intercept (cm) Gi  – 93 (90) (1) 

Initial mean genetic PMRN slope (cm yr–1) Gs  – –0.052 (–0.052) (1) 

Initial mean genetic GSI GGSI  – 0.12 (0.12) (1) 

Initial mean genetic growth capacity (cm) Gg  – 12.8 (12.9) (1) 

Initial genetic coefficient of variation GCV  – 0.08 (2) 

Initial heritability 2h  – 0.2 (2) 

GSI conversion factor   2a 0.578 (3) 

Length at age 0 (cm) 0l  – 0 (3) 

Length-weight allometric constant (g cm  )   – 0.01 (4) 

Length-weight allometric exponent   – 3 (4) 

Maximal growth increment (cm) maxg  2d 80 (1) 

Maximal fraction of surviving offspring 0s  3a 5.3·10–2 (5) 

Beverton-Holt constant 1c  3a 1.2·10–6 (6)  

Growth-biomass constant (g–1) 11c  3f 1.02·10–8 (7) 

Growth-biomass exponent 12c  3f 0.3 (7) 

PMRN width (cm) d  4c 25.9 (8) 

Weight-specific oocyte density (g–1)   5 4.4·103 (9) 

Background natural mortality probability bm  – 0.02 (10) 
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Numbers in brackets under ‘Value’ are the mean pre-harvest equilibrium trait values (reached 

after 2000 years without harvest and averaged over 30 independent model runs).  PMRN is the 

probabilistic maturation reaction norm, with a width defined by the 25th (lower) and 75th 

(upper) percentiles of maturation probability ( l 0.25p   and u 0.75p  ).  GSI is the gonado-

somatic index.  Sources are as follows: (1) Set so that the pre-harvest equilibrium of evolving 

traits is reached within 2000 years and values are within empirical ranges for Atlantic cod 

reported for PMRNs (Heino et al. 2002b, Olsen et al. 2004), GSIs (Lloret and Ratz 2000, Rose 

and O'Driscoll 2002, McIntyre and Hutchings 2003), and growth rates (Marshall et al. 2004, 

Olsen et al. 2005, ICES 2007a).  (2) Within the range reported by Mousseau and Roff (1987) 

and Houle (1992).  (3) Lester et al. (2004).  (4) Produces a relationship between fecundity and 

body length within the range reported by McIntyre and Hutchings (2003).  (5) Estimated by 

nonlinear least-squares regression from data presented in Marshall et al. (2000).  (6) Estimated 

as for (5) and then scaled so that population abundance at pre-harvest equilibrium is 

computationally manageable (ca. 20,000 individuals).  (7) Set so that the range of phenotypic 

growth rates predicted by the model is within empirical ranges for Atlantic cod (Marshall et al. 

2004, Olsen et al. 2005, ICES 2007a).  (8) Olsen et al. (2005).  (9) Thorsen and Kjesbu (2001).  

(10)  Set so that the total natural annual mortality probability is ca. 0.18, corresponding to an 

instantaneous mortality rate of ca. 0.2 yr–1 (Gunderson 1997, ICES 2007a).  A robustness 

analysis of several model parameters is presented in Appendix 1. 
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Figure Captions 

Figure 1.  An overview of eco-genetic modeling. 

Figure 2.  Schematic representation of the example eco-genetic model showing various 

functions used.  (a) A hypothetical probabilistic maturation reaction norm (PMRN) of an 

individual showing the midpoint curve (continuous line) and envelope (dotted lines) 

(Equation 4c).  (b) Density-dependent growth function (Equation 3f). (c) Example of an 

individual’s mean growth trajectory (Equation 2a).  (d) Relationship between fecundity and 

body length (Equation 5).  (e) Stock-recruitment relationship (Equation 3a).  (f) Normal 

distribution of offspring genetic trait values for a given pair of parents.  (g) Normal 

distribution of phenotypic trait values based on a given genetic trait value and environmental 

variance.  (h) Trade-off between genetic growth capacity and mortality probability (Equation 

2d).  (i) Size-dependent harvest probability, rising from 0 to the assumed harvest level for 

individuals above the minimum length limit. 

Figure 3.  The response to 100 years of harvest (grey area) followed by 100 years of harvest 

moratorium (white area) in Atlantic cod.  Genetic traits (top four panels) respond gradually to 

changes in the environment, whereas phenotypic traits (bottom four panels) display rapid and 

abrupt responses.  PMRN = probabilistic maturation reaction norm; GSI = gonado-somatic 

index.  Minimum length limit was 60 cm, harvest probability was 0.5, and results were 

averaged over 30 independent model runs. 

Figure 4.  Effect of the minimum-length limit on the evolution of life-history traits in 

Atlantic cod.  Panels show the percentage change in the evolving traits after 100 years of 

harvesting, relative to the year before harvesting started.  To make the scale of the horizontal 

axis identical for all panels, the percentage change in the PMRN slope was multiplied by 10 

(necessitated by particularly slow evolution).  PMRN = probabilistic maturation reaction 
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norm; GSI = gonado-somatic index.  Harvest probability was 0.5 and results were averaged 

over 30 independent model runs. 

Figure 5.  Probabilistic maturation reaction norms (PMRNs) for Atlantic cod after 100 years 

of harvest.  Panels depict the probability of maturation in grayscale rising from just above 0 

(white) to just below 1 (black).  The dashed line is the PMRN midpoint curve (defined by the 

length at age with 50% maturation probability), while the continuous line is the mean 

immature phenotypic growth curve.  For reference, the filled circle indicates where the mean 

growth trajectory intersects the lower bound of the maturation envelope (above which 

individuals mature with a probability in excess of 25%).  Minimum length limit was 60 cm 

and results were averaged over 30 independent model runs. 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Appendix 1: Robustness analysis 

In addition to testing the effects of different minimum length limits and harvest 

probabilities as described in the main text, we also tested the robustness of model results to 

changes in several other functions and parameters. 

The growth-survival trade-off (Equation 2d) was expected to influence growth 

evolution: raising maxg  reduces the severity of the trade-off and causes a lower cost of faster 

growth.  Therefore, not surprisingly, raising maxg  elevated the genetic growth capacity after 

100 years of harvest (Figure A1a). 

For the other robustness tests, we focused on effects on the PMRN intercept, because 

this trait consistently showed a large evolutionary response to harvest.  Nevertheless, detailed 

results for all traits are presented in Table A1.  The magnitude of evolution was positively 

correlated with changes in the parameter 0s , which determines the density-dependent 

mortality of newborn offspring (Equation 3a); however, the overall difference in the position 

of the PMRN after 100 years of harvest was small (Figure A1b).  Higher values of 0s  

produce larger population abundances, which, in turn, produce smaller phenotypic length 

increments; possibly, there is then compensation in the evolution of the PMRN in response to 

this slower growth. 

We also tested the effect of changing the relationship describing density-dependent 

growth by varying the parameter 11c  (Equation 3f) between 0 (density-independent growth) 

and 821.5 10  g–1(causing a strong reduction in growth with increasing population biomass).  

We observed an increase in the evolutionary response in the PMRN intercept when 11c  was 

increased (Figure A1c), so that the slowest evolutionary response occurred when the density 

dependence in growth was switched off entirely. 
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For the final component of our robustness analysis, we tested the effect of changing 

the assumed genetic coefficient of variance GCV  in the initial population on evolution of the 

PMRN: as expected, increasing GCV  between 0 and 12% accelerated the evolutionary 

reduction of the PMRN intercept (Figure A1d). 
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Table A1.  Detailed results of the robustness analysis.  Results shown are the mean genetic 

trait values after 100 years of fishing with a harvest probability of 0.5 and a minimum size 

limit of 60 cm.  Intercept and slope are the probabilistic maturation reaction norm (PMRN) 

intercept and slope, respectively.  GSI is the gonado-somatic index. 

Parameter name and value Intercept Slope GSI Growth 

capacity 

  (cm) (cm yr1)  (cm) 

Maximum length increment maxg  

 40 cm 57.9 0.0525 0.130 6.00 

 50 cm 60.2 0.0518 0.131 7.69 

 60 cm 62.0 0.0524 0.131 9.37 

 70 cm 64.5 0.0523 0.124 11.0 

 80 cm 67.3 0.0520 0.126 12.3 

 90 cm 71.1 0.0519 0.124 13.4 

 100 cm 73.8 0.0518 0.121 14.4 

Density-dependent mortality constant 0s  

 1.0·103 70.9 0.0520 0.125 12.8 

 2.0·103 69.1 0.0520 0.126 12.5 

 3.0·103 68.9 0.0522 0.126 12.5 

 4.0·103 67.9 0.0522 0.126 12.4 

 5.0·103 67.8 0.0521 0.126 12.3 

 6.0·103 67.2 0.0523 0.126 12.3 

 7.0·103 67.1 0.0519 0.126 12.3 

 8.0·103 66.8 0.0520 0.126 12.2 
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 9.0·103 66.6 0.0519 0.127 12.3 

 10.0·103 66.6 0.0520 0.127 12.2 

Density-dependent growth constant 11c  

 0 108 g1 79.4 0.0522 0.121 14.1 

 0.01 108 g1 75.2 0.0517 0.123 13.5 

 0.1 108 g1 71.8 0.0519 0.125 13.0 

 0.4 108 g1 69.3 0.0519 0.125 12.7 

 1.0 108 g1 67.3 0.0520 0.126 12.3 

 2.1 108 g1 66.3 0.0521 0.126 12.1 

 3.4 108 g1 65.7 0.0522 0.127 12.0 

 6.6 108 g1 65.1 0.0521 0.127 11.9 

 10.2 108 g1 64.5 0.0520 0.126 11.8 

 15.2 108 g1 64.3 0.0522 0.127 11.8 

 21.5 108 g1 64.4 0.0522 0.126 11.8 

Genetic coefficient of variation GCV  in the initial population 

 0 % 93.0 0.0520 0.118 12.8 

 1 % 92.4 0.0520 0.119 12.8 

 2 % 90.7 0.0520 0.119 12.9 

 3 % 88.0 0.0519 0.120 12.8 

 4 % 84.1 0.0520 0.120 12.8 

 5 % 80.0 0.0520 0.121 12.8 

 6 % 75.3 0.0520 0.123 12.7 

 7 % 71.2 0.0520 0.124 12.5 

 8 % 67.3 0.0520 0.126 12.3 
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 9 % 64.8 0.0522 0.128 12.1 

 10 % 61.7 0.0523 0.131 12.0 

 11 % 60.4 0.0517 0.134 11.7 

 12 % 59.0 0.0519 0.136 11.6 



Eco-genetic models 

 65

Figure Caption for Appendix 1 

Figure A1.  Robustness analysis for the eco-genetic model of Atlantic cod.  Panels show the 

(a) genetic growth capacity and the (b-d) probabilistic maturation reaction norm (PMRN) 

intercept after 100 years of harvesting.  Parameters varied are the (a) maximal length 

increment maxg  (Equation 2d), the (b) density-dependent mortality constant 0s  (Equation 3a), 

the (c) density-dependent growth constant 11c  (Equation 3f), and the (d) genetic coefficient of 

variation GCV  in the initial population.  Harvest probability was 0.5, minimum length limit 

was 60 cm, and results show the means and standard deviations for 30 independent model 

runs.  Triangles indicate the default parameter values from Table 2 and error bars show the 

standard deviations. 
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Figure A1. 

 

 


