
PP-78-12

A COMPUTER NETWORK: STRUCTURE AND PROTOCOLS OF THE RPCNET

Fausto Caneschi

December 1978

Professional Papers are not official publications of the International Institute
for Applied Systems Analysis, but are reproduced and distributed by the
Institute as an aid to staff members in furthering their professional activities.
Views or opinions expressed herein are those of the author and should not be
interpreted as representing the view of either the Institute or the National
Member Organizations supporting the Institute.

PREFACE

This manual was written with a well defined
goal: to collect all the technical specifications
and protocols of the RPCNET, the Italian Computer
Network. Since now, these technical specifications
were described in a number of papers, and most of
them were obsolete. In fact, one thing is a new
protocol before its implementation, and,very
often, different after the implementation.
Anyway, the principles on which RPCNET was
established remained untouched, so that the
author's work was made easier by consulting and
using the material contained in those old papers.

Nothing could be done, however, without the
help of the RPCNET people, both at CNUCE and at
the IBM scientific center of Pisa, Italy. My
special thanks go to Luciano Lenzini, Fabio
Tarini, Claudio Menchi, Marco Sommani, Maurizio
Martelli and Erina Ferro at CNUCE, and to Livio
Lazzeri, Alessandro Fusi, Carlo Paoli and
Raffaello Porinelli at the IBM scientific center.

The author admits that this work can be
largely improved and thus will appreciate all the
suggestions and contributions, both from the above
mentioned specialists and from any other
interested reader.

-iii-

ABSTRACT

A brief description of the RPCNET
architecture is given in the beginning of this
manual, then, the protocols and the packet formats
of RPCNET are described.

More precisely, Chapter 1 deals with a
general description of the RPCNET, Chapter 2 deals
with the 1st level protocol (Line and
Reconfiguration protocols), Chapter 3 deals with
the 2nd level protocol (End-to-End protocol), and
Chapter 4 deals with User-Level protocols,
including the description of RNAM, the generalized
Access Method supplied by RPCNET.

Appendix A is the hardware scheme of the
BSC-modified line connection, Appendix B gives an
example of how the reconfiguration protocol works,
and finally Appendix C describes the packet
formats.

-v-

LIST OF CONTENTS

page

1 1 INTRODUCTION

2 2 RPCNET ARCHITECTURE

2 2.1 General Information.

2 2.2 The Communication Layer

3 2.3 The Interface Functions Layer

4 2.4 Application Layer

5 3 THE COMMUNICATION LAYER

5 3.1 General Information

6 3.2 The Packet Switcher

8 3.3 The Communication Network Manager

8 3.3.1 The NETCHANGE protocol

14 3.4 The Network Connection Handler (NCH)

14
15
19
20

3.4.1
3.4.2
3.4.3
3.4.4

General considerations
How the protocol works
Block name management
Protocol specification

27 4 THE INTERFACE FUNCTIONS LAYER

27 4.1 General Information

29 4.2 The Session Handler

29
30

4.2.1 Operation
4.2.2 Internal Protocols

-vii-

33
41
45
52
56

4.2.3
4.2.4
4.2.5
4.2.6
4.2. 7

Presentation Services
Data Length Adapter
Data Flow Control
Session Exception Handler
A final remark

57 4.3 The Network Services Manager

59
60
61
66

4.3.1
4.3.2
4.3.3
4.3.4

The Logical unit Handler
The Logical Network Control Point
The Multiple Session Handler
The Network Services Switcher

77 4.4 The Network Access Controller

78 5 THE APPLICATION LAYER

78 5.1 Introduction

79 5.2 RNAM

79 5.2.1 Characteristics of RNAM

86 5.3 Improved Access Method based on RNAM

86

86
88
117

5.3.1
Method
5.3.2
5.3.3
5.3.4

General characteristics of the

Macro instruction structure
Macro Instructions
Macro instruction return codes

Access

121 5.4 User Application Protocols

121
122
131

5.4.1
5.4.2
5.4.3

Introduction
File Transfer Protocol
Virtual Terminal Protocol

-viii-

page

7

10

15

16

17

18

18

21

21

25

31

37

39

43

46

52

53

67

68

73

81

81

82

85

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18

Figure 19

Figure 20

Figure 21

Figure 22

Figure 23

Figure 24

LIST OF FIGURES

Packet Switcher activity

Distance and Routing tables for node C

Logical Channels and Byte Structure

Example of a Sender Node

Example of a Receiver Node

Example of ACKM Structure

Blocks Situation

Block Structure

Channel 2 is nacked

Status Message

Logical Channel between two Applications

Chain Sender and Chain Receiver

Change Direction Control

TH structure

The Dynamic Window

Data Flow Control: Sender side

Data Flow Control: Receiver side

NSM Sender

NSM Receiver

Session Service Protocol

Synchronous requests handling

Asynchronous request with ECB

Asynchronous request with Exit-routine

RNAM handling of the operations

-ix-

89 Figure 25 LUCB macro instruction

92 Figure 26 RPL macro instruction

97 Figure 27 GENCB macro instruction

99 Figure 28 MODCB macro instruction

1121121 Figure 29 OPENID macro instruction

11211 Figure 3121 CLOSELU macro instruction

11212 Figure 31 BIND macro instruction

11214 Figure 32 INVITE macro instruction

11215 Figure 33 UNBIND macro instruction

11216 Figure 34 SEND macro instruction

11218 Figure 35 RECEIVE macro instruction

11219 Figure 36 BREAK macro instruction

III Figure 37 CHECK macro instruction

III Figure 38 CANCEL macro instruction

112 Figure 39 EXECRPL macro instruction

113 Figure 4121 TESTLC macro instruction

115 Figure 41 MAIL macro instruction

124 Figure 42 NET format for spool blocks

125 Figure 43 BIU format for File Transfer

132 Figure 44 states of a Virtual Terminal Protocol

133 Figure 45 State diagram for the Virtual Terminal

-x-

I INTRODUCTION

This technical manual describes the various layers and
protocols of RPCNET, the italian computer network, and is
intended for computer personnel who wish to implement the
RPCNET architecture on their own existing systems. Although
the RPCNET architecture is independent on the computing
systems on which it can be implemented, the original
partners of the REEL project (REte di ELaboratori) all
employed IBM computing systems, so that the RPCNET software
for IBM 370s, running OS/VS2, MVS or VM/370, and for IBM S/7
was developed and tested in the course of the project. This
software is available at CNUCE, C.N.R.; via S. Maria 36,
Pisa, Italy.

- 2 -

2 RPCNET ARCHITECTURE

Although it is assumed that the reader of this manual
is already familiar with the RPCNET architecture, (1) , (2),
(3), (4), a brief description of it follows here as a
background for the material presented in subsequent
chapters.

2.1 General Information.

RPCNET is a packet switching, distributed control,
computer network; automatic re-configuration and a general
Access Method are distinguishing characters of its design.

RPCNET is logically divided into three layers:

a) The Communication Layer

b) The Interface Functions Layer

c) The Application Layer,

which correspond to the three addressing levels of the
network.

One function of the Communication Layer is the sending
of packets on the line(s) according to a well defined line
protocol. It also performs the routing and re-configuration
functions, using the NETCHANGE protocol.

The software component which pertains to this layer is
the Common Network Manager (CNM), which is the first
addressable unit in RPCNET. This means that a network
address like n00 (where n is an integer number between 1 and
65536) is a CNM address.

Any computer on which the Communication Layer is
implemented is considered to be an RPCNET Node, and as such
it can perform the line-driving and the re-configuration
functions. The packets are required to be fixed-length,
formatted fields ,the RPCNET packet length being 255 bytes.

- 3 -

The Interface Functions Layer facilitates the network
users' (Applications) work, by:

a) hiding the packeting activity, the
retransmissions and the reconfigurations;

b) handling the logical RPCNET channel, notifying
the Application in case of errors.

The Interface Functions Layer is composed of two main
modules: the Session Handler (SH) and the Network Services
Manager (NSM). The SH is in turn composed of 3 modules and
performs the in-session functions of assembling and dis­
assembling the application buffers (Basic Information unit
or BIU) in packets for the Comm_nication Layer. The SH has a
window oriented protocol, which allows the discarding of
duplicate packets and the recognition of BIU loss. The 3 SH
modules are designated as: the Presentation Services, the
Data Length Adapter and the Data Flow Control, which are
described later in this manual.

The NSM regulates the opening and closing of the
Logical Channel and provides services as the transmission of
"mail".

All the NSMs in the network are connected by means of a
NSM protocol which has a fixed length window. The presence
of an NSM characterizes a computer as a RPCNET Host, making
the NSM as the second addressable unit in the network. A
network address such as nm0 (where n is the Node CNM
address, and m is the Host NSM address) designates the m-th
Host in the n-th Node.

The Logical RPCNET Channel mentioned previously as
being handled by the Interface Functions Layer, has the
following characteristics:

a) it is driven with an half-duplex technique

b) it does not provide an error-free connection

c) it detects and signals, at both Logical Channel
sides, errors in the form of BIU losses.

However, with little effort the facilities of the
Logical Channel could be extended by making it a full-duplex
connection. This should be kept in mind during the
implementation phase.

- 4 -

In the RPCNET, the term Application is used to indicate
the generic network end-user: an Application is defined as
any process or set of cohordinated processes, that access
the Communication System (Communication Layer and Interface
Functions Layer) in order to obtain network services. An
Application is identified by the third address field in the
network address.

A network address such a~' nmk identifies the k-th
Application of the m-th Host in the n-th Node. In the
network address space, the nmk unit is known as the nmk LCT
(Logical Channel Termination).

- 5 -

3 THE COMMUNICATION LAYER

3.1 General Information

The Communication Layer is composed of three modules:

a) The Packet Switcher (PS)

b) The Communication Network Manager (CNM)

c) The Network Connection Handler (NCH)

It must be noted, at this point, that a RPCNET
connection is a full-duplex channel: this means that the NCH
is in charge of providing a full-duplex connection for its
users (namely, the PS and the CNM) , and to hide to them the
details of the protocol(s) used. As the initial RPCNET
partners have IBM computers, a BSC full-duplex protocol (2)
was designed and implemented which allows, by means of a
special "Y" cable (see Appendix A), to use a BSC line as a
full-duplex line.

If in the decision phase of the project the BSC line
will not be chosen, the line protocol must be re-designed.

In the first section of this chapter we will describe
the PSi the second section is dedicated to the CNM, and the
third to the BSC full-duplex NCH.

- 6 -

3.2 The Packet Switcher

The PS is in charge of routing packets towards their
destination, using the Routing Table, which is maintained
and updated by the CNM (see 3.3). The PS has an input queue,
which is used by:

a) the upper level of the network (SH or NSM)

b) the NCH

For every packet in the input queue, the Destination
Address Field (OAF) is tested, and the packet is:

a) enqueued on the NCH input queue corresponding to
that address (as indicated in the Routing Table)

or

b) enqueued on the upper level input queue

The PS activity can be sketched in a flowchart, see
Figure 1.

- 7 -

WAIT

IS THE

QUEUE

EMPTY ?

GET THE FIRST

PACKET IN THE
QUEUE

YES

NO
IS TEIS

~-------~:.--- ...
DIRECTED

HERE?

Figure 1

YES

PUT IT ON THE

UPPER LEVEL

INPUT 0UEUE

-

Packet Switcher activity

LOOK AT THE ROUTING

TABLE TO KNOW THE

NCH INPUT QUEUE

PUT IT ON THE

'INPUT QUEUE

....

- 8 -

The CNM is a component which keeps up-to-date those
tables which are necessary for describing the network
topology (Distance Table) and also for deciding to which
adjacent node a packet must be forwarded to, in order to
reach its destination (Routing Table) .

The CNM is also in charge of preparing and sending re­
configuration messages (used to make the nodes of the
network aware about the topology changes) .

The only other component which interacts with the CNM
is the NCH. The NCH makes the CNM aware about the going down
and the coming up of the links it controls: in addition, it
gives to the CNM the reconfiguration messages it receives,
and sends over the links the reconfiguration messages
prepared by the CNM.

We will describe the protocol used by the CNM (the
NETCHANGE protocol) in the following section: this protocol
is introduced in (2) and a proposal for the introduction of
the traffic load, defining the VRP (Virtual Reconfiguration
Protocol) was presented in (3).

The VRP
but it is
implementer
introduction

is not implemented
fully compatible
should know it,
of it in RPCNET.

in this version
with NETCHANGE,

in view of

of
so

a

RPCNET,
that the
possible

3.3.1

In the actual implementation of the RPCNET, the
NETCHANGE protocol has been a little modified, in order to
gain in speed: the modification consists on sending for
every reconfiguration message, the entire Routing Table
(only the distance column, of course) and not the modified
row only.

All the terms which are not well defined now will be
explained in the following. For an implementation example
see (4).

The routing algorithm performed by the NETCHANGE
protocol is a deterministic one: in fact, it computes the
best route to reach a node by taking into account only the
topology of the network; a route can change only if the
topology changes.

- 9 -

The NETCHANGE protocol assumes that the routing
algorithm is based on the shortest distance criterion, i.e.
packets in transit are returned towards the adjacent node
which is located on the shortest path to their destination.
Such a routing algorithm does not need to know the entire
topology of the network; it is sufficient to know the
distance between the adjacent nodes and all the other nodes
in the network.

Let us assume, for instance, that the node A has to
send a packet to the node X, not adjacent to A. If B is an
adjacent node, all that A needs to know is the distance
between B and X: the distance from A to X via B can be
computed as the distance between B and X plus one, so that A
will route the packet to the neighbour declaring the
shortest distance.

The algorithm requires two tables: the Distance Table
and the Routing Table. The Distance Table has a column for
every neighbour and a row for every node in the network. The
Routing Table has an entry (row) for every node in the
network, which contains the shortest distance to reach this
node, and the name of the first node in the route (the
neighbour to which the packets are to be sent for that
pa th) .

An example of a network topology,
Table and the Routing Table for a
Figure 2.

with
node,

the
is

Distance
given in

The Distance and the Routing Tables are present in
every node, they also contain a row for each node in the
network. The Distance Table has as many columns as the links
going out from its node; every column has, for every row,
the distance between the node the table refers to and the
node corresponding to the row.

The Route Table has two columns, referring to:

I The shortest distance

2) The node to which messages are routed

The Routing Table for NETCHANGE is determined in the
following way: at the beginning, the Routing Table is
deduced from the Distance table by simply selecting the
minimum distance in each row. Later, messages are exchanged
from node to node, carrying information about the network's
topology. They have the form of the Routing Table of the
node sending the message.

- 10 -

A

B nu.__,, "1 D

CB CD CE

A 2 2 3 2 B

B 1 3 3 1 B

C - - - - -
D 3 1 2 1 0

E 3 2 1 1 E

Distance (left part)

and Routing Tables for node C

Figure 2 Distance and Routing tables for node C

In a node, one of the following events can occur:

1 an adjacent link comes up;

2) an adjacent link goes down;

3) a reconfiguration message is received.

These three events correspond to three different
algorithms that must be performed by the node. To illustrate
the algorithms, the following notations are used:

A is the node carrying out the algorithms

B is a neighbor of A

C is any other node different from A and B

N is the number of the nodes in the network

The number N has a special meaning for the protocol;
because the longest path between any two nodes cannot pass
through more than N-l different nodes, the protocol makes
the following assumptions:

if N is contained in
the node corresponding
cannot be reached passing
the column;

- 11 -

any field of the Distance Table,
to the row in which it is located
through the link represented by

if N is contained in the Routing table the node cannot
be reached at all (for example, the node is down) .

- 12 -

~!.~~ i.~hm ~

An adjacent link AB (or a neighbor node B) comes up.

1 The entry, row B, column AB of the Distance
table is set to 1.

2) Then, row B of the Routing table is set to 1,B
(distance column 1, node column B)

3) A copy of A's Routing .t~ble (distance column) is
sent to all the neighbors of A (including B).

Algorithm ~

An adjacent link AB (or a neighbor B) goes down.

All the entries in the column AB of the Distance Table
are set to N; then, for each node X except for A do:

1 Examine row X of the Distance table; calculate
the new shortest distance (procedure CALC); if
it is not different, end for X

2) If it is, make the appropriate changes to
entry X of the Routing table, and send
reconfiguration message to all the neighbors

the
a

A reconfiguration message is received

Let K the new value for the distance of the node X: for
every row of the Distance Table except for A:

1 Entry X of the Distance Table is set to
MIN(K+l,N)

2) The new shortest distance for X is calculated
(CALC)

3) If any row of the Routing table has been
changed, send it to all the neighbors
(reconfiguration message) .

- 13 -

Procedure CALC

All the entries in the table refer to row X

1 For all the links (Distance Table columns) which
do not have the distance equal to N, the
distance is picked up

2) If the set is empty, the node X cannot be
reached, and the Routing Table entry is changed
to I no route' (N) .End.

If the set is
are chosen;
the Distance
selected. The
the route part

3) not empty, the smallest elements
from these, the first distance on
Table from left to rigth is
corresponding link is placed in

of the Routing table.

An example is given in Appendix B, using the topology
depicted in Figure 2.

- 14 -

As explained before, since now the RPCNET
implementation made use of asc lines, so that a BSC full­
duplex protocol was designed and implemented for the NCH.
For what follows, the reader is assumed to have a good
knowledge of the BSC control characters, and also of the
standard BSC protocol in general.

3.4.1

In order to take advantage of the procedure ability to
transmit a stream of data in both directions at the same
time, an overlapping between the block acknowledgements and
the transmission of a subsequent block is provided.
Generally speaking, it is possible to say that as soon as
one block is transmitted as a result of a write operation,
the next block is sent, regardless of whether or not the
previous transmission was completed without error.

According to this protocol, every block of information
is shipped out by the computer on the line as a transparent
text. It will be assumed that all padding and frame
characters are provided implicitly; it is not important
whether from hardware and/or software. Transmission checking
is provided in the form of CRC when the normal end of
transmission is detected.

According to the protocol, each physical line is broken
up into a number of logical hchannels~, in the present
implementation eight channels in each direction.

Negative (NACK) and positive (ACK) acknowledgments
required by a BSC transmission are now replaced by a control
message BSCM which includes both positive and negative
acknowledgments. All new definitions will be given below.
The control message BSCM is shipped out onto the line
together with a text, if there is one; consequently, BSCM
uses the same framing characters as the text does. A BSCM is
always referred to one channel, but it carries a string of
bits (a byte called ACKM) describing the binary state (ACK
or NACK) of all the receiving channels. It follows that BSCM
consumes an insignificant portion of line band width at
times of heavy load. Both BSCM and text carry several bits
of control information as will be described later.

Before describing how the protocol works, the following
conventions are introduced:

- 15 -

a one to one correspondence between the
transmitting channels and the eigth sections of
a circle;

a one to one correspondence between the eigth
bits of a byte and the receiving channels, as it
is possible to see in Figure 3.

a transmitting
(b) or in a
whether or not
block.

channel can be either in a "busy"
"free" (f) state, depending on

it is currently associated with a

Further, a receiving channel can be in a no
error (g) or in an error (b) reading state
depending on whether or not a block which refers
to that channel has been received correctly.

Chan o 1 2 3 4 5 6

---------------_.-._-_._- ._--_._----_.._-_._----_.- - -----

Figure 3 Logical Channels and Byte Structure

3.4.2

Each block going in one direction is associated with a
name and transmitted onto a channel. While the association
between block and name is made in a very naive way, the way
in which a link between block and channel is made is more
complicated, and has to be explained in details. The
following strategy is used: blocks are transmitted on
sequential "free" channels in order to keep track of the
time order of the transmit operation. As soon as one block
is transmitted, the corresponding channel is marked busy.
The state of the channel is changed only when a BSCM is
received from the other side carrying information connected
with that channel.

At the receiving side, blocks are expected in the same
channel order as they were sent. Any time that this order is

that computer S sends blocks
on the channels m-2, m-l and
the graphic represe~tation

will be what we can see in

- 16 -

broken, it is logical to require the re-transmission(s) of
the block(s), associated to the channel(s), which has (have)
been received out of sequence.

For example, let's assume
to computer R named a, b, and c
m respectively. According to
above, the situation in S
Figure 4.

s
m ~2 ~I

p2

g

m

pI

g g

m-2 m-I

Figure 4 Example of a Sender Node

Channels between pointers pI and p2 will be associated
to blocks that have already been transmitted but for which
no BSCM has yet been received.

In the example just mentioned, p2 will point to channel
m and pI to channel m-2, if no BSCM has yet been received
after the transmission of m. At the receiving end, if no
errors occur, blocks a, b, and c, on the channels m-2, m-l
and m respectively, will be received sequentially. BSCMs
will be sent back to S, reporting for the receiving channels
of R the situation in Figure 5.

Presuming that S receives the BSCMs back correctly,
channels m-2, m-l and m will be set "free" gradually one by
one. Thus, they can be re-used for other block
transmissions. In terms of pointers, pI will tend to p2.

- 17 -

g

m m-2 m-l

g g

m m-2 m-l

g g g

m

Figure 5

m-2 m-l

Example of a Receiver Node

It is worthwhile emphasizing that, due to the ACKM byte
in the BSCM structure, it is
returned to S. The most recent
the state of the channels
construction.

not necessary that 3 BSCMs be
BSCM is capable of describing

up to the moment of its

In this example, if R receives a BSCM belonging to the
m-th channel, R is capable of reaching the same final result
that it should be achieved if it had received one BSCM at a
time, the only difference being the time in which every
channel will be set free.

Let's now suppose that R receives correctly blocks a
and c belonging to channels m-2 and m respectively. As they
are accepted by R, the blocks are properly acknowledged.
Assuming that the BSCM corresponding to channel m-2 reaches
S, the procedure to be followed at S for channel m-2 is the
same as described above. On the other hand, as soon as the
block associated to channel m is received, the byte
describing the portion ACKM of BSCM will have the structure
described in Figure 6.

The channel m-l will be put into the error reading
state because according to the algorithm with which blocks
are sent to S, the block connected with channel m-l should

- 18 -

g g b

m m-2 m-l

Figure 6 Example of ACKM structure

have been received, from the time view point, between the
blocks related to m-2 and m respectively. presuming that S
receives the byte shown in Figure 6, the following procedure
will be performed:

a) channel m-2 will be set IIfree" if its BSCM has
not yet reached side S;

b) channel m-l will be set "free" and block b will
be transmitted with the same name but on channel
m+l if this channel is free (available);

c) channel m will be set "free"

At the end of these operations we have the situation
shown in Figure 7.

f f f

Figure 7

m m+l

Blocks Situation

m-2 m-l

BSCM is always referred to the channel number of the
last block received correctly.

- 19 -

Finally, it is worth noting that the Sender must not
have more than 7 blocks outstanding, i.e. blocks transmitted
and about which no news have been received (ACK or NACK).
This is to avoid confusion in the interpretation of the BSCM
message.

3.4. 3

As specified before, each block going in one direction
carries a name with other information. As, at the most, it
is possible to have as many different names as the number of
channels, names going from 0 up to 7 are needed now.

According
is described
unavailability
side, another
sides.

to this protocol, the availability of a name
by a bit which is called availability­
bit. To detect duplicates at the receiving
bit, called parity bit, is needed at both

Consequently, the message name space used by this
protocol is 16, and it is managed in 8 pairs as follows:

the unavailability-availability bits indicate
whether or not the name has already been used.
The parity bit is kept at both sides for each
possible name.

at the receiving side, if the parity bit of the
received block does not match the parity bit
associated with the appropriate name, the
received parity bit is complemented, otherwise
the block is a duplicate and discarded.

when the transmitting side receives a block, the
BSCM bits are examinated one by one, and the
following procedure will be adopted for each
channel marked (g) in the ACKM bits:

a) for each free transmitting channel, no action is
taken because only one of these two alternatives
is possible:

1 a block has never been transmitted on this
logical channel;

2) the channel has been set free by a previous
BSCM;

b)

- 20 -

for each busy transmitting channel, the
corresponding channel is marked free, the name
is marked available, and the parity bit is
complemented. In other words, both the channel
number and the name are available for other
block transmissions.

3.4.4

The block structure actually implemented was defined by
keeping in mind the following points as being the most
important requirements:

in order to consume as little line bandwidth as
possible BSCM and the text (if there is one)
must be transmitted together by making use of
the same framing characters.

due to the channel structure used by this
protocol, at any time the number of the blocks
waiting for acnowledgment at the transmitting
side cannot be higher than the total number of
channels (now eight); therefore, ACKM can be
represented by one byte.

Once specified that, as far as the BSC transmission
technique is concerned, the block structure believed to be
the simplest is as in Figure 8,

where:

ACKB (8 bits)

0-2 Channel number of last received block

3 Not used

4 Parity indicator of last received block

5-7 Block name of last received block

ACKM (8 bits)

A~tRowledge mask. Bits 0-7, from rigth to left,
refer to the blocks sent immediately before the block
identified by ACKB. If the bit is set to 1, the block
is in error, if it is set to 0, the block is positively
acknowledged. An example is given in Figure 9.

ACKBC and ACKMC (8 bits)

Figure 8

Figure 9

- 21 -

D S A A A A C C L L D E B B

L T C C C C H H U U TEXT L T C C

E X K K K K I I P P E X C C

B M B M D D R R 1 2

C C C C

Block structure

o ====-000011111 I

Channel 2 is nacked

These two bytes are the one's complement of ACKB
and ACKM, respectively. They are used to verify
the validity of ACKB and ACKM, even if the block
of which they are part has a CRC error.

CHID (8 bits)

- 22 -

0-2 Channel number of the block (if this is a non­
local block

3 Local/non-local indicator (see later)

4 Parity indicator (non-local blocks)

5-7 Block name (non-local blocks)

CHIDC (8 bits)

This byte is the one's 'complement of CHID. It is
used to verify the validity of CHID only when
the CRC is incorrect.

LUPR (8 bits)

This byte denotes the number of the last received
update concerning the Routing table (see later).

LUPRC (8 bits)

This byte is the one's complement of LUPR.

In order to clarify this implementation, the following
example is given. Let us assume to have received a block
having for BSCM the following bit structure:

ACKB = X'5C' = B'01011100'
ACKM = X'4A' = B'01001010'

Bits 0-2 and 5-7 of ACKB define the base block having the
channel number 2 and the block name 4.

From the definition of ACKM it follows that
at the ACKM bit pattern from rigth to left and
that the received block has been transmitted on
the block transmitted on channel

1 is negative acknowledged

0 is positive acknowledged

7 is negative acknowledged

6 is positive acknowledged

5 is positive acknowledged

4 is negative acknowledged

3 is positive acknowledged

(by looking
remembering
channel 2)

- 23 -

3.4.4.1 Connection Maintenance Protocol. The Link
status has to bemonit-o-ied-;-" "In-orde"r to know at any time if
it is active or if it has to be considered down. For this
reason: the full-duplex protocol has to be completed with a
connection protocol that is able to detect the '"going down"
and the "coming up" of a Link.

We shall discuss the ,I coming up" in the next sec tion.
Here let us emphas i ze how the ,I going down" is de tec ted. As a
first approach, we can realize that a Link went down when we
try to use it: in such a case, we do not receive any ACK for
the blocks we began to send. If we want to take a faster
action, we must detect that a Link is down at the time it
actually goes down. This aim is achieved by maintaining
always a certain amount of bi-directional traffic on the
Link. The two adjacent FEPs are always listening to their
receiving lines with a certain timeout: if the timeout
elapses and no block is received in the meanwhile, the Link
is considered down. This means that, if there is no block of
data to send, fictitious traffic must be provided. ItHello~

messages are prepared specifically for this.

Since the purpose of the Hello messages is to provide
the fictitious traffic, they do not necessarely need an
acknowledgment. In this way channels and block names would
not be used, avoiding system overhead. In addition, a
certain kind of acknowledgment would still be provided by
the timeout.

The possibility of transmitting blocks
first level protocol seems to be useful
circumstances. Some other examples are:

outside the
in many other

the transmission of ACKs alone (in order to
avoid a certain kind of loop of ACKs)

the initialization of the Link (when the first
level protocol is not yet available, etc).

In this view, it is worthwhile to introduce a special
type of block, the "local" block. Local blocks are defined
as those blocks carrying an ACK and transmitted outside the
first level protocol, that is without requiring an
acknowledgment. Local blocks do not involve any module other
than the NCH, because they are born and they die inside the
NCHs. In order to identify this type of block, bit 3 of CHID
is used.

3.4.4.2 The Initialization of the Link. It is clear
that -when -a---r:ionk--Is-Trithe-{nactIve stater not even the
minimum amount of bi-directional traffic can be mantained.
This does not mean that no activity is performed on that

- 24 -

Link. In fact, if a Node has an inact i ve Link, it must be
kept listening to that Link, in order to be able to switch
to the active state upon receipt ion of the appropriate
initialization sequence.

The purpose of the initialization sequence is to
perform some checks in order to verify if the active state
can be entered. Among the points to be checked are:

the working of both the sending
receiving line;

and the

the compatibility of the software running on
both the adjacent Nodes

the Node identification, etc.

In view of this, let us introduce the "status" as the
amount of information exchanged between two adjacent Nodes
during the initialization. It is clear that in this
preliminary exchange of information, the first level
protocol is not involved at all.

In order to allow status exchange, let us introduce
another type of local block, the "status" message. There are
three types of "status" messages:

I request of status

2) transmission of status

3) request and transmission of status

Whenever an attempt is made to start a Link, a request
of status is sent to the adjacent Node. If the request is
received correctly, the adjacent Node will answer by
supplying its own status. The status information is checked
by the local Node, and if it is rigth, a Hello message is
sent. The reception of a Hello message is the triggering
event: at the receiving side the active state of the Link
is entered, and therefore the Hello messages regime is
established.

3.4.4.3 Local- - - - ----
block are always
DLE, STX, ACKB,
distinguish local
(local block), the

~loc~ For~~~. The first four bytes of the
the same for every block type. They are:

ACKM. Bit 3 of the fifth byte is used to
and non-local blocks. When bit 3 is on

byte structure is as follows:

- 25 -

0-2 channel number on which the next non-local block
will be transmitted

3 local/non-local indication (set to 1)

4 request of synchronization indicator
start or restart)

(after

5 stop request indicator

6 status request indicator

7 status included indica~o~

When bits 4,5,6 and 7 are all zero, the local block
contains an Hello message.

The status field,
information necessary
maintenance protocol. The
after the LUPRC byte, see

when included,
to initialize
status field is
Figure 10.

contains all the
the connection

placed immediately

NODEID LINKID FLAGS LENR

AVAIL SPARTY RPARTY UPN

SOFLV NUMNOD

I-I- ROUTING TABLE :rT _

Figure 10 Status Message

where:

- 26 -

NODEID is the number identifying the Node of the
Sender

LINKID is the number identifying,
side, the Link over which
transmitted

at the sending
the block is

in

in

Prepare

SendingProgress/NoinSending

reserved
Sending Line Active/Not Active
Receiving Line Active/Not Active
Link Active/Not Active

Link in Prepare State/Not in

FLAGS all
bit 0:
bit 1:
bit 2:
bit 3:
State
bit 4:
Progress
bit 5: Receiving in Progress/No Receiving
Progress
bit 6: writing required/No Writing Required
bit 7: update Required/No Update Required

LCHR last channel number received correctly

AVAIL availability of the names (a bit set to 1
indicates that the corresponding name is busy)

SPARTY parity of the names for the next
transmission

RPARTY parity of the names after the last
receiption

UPN routing table update number in this block

SOFLV software level

NUMNOD number of nodes supposed to be in the
network

4

- 27 -

THE INTERFACE FUNCTIONS LAYER---- --_._----_.- -_.__.- -- -_._-

4.1 General Information

The Interface Functions Layer provides the interface
between the Common Network (Connection Network plus
Communication Functions Layer), and the Application Layer,
that is the layer in which the Network Users (Netusers)
reside.

The Interface Functions Layer basically provides:

a) the defining and undefining of ports (Logical
units) on the Communication System

b) extemporaneous services,
mailing

such as query and

c) setting up and closing down of Logical Channels
between the Applications.

Once established, Logical Channels are maintained by a
software component of the Interface Functions, called
Session Handler (SH). Along the Logical Channel,
Applications exchange units of information, called BIU
(Basic Information Unit).

The combination of the Interface Functions Layer and
the Common Network constitutes the Communication System.

The characteristics of a Logical Channel can be
summarized as follows:

a) it is driven with an half-duplex technique:

b) it does not provide an error-free connection;

c) error (loss of aIU) is signalled at both ends of
the Logical Channel.

It is worth noting at this point that a possible,
little effort improvement of the characteristics of a
Logical Channel could be a full-duplex protocol. One must
keep this in mind, when implementing RPCNET, to reserve this
possibility for the future.

A third component of the Interface Functions Layer is
the CALL/RETURN interface (in the VM and OS implementations

- 28 -

called NAC, Network Access Controller) r which performs a
number of tests on the operations issued by the user (the
Application) before passing the request to the other
modules.

In the following we will describe in detail the
operations and the protocols of the three components of the
Interface Functions Layer r namely:

a) the Session Handler (SH)

b) the Network Services Mahager (NSM)

c) the Network Acces Controller (NAC) , or
CALL/RETURN Interface.

In Appendix C the formats of the packets used by the
NSM and the SH are illustrated.

- 29 -

4.2 The Session Handler

The Session Handler (SH) provides a mechanism by which
two Applications can communicate each other during a
session.

4.2.1

The SH receives, from an Application, units of
information called Request Units (RU), together with
additional control information. The SH uses the control
information to build a Request Header (RH), which is pre­
fixed to each RU sent and which is interpreted by the SH
receiving the RH-RU combination. This combination is called
BIU (Basic Information Unit).

During a session, the two Applications are connected
through a Logical Channel, which, in turn, can be considered
as an half- duplex connection, with these characteristics:

a) no error free connection

b) error detection and signalling at both sides of
the Logical Channel

c) RU limited in size

d) RU data integrity maintained

e) RU sequentiality maintained

f) RU duplication impossible

These characteristics are to be mapped on the Common
Network characteristics, which are:

a) packet length limited

b) order of packets not maintained

c) loss or duplication of packets possible

d) packet data integrity preserved

e) changes in the Common Network
notified.

connectivity

- 30 -

4.2.2 Internal Protocols

In order to build the LC characteristics on the Common
Network, the SH has to use some internal protocols, which
are completly transparent to the interconnected
Applications.

Because of the complex SH structure, some functional
units can be distinguished, as show in the functional scheme
of Figure II.

!.~.~.! ~EE!i~at~o~ The two Applications exchange data
(RU) through the Logical Channel following the LC rules (see
RNAM macros). Because of the possibility of RU loss, the
Applications have to provide an agreement upon the recovery.
The type of the recovery depends on the Application
characteristics, and should be defined at that level.

4.2.2.2 Presentation Services. In order to facilitate
the Appllcatlon-s about' Ehe--LC- usage some presentation
Services are provided:

a) handling of the Flip-Flop driving of the LC;

b) providing a logical data entity considered at
the Application level as an unit, set up by an
RU chain;

c) providing three types of response on the single
LC operation: no-response, exception response
and definite response.

!.~.~.l Dat~ Len~h ~g~er. Because of the unrelated
data length limitations of the LC, and of the Packet
Switching System, an RU data length adaptation becomes
necessary. For this reason, a segmenting/reassembling
service has to be provided.

The unit of information destinated to the packet
Switching System and built up with a BIU or BIU segment
prefixed with addressing and reconstruction information (TH,
Transmission Header), is called Path Information unit (PIU).
So that, this SH section, besides providing the BIU
segmenting/reconstruction, has to preserve the BIU data
integrity, discarding the BIU that cannot be completed, and
notifying the related exception.

4.2.2.4 Data Flow Control. In order to realize the LC
characterIstics~-the Data'-plow Control has to provide:

· '

- 31 -

RU11 ChI.RU
I

og1ca anne
APPLICATION

I I
IAPPLICATION

S~ SH

PRESENTATION ;:::: ;:::= PRESENTATION
SERVICES SERVICES

Virtual ConnectionBIll BIll
DATA LENGTH

~ ~
DATA LENGTH

ADAPTER ADAPTER

I PIll Virtual Connection PIll
DATA FLOW DATA FLOW

CONTROL I n CONTROL

~U~ -lU
MULTIPLEXING/DEMULT. I

r== MULTIPLEXING/DEMULT.

r- -

....--

COMMON NET\-!ORK

Figure 11 Logical Channel between two Applications

a) the maintenance of the BIU sequentiality;

- 32 -

b) the recognition and the discarding of the
duplicate PIU;

c) the recognition of the PIO loss;

d) the syncronisation of the two Applications on
the LC.

!.~. ~. ~ LC~ul!:i21~~i~.g/De-~~ltiE..!.e!i~. The activ i ty
of all the LCs is multiplexed on the connection with the
Common Networ~, and the incomir~ traffic is distributed
among the actIve LCs.

From the functional point of view, the SH can be
considered subdivided in four sections (considering as a
separate section that provides the error handling), which
will be described in detail in the following sections.

4.2.3

are:

33 -

Presentation Services

The presentation Services provided to the Applications

a) handling of the Flip-Flop discipline of the LC:

b) RU chain control:

c) response type control.

In the Flip-Flop discipline the Sender/Receiver
relationship on the half duplex LC is fixed at any time, and
can be reverted only on initiative of the Sender. The
protocol is based on the status of an indicator (Change
Direction), associated to each data transfer request at the
Sender side. The rules governing the Presentation Services
are very simple and regard the following controls:

a) Chain Control:

b) Change Direction Control:

c) Response type Control.

The most part of the control is carried on at the
Sender side, in order not to send data affected by a rule
violation. However, some security checks are made also by
the Receiver, and where a violation of the rules is
recognized, the appropriate exception is generated.

All the information necessary to the Presentation
Service control are carried by the BIUs exchanged during the
session. The field that contains this information is the
Request Header (RH), and this is the first field of each
BIU.

~.~.l.l Reg~est ~~ader (~g). The Request Header (RH),
which is attached to each RU as the RU passes through the
Presentation Service Control, contains all the indicators
for the Presentation Service Protocol. The RH is two bytes
in length, and the information carried by it is the
following:

a) Action Code Field (ACF)

b) Action Modifier Indicator (AMI)

- 34 -

c) Change Direction Indicator (COl)

d) Chain Control Field (CCF)

The above control fields are defined as follows:

a) specifies the action to be performed on the
information which follows;

b) contains the indicators that modify the action
code meaning;

c) this control
session, by
LC data flow
role;

indicator can be used, during a
the Sender in order to reverse the

direction, to assume the Receiver

d) this field establishes which element of a chain
of RUs this RU is: first, middle, last, or only
member of a chain. RUs that are chained together
form a unit. Two indicators, "begin chain" and
'end chain" provide the chain control
information.

4.2.3.2 Chain Control A;' Cha in" consists of a set of- - _. _. ---- ----
related RUs which are recognized as an entity through the
network. A chain has an RU which is the ·first of the chain
(marked "begin chain"), which may be followed by one or more
Middle Chain RU (s) (marked "middle"), and ended by an RU
that is the last in chain (marked "end chain"). A chain may
consist of many RUs, or only one RU; the chain as an entity
is the basic unit for the recovery.

In the following scheme the rules for processing chains
are given. These rules are based on the assumption that the
·'begin chain" and "end chain"indicators are checked
separately first the "begin chain" r then the "end chain",
every time following the appropriate rules.

4.2.3.2.1 Chain Control at the Sender side .
.- - - - --_ .. ---- - -- - - -- --- - ~-

The first RU in chain is marked "begin chain",
and puts the Sender into the "in chain" state.

If a negative response to the current chain is
received while in the "in chain" state, the
"between chain state" is entered.

- 35 -

The last RU in a chain is marked "end chain". It
returns the Sender into the "between chain"
state. Middle RUs in chain do not affect the
chain state.

If in the ;'between chain ll state the Application
program tries to send "middle u or \/last" in
chain RU, an error indication is returned to the
Application program and the RU is not sent. The
Chain control status remains unchanged.

If in the "between chain" state a response is
received, the chain' 'control status is not
changed~ and the response is forwarded to the
Application program.

If in the " in chain" state the Application
progr am tr ies to send a I, beg in chain" RU: an
error indication is returned to the Application
program, the chain control state is not changed,
and the RU is discarded.

4.2.3.3.2 Chain Control at the Receive side.

If in the "between chain ll state, a 'begin chain"
RU puts the chain control into the "in chain'l
state.

If in the "between chain" state, middle in chain
or end chain RUs are discarded, a negative
response (when required) with a sense indication
of chaining error is given, and the "purging
chain" state is entered.

If in the "in chain" state, middle in chain RUs
do not affect the chain control state.

If in the lIin chain" state, and an end chain RU
is received, the chain control returns to the
'between chain" state.

If in the ,I in chain" state, and a sequence error
is recognized, the "purging chain" state is
entered.

If in the II purg ing chain ll state! purging is
stopped by the receipt of an "end chain lo

• When
purging stops, the chain control enters the
., between chain" sta te. The end chain ind icator
has to be examinated on all chain elements, even
those elements which caused the "purging chain"
state to be entered.

- 36 -

If in the "purging chain" state, purging is
stopped by the receipt of a "begin chain" RU.
When purging stops, the chain control enter the
"in chain" state.

If in the "purg ing chain" state a "middle in
chain" RU is rece i ved, the chain control
discards the RU, no response is generated, and
the state remains unchanged.

As a general rule, a negative response is
generated when a sequence error is recognized,
in whatever state the chain control is.

The situation can be summarized in the flowcharts of
Figure 12.

4.2.3.3 Chan9.~ Di;:~~~ion COf.ltro:!. The Change Direction
(CD) -indIcator is used in the Presentation Services to
exchange the Send-Receive role between two Applications
during a session. Only a request on the normal (Sender to
Receiver) flow which is also marked "end chain" or "definite
response" may carry a CD. When the sender includes CD in a
request, it indicates that the sending Application is
prepared to receive/ and that the other Application can
send. The receiver is required to control the CD. In the
following the rules for processing the Change Direction
Indicator are given.

The Sender when receives a SEND request with
CD, enters the "exchanging role" state. In this
state (Pseudo - Receiver) only RECEIVE requests
are accepted.

If a RU is received without error while in the
"exchanging role" state the "receive" state is
entered.

If a RU is
., exchang ing
unchanged.

received in
role" state,

error
the

while
state

in the
remains

If an error indication carrying CD not accepted
or just negative acknowledging the last request
is received while in the "exchanging role"
state, the "sender" state is entered, and the
pending RECEIVE request (if any) is closed with
the "CD not accepted" exception.

midd
or b

- 37 -

begin chain or neg. response

CHAIN SENDER

CHAIN RECEIVER

Figure 12 Chain Sender and Chain Receiver

If the CD indicator is received and recognized,
while in the 'receiver" state, the "exchanging
receive role" is entered. In this state, the
mode of the response is forced as adefinite".

- 38 -

If the CD indicator is received together with an
exception indication on the request carrying CD,
the state is not affected, and a negative
response is issued, with a sense code of CD not
accepted.

While in the "exchanging receive role" state, a
SEND operation terminates without error, the
"send·· state is entered.

While in the "exchanging receive role" state, if
the SEND operation ter'minates with error, the
state remains unchanged, and the operation is
closed with error to the Application.

To be noted that, due to this mechanism, the Sender, in
case of CD, will not be notified until the first RECEIVE
operation will be closed. The exception (if any) will be
reflected only on the "old" Receive side. This is the only
case in which the LC operations are unbalanced.

The above operations are depicted in the flowchart of
Figure 13.

1.~.1..1 Bespons~ !YE~ ~ontr~l. The "Form of response
requested" field is used to establish the response action.
There are three options with regard to requesting responses:
the Sender may request no responses (No Response), a
response only if an error occurs (Exception Response), or a
response whether or not an error occurs (Definite Response).
As far as the data flow control is concerned, when nNo
Response" or "Exception Response" is choosen, the Sender can
continously send requests. Instead, when the "Definite
Response" is choosen, the Sender must wait for the response
to a request before sending another one. At the Receiver
side, the ·'Form of Response Requested" field is used only to
establish the response action, but no data flow control is
involved. These rules are affected by the existence of RU
chains: each "chain" is treated by the Sender and the
Receiver as a single request. This high level request can be
sent in one of the three possible modes: No-Response,
Exception Response, Definite Response. In order to handle
this high level request, each RU in the chain is sent in the
appropriate mode:

for "No Response" chain, each element of the
chain is sent in No Response mode;

SE

Figure 13

- 39 -

without
er or

or
error

Change Direction Control

for "Exception Response " chain, each element of
the chain is sent in Exception Response mode;

- 40 -

for "Definite Response" chain, the last element
of the chain is sent in Definite Response mode,
the others are sent in Exception Response mode:
this to have only one response for the chain,
considered as an entity.

Only these types of chains are allowed to be sent. The
Sender of a chain has the responsibility of the appropriate
setting of the .1 Form of Response Requested" field for each
element of the chain. The Receiver of a chain is required,
as response type con trol, to examine the 0' Form of Response
Requested" field only on the' last element of the chain,
unless an error occurs earlier in the chain.

For security purpose, the "Form of Response Requested"
field is associated to each BIU or BIU segment, and for this
reason, it is carried by the Transmission Header (TH).

4.2.4

The length of the data unit (RU) which can be exchanged
on the Logical Channel is limited, but that limitation is
unrelated to the data unit length limitation, which is a
characteristic of the Common Network used, generally more
restrictive.

pratically, there is the need to adapt the BIU length
(RH+RU) to the Common Network characteristics. This
necessity can be satisfied having a mechanism to segment the
outgoing BIUs (when necessar~Y, and to reassemble the
incoming BIU segments. Each outgoing BIU is segmented (when
necessary) and prefixed with addressability, identification
and sequential order information (Transmission Header, TH).
A TH plus a BIU or a BIU segment is called a Path
Information unit (PIU), that is the data unit accepted by
the Common Network. The TH contains all the information to
identify the BIU and the BIU segment inside the BIU. The
PIUs are passed to the Common Network in order to be
forwarded to their destination. Each PIU pertaining to a
segmented BIU is sent separately and the next in sequence
segment is not sent until the previuos one has not been
positively handled by the local transmission subsystem
(Common Network). This rule has been introduced in order to
multiplex the local LC outgoing traffic at the PIU level,
and to control the BIU segment sequentiality at the first
step of the transmission path, reducing the probability of
out of sequence arrivals at the destination (the Common
Network does not maintain the PIU sequentiality).

The identification of each PIU is accomplished by means
of three fields of the Transmission Header (TH), and
precisely:

the PIU number, which is an incremental and
cyclic counter, identifying the order number of
the PIU within the session;

the BIU number, which is an incremental and
cyclic counter, identifying the order number of
the BIU within the session;

the Segment Mapping Field, which is a two
indicator field that identifies the relative
position of the segment within the BIU: first,
middle, last or only BIU segment.

All the PIUs marked ;lfirst II or "middle" BIU segment are
fixed in length (the length being the maximum length allowed
by the Common Network); the PIUs marked "last·1 or i'only" BIU

- 42 -

segment are variable in length up to the maximum allowed.

The incoming PIUs, filtered by the Data Flow Control
(DFC) section, are to be reassembled in order to reconstruct
the original BIU. Because of the possible out-of-sequence
arrival of the BIU segments (PIU), the BIU data integrity
has to be controlled during the reconstruction. When the
reconstruction cannot be completed, because the DFC has
recognized a PIU loss, the BIU is declared in exception and
discarded.

The segment identification is organized in such a way
that it is possible to put the single segment in the correct
position inside the reconstruction buffer whichever the
arrival order is.

4.2.4.1 Transmission Header. The Transmission Header
(TH) -is -that--par"r-61 a PIU-which provides addressability,
identification and sequential order of the BIU or BIU
segment carried by the PIU as its text part. The network
addresses are carried as Destination Address Field (DAF) and
Origin Address Field (OAF) by the TH. The identification and
sequential order are carried by three fields, as mentioned
before:

the BIU sequence number (BSN)i

the PIU sequence number (PSN)i

the Segment Mapping Field (SMF).

The Data Count Field (DCF) contains a binary count of
the text (BIU or BIU segment) carried by the PIU. The scheme
of the TH is depicted in Figure 14,

where
PTY Priority (1 byte): contains the priority with

which this PIU will be handled within the Common
Network. In the first implementation this field
is unused.

DAF Destination Address Field (3 bytes): contains
the network address to which the associated PIU
has to be forwarded.

OAF Originator Address Field (3 bytes): contains the
network address of the originator of this PIU.

Figure 14

- 43 -

PTY DAF

OAF PSN

FLAGS BSN DCF

TH structure

PSN PI U Sequence Number (1 byte): conta ins the
sequence number of the PIU. This incremental
number is cyclic, and represents the order
number of the PIU within the session.

FLG Flags (1 byte):
SMF (Segment Mapping Field) B'00000011 1 this
field represents the relative position of this
PIU inside the BIU to which it pertains. Two
indicators, "First" (B I 00000001'), and "Last"
(3'00000010), give the possibility to define
four states: first segment, middle segment,
last segment and only segment.
RRC (Requested Response Control) B ' 01000000'
It defines the form of the requested response.
The possible types are: No response, Exception
response (B ' 00100000') and Definite response
(8 '01000000 ") .
LOC (SH Internal Message): The internal message
is a protocol message: this is signalled by
this flag (B'10000000').

BSN BIU Sequence Number (1 byte) contains the
sequence number of the BIU to which this PIU
pertains. This number is cyclic and it is never
reset. The Break count is merged into this
field.

- 44 -

DCF Data Count Field (2 bytes) contains a binary
count (in bytes) of the text carried by the PlU.

- 45 -

4.2.5 Data Flow Control

The Data Flow Control
Handler has to provide
active logical channel:

(DFC) section of the Session
the following functions for each

1 maintenance of the BIU sequentiality;

2) recognition and discarding of duplicate PIUs;

3) recognition of PIU loss;

4) syncronisation between the two Applications on
the Logical Channel during the session;

and moreover it has to:

5) avoid the buffer congestion;

6) prevent the deadlocks.

The DFC to DFC protocol that performs the previously
stated characteristics of the data flow is described in what
follows.

Basically, the DFC to DFC protocol uses the well-known
window strategy, and acts on the PIU flow. Supposing that
the PIU sequence number field in the TH allows sequence
numbers to range from 0 to n-l, the Sender will not transmit
more than W PIUs, without receiving an acknowledgment, the W
being the window. Of course, W must be less than n.

The basic rules for the Sender and the Receiver are
described in the following. The structure of the window is
sketched in Figure 15.

SENDER: Let M be the sequence number associated with
the window left edge.

a) The Sender transmits only PIUs whose sequence
number lies between M and up to M+W-l. If the
rigth edge of the window is reached without
receiving any acknowledgement, the activity is
holded waiting for a "receiver's acknowledge
status" (from now on briefly "status").

b) On receipt
Receiver's
width, the
over the
PIUs, and

of a "status" consisting of the
current window left edge and window

Sender's left window edge is advanced
acknowledged (positive or negative)
the rigth window edge is adjusted

Figure 15

- 46 -

a M M+W N-1 a
- 1

The Dynamic Window

consistently. The "status" may be received at
any time. No recovery is provided for the
negative acknowledged PIUs.

RECEIVER:.. _---_. --
the left edge
edge is defined
width.

Let M be the sequence number associated with
of the current Receiver's window. The rigth

as M+W-l, where W is the current window

a) Every PIU received with a sequence number inside
the "dynamic window" is accepted or discarded if
already received. As "dynamic window", the
Receiver considers the window defined by the
last "status" sent.

b) PIUs arriving with a sequence number outside the
"dynamic window' edges are discarded as
duplicates.

c) The "status" is sent to the Sender every "half
window" that is when the PIU with sequence
number M+W/2-1 or over and M+W-l or over have
been received. The "status" contains the
"dynamic window' left edge and width. The width
is calculated according to the memory
availability. This information is dynamically
updated on PIU receipt, considering that part of
the window which contains only the PIUs received
or declared loss.

d) The receipt of a PIU with a sequence number over
the r igth edge of the "cur rent window" is
considered as an indirect acknowledgment of the
'status" sent, so that the current window is
upda ted following the 11 sta tus" information, and
the acknowledged "status" is purged.

- 47 -

!.~.~.! How th~ Eroto~o! ~or~. Before to precise the
DFC protocol, some general considerations are to be made. No
mechanism is provided by the Common Network to avoid a
buffer congestion at the Session Handler level. SH has to
protect itself against the possible buffer congestion
induced either by out-of-sequence PIU arrival and by a poor
Application synchronisation.

In both the cases, a certain amount of storage is kept
busy waiting for BIU completion or for a RECEIVE request
from the Application. Moreover, there is the possibility of
PIU loss during its journey through the Common Network, that
means an infinite out-of-sequence for the last PIU, and
consequently the SH, on the related Logical Channel, may be
kept waiting indefinitely for BIU completion or to provide
the correct BIU sequentiality.

In the hypothesis of no PIU loss, the DFC protocol
could avoid buffer congestion, controlling the window width
(W), considering the buffer availability and the Application
synchronisation. The out-of-sequence causes delay in BIU
delivering, and in window advancing, pratically reducing the
Logical Channel bandwidth.

The same happens in case of poor synchronisation
between the two Applications. Clearly, no precautions can be
taken by the OFC against a bad synchronisation between the
Applications, because this is out of the OCF control. The
only possibility to improve the Logical Channel bandwidth,
assuming at the best the buffer availability is to reject,
as an error: long out-of-sequence, where with long out-of­
sequence is intended an out-of-sequence with very little
probability to happen, practically out of the range of the
most part of the observed out-of-sequence frequencies. In
this case,if the Logical Channel bandwidth is improved, the
reliability is reduced, because a PIU is declared in error
without an objective prove of the error itself. When the
possibility of PIU losting is considered, deadlock
situations are to be resolved. Such situations are due both
to Application PIU loss and to "status~ PIU loss. The OFC
protocol, as it has been described, is unable to avoid or
recover these deadlock situations, so that it has to be
completed in order to consider also the possibility of
information losting.

The following hypothesis, based on the Common Network
characteristics, can be made: a PIU loss is always connected
with a reductive change in the Common Network topology; in
other words, only when a Node of the Common Network passes
from the active to the inactive state (due to a software or
a hardware failure), there is the possibility of a PIU loss.

- 48 -

Because in RPCNET the logical Network Control Point (the
Network Services Manager) becomes acquainted with every
change in the Common Network active topology, the DFC
protocol mechanism to avoid deadlock situations may be
triggered by the knowledge of a reductive reconfiguration in
the Common Network.

To summarizer there is a number (M) that represents the
maximum out-of-sequence acceptable by the DFC~ when this
number is exceeded by a long out-of-sequence, the related
PIU is considered lost, and the window is updated
consistently. In case of a reductive reconfiguration of the
Common Network, DFC provides a recovery mechanism to avoid
deadlock situations, that is, every Logical Channel which at
the moment is in the "waiting for status·1 state (the only
state in which there is a deadlock possibility), sends a
" Informa tion for sta tus" to its counter par t, to sol ic it the
"status" and to resynchronize the session. At the Receiver
side of the concerned Logical Channel(s), the receipt of an
.. Information for status" freezes the window state
considering in error (lost) all the PIUs not arrived at the
moment, and whose number lies between the left window edge
and the number reported in the" Information for status"
(last PIU sent). In any case, no deadlock is possible,
because either all the missing PIUs arrive soon or later, or
a reductive reconfiguration is signalled, starting the
recovery mechanism (in case of Definite Response requested,
or end of window reached), or new activity on the Logical
Channel allows to clarify the situation.

In order to use the DFC protocol, three parameters are
to be defined: the number (N) of the PIU numbering cycle,
the width (W) of the window, and the number (M) of the
maximum end-of-sequence accepted.

(N) is defined by the maximum bynary number
definable in the PIU Sequence Number Field (SNF)
of the TH. The PIU SNF is one byte width, that
means a numbering cycle of 256 (from 0 to 255).
As a matter of the fact, the PIU identification
cycle, as far as the duplicate recognition is
concerned, may be considered higher, because
beside the PIU SNF· there is also the BIU SNF to
complete the PIU identification. These two
sequence numbers (unrelated each other) may rise
the cycle up to 65.536.

(W) Its value is mainly related to the receiving SH
buffer availability, because all the PIUs inside
the window not pertaining to the BIU presently
under reassembling or waiting for a RECEIVE
request, have to be maintained in memory.

- 49 -

Clearly, (W) is not univocally and statically
definable, because its value depends on many
factors: on the dynamic SH buffer availability,
on the type of the Logical Channel activity, and
on the Common Network crossing delay (this to
avoid, when possible, stops on the sending
activity due to the fact that the end-of-the­
window is reached before receiving the half­
window II status"). Anyway a relation among (N)
and (W) can be fixed: W < N/2 to avoid that the
arrive of an old PIU may appear as a new
transmission (N/2 should be a convenient
number). Just to make a guess (to be revised
after a test period) , in the first
implementation it was adopted: W = 16 (as first
value at the session opening time: this value
will be recomputed dynamically during the
session) .

(M) Its possible value is a therothical mystery;
there has been a first attempt to evaluate this
number using the simulation approach. The model
used is referred to a static Common Network (no
reconfiguration considered) using the "optimal
path" as routing technique. The result is a very
little probability of out-of-sequence and a
maximum observed out-of-sequence of the same
order of the number of the crossed nodes. This
information is not sufficient to establish a
mean value for (M); a relationship was
established between (M) and (W): M < W/2 to
avoid that, using the long out-of-sequence
technique, the uncertainity on the PIU arrival
shall be over half window. In the first
implementation, a value was assumed for (M): M =
4

!.~.~.~ ~omplete DFC frot~~Ql. The complete DFC
protocol can be described using the state diagram technique:

SENDER control

a) When in IDLE state, and a request to send a PIU
is received, the SENDING PIU state is entered.

b) When in IDLE state, a receipt of a "status" puts
the SENDER control in UPDATING WINDOW state.

- 50 -

c) When in SENDING PIU state the PIU sent
acknowledged from the Common Network of a PIU
whose sequence number is inside the window,
returns the SENDER control in the IDLE state.

d) When in SENDING PIU state the PIU sent
acknowledged from the Common Network of a PIU
whose sequence number is the last permitted by
the current window or of a PIU that is the last
segment of a BIU requesting Definite Response,
puts the SENDER control in WAITING FOR STATUS
state.

e) When in WAITING FOR STATUS state the receipt of
a "status" puts the SENDER control in UPDATING
WINDOW state.

f) When in WAITING FOR STATUS state, the receipt of
a "status' which does not reset the Definite
Response request. does not change the SENDER
control state.

g) When in UPDATING WINDOW state, the window
updated condition puts the SENDER control in the
IDLE state, or, if the updated window width is
0, the control returns to the WAITING FOR STATUS
state

h) When in WAITING FOR STATUS state, the signalling
of a reductive reconfiguration of the Common
Network puts the SENDER control in SENDING
REQUEST FOR STATUS state.

i) When in SENDING REQUEST FOR STATUS state. the
request sent condition returns the SENDER
control to the WAITING FOR STATUS state.

1) When entering the WAITING FOR STATUS state, the
existence of a reconfiguration signal inside the
actual window puts the SENDER control in SENDING
INFORMATION FOR STATUS state, and clears the
situation, then the Sender control returns to
the IDLE state.

RECEIVER control

a) When in IDLE state, the receipt of a request for
"status" puts the RECEIVER control into the
CLEAR WINDOW state.

b)

- 51 -

When in IDLE state, the arrival of a
the RECEIVER control in the CHECK
NUMBER state.

PIU puts
SEQUENCE

c) When in CHECK SEQUENCE NUMBER state, a PIU with
a sequence number out of the "dynamic window"
causes the PIU to be discarded, and the RECEIVER
control returns into the IDLE state.

d) When in CHECK SEQUENCE NUMBER state. a PIU with
a sequence number inside the "dynamic window h

(and not yet received) causes the PIU to be
accepted, and the RECEIVER control enters into
the UPDATE WINDOW state.

e) When in UPDATE WINDOW state, the receipt of a
PIU whose sequence number is at the SENDER
"status" trigger point causes the RECEIVER
control to enter the SENDING STATUS state.

f) When in UPDATING WINDOW state, the receipt of a
generic PIU causes, after the window updating,
the RECEIVER control to enter the IDLE state.

g) When in SENDING STATUS state, the dynamic window
is updated, and the new status message is sent.
The RECEIVER control returns into the IDLE
state.

h) When in UPDATING WINDOW state, if the left edge
of the updated dynamic window falls into a PIU
which is the last segment of a BIU requesting
Definite Response, the RECEIVER control enters
the SENDING STATUS state.

i) When in UPDATING WINDOW state, the receipt of an
"information for status" updates the window
status, using the "information for status"
information, and if status point has been
reached, the control passes to the SENDING
STATUS state, otherwise the control passes to
the IDLE state.

1) When in CLEAR WINDOW state, all not received
PIUs, until the last PIU sent (in the "status"
message), are declared lost. The control is
passed to the SENDING STATUS state.

The situation is depicted in the
Figure 16 and Figure 17.

flowcharts of

- 52 -

window updated & def. resp. reset

status received

request
sent
conditi n

iguration
the window

sp.
et

Figure 16 Data Flow Control: Sender side

4.2.6

Due to the layered structure of the Session Handler,
the exceptions, like the data flow, have to cross all the
layers, in order to collect the appropriate error condition

- 53 -

Figure 17

arrival

PIU out of window

Data Flow Control: Receiver side

request for
status received

(to be reflected to the Application), and to put the single
layer functions in their appropriate states. Moreover, as in
a session there are two Applications linked together, both
have to be notified of eventual exceptions, wherever the
exception has been recognized. Practically, the only error
condition is the PlU loss, recognized by the Data Flow

- 54 -

Control layer. The PIU loss exception induces the exception
for the BIU to which this PIU pertains: this is recognized
by the Session Exception Handler (SEH), which provides:

a) the insertion of this exception in the
message in order to forward the
except ion" information to the
countert?art;

"status·
,I BIU in
session

b) the signalling of the exception to the Data
Length Adapter (DLA) layer and to the
Presentation Service Handler (PSH) layer, when
the BIU in exception becomes (as sequence
number) the "actual" BIU, that means when this
BIU is explicitly requested by the Application
via a RECEIVE operation;

c) the reflection of the exception
the eventually collected error
the Application (closing in
RECEIVE operation).

together with
conditions, to
exception the

Analogously,
exception via the
provide:

when the
i'status tl

SEH is informed
message mechanism,

of a BIU
it has to

a) the signalling of the exception to the DLA and
PSH layers;

b) the reflection of the exception together with
the eventually collected error conditions to the
Application. This reflection may be synchronous
or asynchronous, depending on the way of
proceeding chosen by the Application for its
requests (synchronous means Definite Response,
asynchronous means Exception Response) .

The exceptions recognized directly by the PSH on
requests that are semantically incorrect, do not proceed
through the other layers, but are immediately reflected to
the Application originating the request.

The possible error condition are:

Basic error:

BIU data integrity failure (the loss of one (or
more) PIU(s) pertaining to the BIU causes this
failure; and the BIU is discarded).

Induced error:

- 55 -

BIU chaining failure (the loss of a BIU that is
chained invalidates all the chain of BIUs).

Change Direction not accepted (the failure of a
BIU carrying the Change Direction request causes
the rejection of the Change Direction, and the
return of the control to the original Sender).

Warning Information (not considered error):

BIU data overflow (the received BIU is longer
than the buffer allocated by the RECEIVE
operation; this exception is presented only to
the Application at the RECEIVE closing time).

4.2.7 A final remark

• .56 -

In the actual implementation, the Hsend status"
triggering event is the memory availability. In fact, if
there is no memory available when a status has to be sent,
the preparation of the status message is delayed until when
there is memory availability. This condition was established
to prevent the sending of a status with window width equal
to zero, and then another status when the window width may
be enlarged.

- 57 -

4.3 The ~etwo~~ ~~rvice~ ~anager

The Network Services Manager (NSM) is an Interface
Functions component which provides for the control of the
Logical units (LUs) and the Logical Channel Terminations
(LCTs), and supplies a set of services to the LUs and LCTs
which it controls.

The NSM maintains knowledge of the states of all LUs,
LCTs, and of the sessions which the LCTs are participating
to. The NSM itself is a system LCT, and it maintains
permanent sessions with all the other NSMs, sharing the
Interface Function Layer control. The NSM is in permanent
contact with the CNM of the node to which it belongs, in
order to have an up-to-date knowledge of the real network
configuration.

The set of services used to control the Logical Network
are called Network Services. The NSM may send Network
Services requests to other NSMs in order to perform the
functions requested. Every request for service to the NSM by
the Application has to be made through an LU. In case where
the service is requested by another NSM, the NSM is
responsible for its execution and subsequent notification of
the originator.

Network services are divided into categories according
to the functions being performed. The categories defined
are:

a) Measurement services

b) Network Operator services

c) Session services

d) Mailing services

e) Inquiry services.

The Network Services functions may be invoked only by a
request containing coded information. The codes are detailed
in Appendix C.

The NSM, as system LCT, mantains multiple sessions with
all the other NSMs in the Network. Each Multiple session is
handled by the Multiple Session Handler. The data unit (8IU)
exchanged between NSMs are monosegment, i.e. the maximum
size of a data unit is equal to the maximum size of the PIU
in the Common Network. The Logical Channel related to each

- 58 -

one of the session with the other NSMs can be considered as
a full-duplex connection with the following characteristics:

a) Error free connection.

b) Data units limited in size (same limit as the
Common Network) •

c) Data integrity mantained.

d) Data unit sequentiality not mantained.

e) Data unit duplication impossible.

In a NSM, a number of functional units can be
recognized; they are:

a) Logical unit Handler (LUH): Each Logical Unit
represent a port on the Communication System
through which an Application can access the
Network environment. The LUH is that part of NSM
which handles and controls all the LUs activity.

b) Logical Network Control Point (LCP) : LCP
provides for the control of the configuration of
the Logical Network, that is, it knows at any
moment the status of each Network Station, as
far as the connectivity is concerned (reachable
or unreachable). Every change in the Network
Station is notified to LCP by the Physical
Network Control Point (CNM). Moreover, LCP
provides for the control of the validity of the
active sessions, every time a reductive
reconfiguration is signalled. LCP routes this
information to the Session Handler (SH) in order
to trigger the session recovery mechanism.

c) Multiple Session Handler (MSH): The NSM
maintains permanent sessions with all the other
NSMs in the network. All the sessions are to be
maintained and controlled, and moreover a
recovery has to be provided for the BIU
signalled in exception. These functions are
performed by the MSH.

d) Network Services Switcher (NSS): All the request
for service are presented to the NSS which in
turn switches the request to the appropriate
component of the Services Processor. NSS acts
also as an interface between the Services
Processor and the Multiple Session Handler.

Processor is
the Service

e)

1

2)

3)

4)

5)

- 59 -

Services Processor: The Services
composed of as many modules as
functions are:

The Session Service provides the initiation and
termination of the Sessions between the LUs. A
LU may request a session either as a primary LU,
via the BIND request, or as a secondary LU, via
the INVITE request. Both LUs in a Session may
request the termination of the Session via an
UNBIND request.

The Network Operator Service provides the local
operator with the ability of monitoring the
Network activity.

Measurement Service provides for measurement of
the utilisation of the Network resources in the
domain of the control of the NSM. Measurement
results are collected for further statistical
and/or accounting purposes.

Inquiry service provides the possibility to
inquire about the structure and the resource
status of the Network environment. A LU may
request information about the Network
environment via an INQUIRE request.

Mailing Service provides a LU with the
possibility to send and to receive messages
(letters) to and from another LU in the Network.
A LU may use the MAIL request to send a message
(letter) or to set up a mailbox in order to be
able to receive messages (letters).

4.3.1

The Logical Unit (LU) may be considered the port on the
Communication System through which an Application can access
the Network environment. The activity of the LU is composed
of the coded (and formatted) requests for the services
available in the Network environment.

An Internal Address (a binary number in the range from
o to 255) is assigned to each LU for internal addressing
purposes between the Application and its Communication
System, namely the NSM. When a Session is established, a
Network Address is associated to the LU together with a
Logical Channel Termination (LCT). The LU, through its LCT,
becomes directly addressable in the Network and its control
passes to the Session Handler (SH), which handles every in-

- 60 -

session request. When the Session is closed, the LCT is
released, and the LU returns under the direct NSM control.

The maximum number of LUs opened at the same time
(theoretically 256) is a local parameter, and it is charge
of the LUH to respect this limit. A LU is assigned to an
Application on direct Application request, and it is
released on Application request. No more than one request at
a time can be present on the same LU. The LUH has to control
the flow of the requests on the single LU, and to enforce
that limit. When a request is completed, a completion code
with the eventually requested data is returned to the
Application. The LUH is now ready to receive the next
request. Asynchronous activity may be possible on a LU
throughout the LU like exception signalling or asyncronous
data (mail) arrival.

The LUH is responsible for the execution of the OPENLU
and CLOSELU requests issued by the Application (actually, in
the VM implementation, the OPENLU request is carried on by
the NAC, which will be described in the next section, while
in the OS implementation it is carried on by the NSM, but
this is absolutely transparent to the user, that is the
Application: it depends on the operating system under which
RPCNET is implemented).

Moreover, the LUH has to handle the, in case, abnormal
end of an Application signalled by the system (operating
system, or anything similar), informing the CNS of the
forced closing of the associated LUs. The CLOSELU request is
the only request which can be iss~ed by an Application
whichever the LU status shall be (free or busy). On CLOSELU
request the NSM has to cancel eventually pending operations
or has to close an opened session (at the moment). The
OPENLU request is the only request which does not refer to
an existing LU

4 3. 2 ~!:!~ ~Qg.!~~l Net~o!"!. ~O!!~J;Q~. ~g.!nt

The Logical Network Control Point (LCP) is the active
control point of the Interface Layer as far as the local
Network activity is concerned

The LCP is in permanent contact with its Node Common
Network Manager (CNM) , in order to be updated on the Network
connectivity. Every change in the Network connectivity will
be handled by the LCP, checking the local Session validity
and starting tne, in case, recovery mechanism.

When a Network station becomes unreacheable, due to a
Host, a Node or a Link failure, all the (local) sessions

- 61 -

opened at a moment with the now unrecheable Network station
are forced to close. and all their pending activity is
cancelled. The Applications are informed of the failure, the
LCTs are released, and the corresponding LUs are reset to
their basic state.

When a possible Node failure (Node unreachability) is
recognized, the Session Handler is alerted, in order to
start the recovery mechanism for the perhaps blocked
sessions (see SH Data Flow Control) .

The LCP may be informed by the LUH of System
(Application failure), or Application immediate closedown of
the active sessions (LCTs). In this case, the LCP forces
UNBIND request for the session and releases its LCT while
the corresponding LU will be released by the LUH.

4.3.3

The NSM provides permanent sessions with all the
reacheable NSMs in the Network. The NSM, as system
addressable unit, has an unique address, the zero address,
in every Address Space (Network station) of the Network.

All the NSM to NSM sessions are implicitly established
at the starting time, so there is no need to explicitly
establish the single session. Every NSM to NSM session is
identified, as every session does, by the couple of Network
addresses identifying the two session partners.

During a session the two NSMs can be considered
connected through a Logical Channel. This Logical Channel
can be viewed as a full-duplex connection with the following
characteristics:

a) error-free connection

b) data unit limited in size (the same limit as the
Common Network)

c) data integrity maintained

d) data unit sequentiality not mantained

e) data unit duplication impossible.

In order to build the previous characteristics using
the Common Network (see SH Data Flow Control), the NSM has
to use an internal protocol. The Multiple Session Handler
(MSH) has to provide the following functions for each active

NSM to NSM connection:

- 62 -

a} recognition and discarding of the duplicate
PIOs;

b} recognition and recovery of PIU loss;

and moreover it has to:

c} avoid the buffer congestion;

d} prevent deadlocks.

The protocol used to build the
functions is described in what follows.

previous stated

Basically the protocol uses the window strategy and
acts on the PIU flow (no multisegment data unit between NSMs
are allowed). Supposing that the PIU sequence number field
in the TH allows sequence number to range from (0) to (n-l),
the Sender will not transmit more than (w) PIUs without
receiving an acknowledgment, the (w) being the window.
ClearlYt (w) must be less than (n), and equal for all the
NSMs in the network.

Each data unit exchanged between NSMs cannot be
multisegment, that is, the restriction in size valid in the
Common Network is to be respected by the NSM to NSM data
traffic. No control on the data unit sequentiality is
required, because each data unit is independent from all the
others, and no data limit numbering is required. The data
units received and accepted are routed to the Network
Services Switcher, which in turn will provide the switching
to the appropriate Service Processor module. In the protocol
description the term PIU will be used to indicate the data
unit exchanged between NSMs.

The basic rules for the Sender and the Receiver are as
follows:

3ENDER:

a} the Sender transmits only PIUs whose sequence
numbers lies between M and up to M+W-l (where M
is the window left edge, and W is the window
width). If the rigth edge of the window is
reached without receiving any acknowledgement,
the activity is suspended waiting for a
Receiver's acknowledge status (briefly
" s tatUS") •

- 63 -

.
b) On receipt of a "status", consisting of the

Receiver's current window left edge, the
Sender's window left edge is advanced over the
acknowledged PIUs, and the window right edge is
adjusted consistently (the window width is a
fixed number). The acknowledged PIUs may be
freed.

c) If a reductive reconfiguration is signalled by
the Common Network, a recovery mechanism is
started. All the not acknowledged PIUs are
resent

d) Every sent PIU carries as first information the
number of the last received in sequence PIU.
This number may be used at the other side to
free all the pending PIUs whose number is less
than or equal to the acknowledged number.

RECEIVER:

a) Every PIU received with a sequence number inside
the window and not yet arrived (duplicate) is
accepted.

b) PIUs arriving with a sequence number outside the
window edge are discarded as duplicates.

c) The "status" is sent to the counterpart every
half window~, that is. when the relative "half

window· table has been completely filled.

d) When the II status" is sent, the window is
consistently updated (the window width is fixed
and, of course, equal for all the NSMs in the
Network) .

e) If a reductive reconfiguration is signalled by
the Common Network Manager, and the window is
empty (no PIU with a sequence number inside the
window has been received) the last Ustatus" is
resent.

We will describe the complete NSM to NSM protocol
later; now, let us consider an aspect of the Common Network
structure.

As it can be seen in Chapter 3, it can happen that a
node fails (hardware or software crash) without notifying
the partners. In fact, if the node restarts before the
timeout on the lines, the CNM on the opposite side is not
notified of the partner's fall, so that all continues as

- 64 -

be for e. On t he 0 the r hand I at the "c r ashe d o. side , all the
sessions are closed in error, while the session partners are
not notified of the fact. It can happen, depending on the
Application protocol, that deadlock situations arise. If we
realize that an Application can be (and normally will be) a
system program, and that a deadlock situation means also a
loss of memory (all the tables must be preserved), it is
obvious that a special recovery for this situation must be
developed. In RPCNET, every NSM PIU brings a number (modulo
255) called NSM Restart Number. At the arrival of any PIU,
the NSM Restart Number is compared with the local one, and
if they are not equal, all the LU with that partner are
closed, and the SH is alerted, to shut all the sessions. The
NSM Restart Number is then set according to the received
one. It must be clear that, in case of fault, the last NSM
Restart Number must be saved (as a suggestion, on disk).

Now, we can detail the NSM to NSM protocol.

SENDER

a) When in IDLE state, and a request to send a PIU
is received the SENDING state is entered.

b) When in IDLE state, the receipt of a "status"
puts the Sender control into the UPDATING WINDOW
state.

c) When in IDLE state, the signalling of a
reductive reconfiguration puts the Sender
control into the RESENDING state.

d) When in SENDING state, a PIU sent
acknowledgement from the Common Network of a PIU
whose sequence number is inside the window
returns the Sender control to the IDLE state

e) When in SENDING state, a PIU sent
acknowledgement from the Common Network of a PIU
whose sequence number is the last permitted by
the current window, puts the Sender control into
the WAITING FOR STATUS state.

f) When in WAITING FOR STATUS state, the receipt of
a' status o. puts the Sender control in the
UPDATING WINDOW state.

- 65 -

g) When in UPDATING WINDOW state, the window
updated condition returns the Sender control to
the IDLE state.

h) When in WAITING FOR STATUS state, the signalling
of a reductive reconfiguration puts the Sender
control into the RESENDING state.

i) When in IDLE state, the signalling
reductive reconfiguration puts the
control into the RESENDING state.

of a
Sender

1) When in RESENDING state, the recovery complete
condition puts the Sender control into the
WAITING FOR STATUS state, or IDLE state,
depending on the control arrival.

RECEIVER:

a) When in IDLE state, the arrival of a PIU puts
the Receiver control into the CHECK SEQUENCE
NUMBER state.

b) When in IDLE state, the signalling of a
reductive reconfiguration puts the Receiver
control into the RESEND PENDING MESSAGE state.

c) When in CHECK SEQUENCE NUMBER state, an out-of­
window condition or an already arrived condition
returns the control to the IDLE state.

d) When in CHECK SEQUENCE NUMBER state, a PIU
accepted condition puts the Receiver control
into the CHECK WINDOW state.

e) When in CHECK WINDOW state, and the sending
status condition has been revealed, the Receiver
control is put into the SENDING STATUS state.

f) When in CHECK WINDOW state, and the sending
status condition has not been reached, the
Receiver control is returned to the IDLE state.

g) When in SENDING STATUS state, the status sent
condition together with the window updated
condition returns the Receiver control to the
IDLE state.

- 66 -

h) When in RESEND PENDING MESSAGE state, the window
empty condition returns the Receiver control to
the SENDING STATUS state.

The situation is depicted in the
Figure 18 and Figure 19.

4.3.4 The Network Services Switcher

flowcharts of

All the requests for service are presented to the NSS,
which in turn forwards the requests to the appropriate
component of the Service processor. The requests may arrive
both from the Logical unit Handler that is, from the local
NSM activity, and from the remote NSMs activity. Each
request for service has to be presented appropriately
formatted, because unformatted requests are not allowed. The
Network Services are divided in categories according to the
functions being performed. The defined categories are (at
now) :

1 Session Services

2} Mailing Services

3) Inquiry Services

4} Network Operator Services

5} Measurement Services

4.3.4.1 Session Services. The Session Service is in
charge of-initiating and~errninating sessions between LUs. A
LU may initiate a session either as a primary LU, via the
BIND request, or as a secondary LU, via the INVITE request.

When the session is established: the LU becomes a
network addressable unit, being the termination of the
established logical channel (LCT). Both LUs in a session may
request the termination of the session itself via an UNBIND
request. The LCT is released and the LU returns under the
direct NSM (LUH) control. The session is always established
between a primary LU (session request via a BIND) and a
secondary one (session request via an INVITE).

In order to set up the session, there is an
messages between the NSMs (Session Services),
the involved LUs. This exchange of messages has
well defined protocol. The basic rules of
Services Protocol are as follows:

exchange of
controlling

to observe a
the Session

- 67 -

Figure 18 NSM Sender

a) the INVITE request puts the LU in •• INVITE"
state. The LU is identified by the name of the
Application to which it pertains, and it is
protected by a password; a network address is
assigned, and a LeT is arranged.

reductive
reconfig.

- 68 -

PIU out
of windo

Figure 19 NSM Receiver

b) The BIND request puts the LU in "BIND REQUEST
STATEd. The requested LU is identified by the
location (Node and Host) where it resides, and
by the name of the Application to which it
pertains. Moreover, the BIND request has to
provide the password to ~ccess the r~quested LU

- 69 -

and, in case, a message for the Application
owing the LU (for a further check of the
connection possibility).

c) When a LU enters the "BIND REQUEST a st'ate, a
network address is assigned A LCT is arranged,
and a message is built for the NSM (Session
Service) of the location where the requested LU
is. This "BIND message" has to contain the
identifier of the requesting LU (network
address) and owing Application (name), the
symbolic identifier of the requested LU
(Appl ication name), the' author ization password,
and, in case, a message for the requested
Application.

d) When receiving a "BIND message", the NSM
(Session Services) has to check if there is a LU
in "INVITE" state, with the requested
identifier. If no one is found, a negative
response is prepared and sent back to the
originating NSM (Session Services). Otherwise,
the authorization password is checked. If the
provided password is incorrect, a negative
response is prepared, and sent back to the
originating NSM (Session Services). If the
provided password is correct, the session can be
established. A further control has to be made on
the eventual request of an authorization message
for the Application owing the LU. If this
message is required, and if it is provided by
the "BIND message", the requested LU enters into
the "BINDING" state. the INVITE request is
closed and the authorization message is
forwarded to the Application If no
authorization message is required, a positive
response is prepared, and sent back to the
originating NSM, and the requested LU enters
into the "LCT ACTIVE" state.

e) When in ~BINDING state, the LU is waiting for
the Application response to the authorization
message. If the connection is rejected, a
negative response is prepared and sent back to
the originating NSM; the LU returns to the
"INVITE" state, or the "IDLE" state, depending
on the Application reject code. If the
connection is accepted, a positive response is
prepared (including the, in case Application
response message) , and sent back to the
originating NSM (Session Services) and the LU
enters into the "LCT ACTIVE" state.

- 70 -

f) When in "BIND REQUEST" state / the receipt of a
negative response causes the releasing of the
reserved network address, and LCT, and the
closing in exception of the BIND request. The LU
returns to the "IDLE" state.

g) When in "BIND REQUEST" state, the receipt of a
positive response closes successfully the BIND
request (passing to the Application the, in
case, response message), completes the LCT and
puts the LU in the "LCT ACTIVE" state.

h) When in "LCT ACTIVE" state, the LU to LU session
is established, and the activity will be made
under the direct SH control.

i) When in "LCT ACTIVE" state, the UNBIND request
causes the releasing of the LCT, and of the
corresponding network address. An "UNBIND
message" is prepared to be sent to the
counterpart NSM (Session Service) in order to
clear the Logical Channel. The LU returns to the
" IDLE state under the direct NSM control.

1) When in "LCT ACTIVE" state, the receipt of an
'UNBIND message" causes the releasing of the LCT
and of the corresponding network address, the
clearing of the pending activity on the logical
channel, and the signalling to the Application
owing the LU of the Session Close-down. The LU
returns to the \;IDLE" state under the direct NSM
control.

When two Applications want to establish a session,
first of all they have to agree on the role the single
Application has to play primary (BIND request) or secondary
(INVITE request), in order to avoid contention (both
primary) or indefinite wait (both secondary). Furthermore,
there is the problem of the synchronization, that is, the
secondary LU has to be set up before the arrival of the
primary LU request message, otherwise the BIND request will
be refused for counterpart unavailability. The
synchronization recovery could be in charge of the
Application that wants to play the primary role, but there
is not a criterium which may help in recovering such a
synchronization lock. The only possibility is to try and to
try again until the BIND operation is successfully closed.

In order to make the synchronization in opening a
session easier for the Application, two options have been
associated to the BIND and INVITE operations.

- 71 -

For the INVITE operation, there is the possibility to
specify the BROADCAST option. When the LU enters into the
"INVITE" state, if the BROADCAST option is in effect, a
broadcast message is sent to all the NSMs (or to a specific
NSM) in the network, carrying the information of the present
availability of the LU. For the BIND operation, there is the
possibility to specify the WAIT option, that is, in case of
BIND failure due to counterpart unavailability, the LU is
put into the "BIND WAITING' state, and where a IIbroadcast
messaged arrives with the indication that the previous
requested LU is now available, the BIND request message is
automatically resent, and the LU returns to the "BIND
REQUEST" state. .

The complete Session Service Protocol can be described,
as usual, using the state diagram technique.

a) When in IDLE state, and a BIND request is
received, the LU is put into the "BIND REQUEST"
state, a LCT is reserved, a network address is
assigned, and a IIBIND request ll message is sent
to the NSM where the requested LU resides.

b) When in IDLE state, and an INVITE request is
received, the LU is put into the IIINVITE" state,
a LCT is reserved, a network address is
assigned, and the LU is identified by the owner
Application name.

c) When in BIND REQUEST state, a negative response
(including the counterpart unavailability with
the NOWAIT option) puts the LU into the IDLE
state. The BIND request is closed in exception.

d) When in BIND REQUEST state, a positive response
puts the LU into the "LCT ACTIVE II state. The LCT
control passes to the SHe The BIND request is
closed successfully.

e) When in BIND REQUEST state, an unavailability
response (if the BIND option WAIT has been
specified) puts the LU into the "BINDWAITING II
state. The BIND request is not closed.

f) When in BIND WAITING state, a broadcast message
referred to the previously requested LU puts the
LU back into the "BIND REQUEST II state.

g)

- 72 -

When in "INVI'rE" state,
received, the LU is
state.

and a BIND message is
put into the "BINDING"

h) When in BINDING state, and the request is
invalid (bad password, no IlBIND message" for the
owing Application) a negative response is sent
back and the LU returns into the INVITE state.
The INVITE operation is not closed.

i) When in BINDING state, and the request is valid,
the "BIND message" carried by the BIND request
is forwarded to the Application (if required).
The LU remains in the BINDING state, waiting for
an Application response, and the INVITE
operation is closed.

1) When in BINDING state, and a reject response has
arrived from the owning Application a negative
response is sent back to the requesting NSM, and
the LU is put into the IDLE state, or into the
INVITE state depending on the reject option
chosen by the Application (RESET or CONFIRM,
respectively). If the LU returns into the INVITE
state, the INVITE operation is reopened.

m) When in BINDING state, and the request is valid,
and no more "BIND message;' is required, the LU
is put into the "LCT ACTIVE" state. The LCT is
completed and activated, and the LCT control
passes to the SH. The INVITE request is closed
successfully. A positive response is sent back
to the requesting NSM.

n) When in BINDING state and an Accept response has
arrived from the owing Application, a positive
response is sent back to the requesting NSM, the
LU is put into the "LCT ACTIVE" state. The LCT
is completed and activated, and the control
passes to the SH.

This state diagram is depicted in the flowchart of
Figure 2lL

~.l.!.f ~ail!~ S~r~l~~. The Mailing Service provides a
LU with the possibility to send and to receive messages
(letters) to and from another LU in the Network.

The Mailing Service is accessed via the MAIL request. A
LU may use the MAIL request to send a message (letter), or
to set up a mail box, in order to be able to receive a
(some) message(s). Every mail box is identified by the name

re.iect
confi

or
inval
reque

- 73 -

Invite req.

valid
request

negative resp.
no WAIT opt.

resp.
opt.

Figure 20 Session Service Protocol

of the Application owing the related LU, and by a further
identifier (optional). No more than one mail box may be
associated to a particular LU. A mail box remains active
until a mail message arrives, closing themail receive
operation.

- 74 -

When used to send a message, the MAIL request has to
besides the message text, provide the full address
identifier (location, Node and Host, and the mail box
identifier, short or extended). The delivery of the message
may be guaranteed or not, depending on the MAIL request
options The message delivery is guaranteed when the MAIL
request is considered closed only when the message
acknowledge (positive or negative) is received back. The
message delivery is not guaranteed when the Mail request is
considered closed as soon as the message leaves the
originator Node and no acknowledge is expected. For what we
said, it is clear that a MAIL Service protocol (a very
simple protocol) had to be designed. The basic rules of this
protocol are in what follows.

Through a LU, two kinds of requests may be presented to
the Mailing Service: the Mail-Send request and the Mail­
Receive request. Between the Mailing Services, two kinds of
information may be exchanged: a mail message or a mail
acknowledgement.

a) When a mail message and no mail box with the
required address is present, a negative
acknowledgement is sent back or the message is
simply ignored, depending on the mail message
option (guaranteed or not). In both cases, the
mail message is discarded.

b) When a mail message arrives and the required
mail box is found, the mail receive operation is
closed, and a positive acknowledgement is sent
back, if required (mail message guaranteed).

c) When the Mailing Service is unable to forward
the message, because the destination is
unreachable or invalid, a negative response
closes the mail-send request.

d) When a mail message leaves the originator node,
and no guarantee has been required, the mail
send request is closed positively

e)

4 3
LU with
status of
accessed

When a mail acknowledgement arrives, the mail
send request (if guaranteed) is closed
negatively or positively, depending on the
acknowledgement code.

~"~ .!.!!SI~!~y Ser.vi.c~ The Inquiry Service provides a
the ability to inquire about the structure and the
the network environment. The Inquiry Service is
via the INQUIRE request. A LU may use the INQUIRE

a)

- 75 -

request to inquire about:

the status (reachable or unreachable) of the
specified Host and, if reachable, the number of
intermediate Nodes on the presently shortest
path~

b) the status (reachable, unreachable, available or
not available) of a specified Application. If
reachable, the number of the intermediate Nodes
on the presently shortest path. If available,
the total number of opened ports (LUs) of the
Application, its total number of LUs in INVITE
state and in session (LCTs).

c) the status (reachable or unreachable) of the
specified Host. If reachable, the number of
intermediate Nodes on the presently shortest
path, the total number of opened ports (LUs),
the number of LUs under NSM control, the total
number of sessions, the number of sessions
between the requiring Host and the addressed
Host, the presently exchange rate (number of
bytes sent and received per second).

The Inquiry Service is not implemented at the present
state of RPCNET, but the software is full-compatible with
such a service, in all the RPCNET implementations.

!.~ !.! ~~~w~r~ Ope£a~~~ ~~~~ice. The Network Operator
Service provides the local operator with the ability to
monitor the Network activity. The way in which such a
service can be implemented depends mainly on the Operating
System" under which the RPCNET software has to be
implemented, so that we can only suggest a set of commands
which should be made available for the Network Operator:

Start of Node Network activity

Shut down of Node Network activity

Activation or de-activation of Network lines

Inquiry about Network link(s) status

Inquiry about LUs status

Inquiry about Session status

- 76 -

Inquiry about Network topology status

Forcing a Session close down

Forcing a LU release

Sending of messages to other Network operators

77 -

4.4 The Network Access Controller

The Network Access Controller is the most external
sub-layer of the Communication software, so that its design
depends mainly on the Operating System in which it has to
run.

The Network Access Controller (which is also called
Call and Return Interface) performs a first set of controls
on the user issued operation, before passing it down to the
NSM, or to the SH· depending on the operation code.

The NAC can be called by Netusers via a branch-and-link
instruction, or a Supervisor Call instruction depending on
the Operating System For example, in the VM implementation,
the NAC call is performed by a set of routines which are
called by the Netuser via a branch-and- link instruction,
while in the OS implementation, a new SVC code has been
added to the system, to perform the NAC call

The NAC call is, usually, the last istruction of any
RNAM macro, as it will be mentioned later.

- 78 -

5 THE APPLICATION LAYER

5.1 Introduction

The Application Layer is the most external layer of the
RPCNETi it communicates with the other layers by using an
access method, called RNAM (Reel Network Access Method)
which consists on a set of macros, and/or a set of high­
level language subroutines. We will speak about RNAM later,
now, let us say something about Applications, in general.

An Application is a program, or a set of programs,
splitted in two parts, which reside on different computers,
and communicate each other using RNAM. An Application can be
a user-written program or an already existing system
program, which has to be modified in order to introduce the
Network concepts. For example, a system »spool" handler can
be modified in order to take into account the possibility to
send ~spool" files not only to the local output devices, but
also to different remote computer devices. A typical user­
written Application could be simply a program which needs
data residing on another computer: if there is another
program, and a protocol of communication was established,
the two programs can communicate each other.

As it is impossible to see that a computer network
exists. without providing any facility, such as a spool file
transfer, or something like this, it is obvious that some
Applications should be developed by the systemists who
develop the Network software, so that two aims can be
achieved:

a) testing of the Network software (the best way to
test a software is to make it working)

b) providing a first kind of "service", which
allows users to enter the Network philosophy,
and stimulates the study and the developing of
other Applications.

- 79 -

5.2 RNAM

RNAM, the Reel Network Access Method, is a functional
unit that enables an Application program to establish and
use ports (LUs) on the Communication System (Communication
Layer, plus Interface Functions Layer).

The services provided by RNAM are:

a) macro function services;

b) data flow control services;

c) Logical unit handling services.

The macro function services are all the services
necessary to analize and execute the Application program
requests made via a one of the supported macro intructions.

The data flow control services are provided by the data
flow control protocol support (SH). This protocol is used to
handle data structures as a chain, or to manipulate the
state conditions such as "send" or "receive" state of the
associate Logical unit.

The Logical Unit handling services consist in:

a) Logical Unit set-up and release

b) Logical unit BIU traffic handling

c) Logical Unit exception condition handling.

5.2.1 Characteristics of RNAM-_._- -- -----,- - - - .- --

The RNAM characteristics are:

a) application program basic interface

b) synchronous handling of the requests

c) asynchronous handling of the requests

d) application program macro instructions

e) operation and asynchronous activity handling

- se -

f) data flow control

~.~.!.! ~EP1!~a~ion E~Q9~a~ ba~i~ in~erfac~. The RNAM
interface versus the Application programs is a BAL (Basic
Assemble Language) type interface. The program access RNAM
either via a Branch and Link instruction or a Supervisor
Call, depending on the implementation and/or the Operating
System.

All the requests are made using a request code and a
parameter list, that specifies the characteristics of the
request itself. An Application program using RNAM can be
described as a "single-thread" program, that is a program
capable of handling only one port (LU) at a time, or as a
"multi-thread" one, that is, capable of processing the
requests of many LUs concurrently. So that, in general, a
"single-thread~ program requests synchronous operations and
waits until each synchronous operation is completed, while a
"multi-thread" program requests asynchronous operations, and
continues processing on behalf of other LUs while waiting
for an operation in a particular LU to be completed.

~.~.l,~ Synchron~us handling ~~ the re9~ests. In a
synchronous program, the operations are performed in a
serial pattern. A request for a single operation (for
example a SEND or a RECEIVE) means that RNAM returns control
to the next sequential instruction in the program only after
the requested operation is completed. This means that the
execution of the Application program is halted until RNAM
determines that the operation has been completed. A
synchronous operation is depicted in Figure 21.

5.2.1 3 ~~ync~~on~~~ h~pdl!ng ~! !~gu~sts. In an
asynchronous operation, RNAM returns control to the next
sequential instruction as soon as RNAM has accepted the
request, not when the requested operation has been
completed. Accepting a request consists on screening the
request for logical errors, and scheduling the requested
operation. While the operation is being completed, the
Application program is free to initiate other LU
processings.

When an asynchronous operation is specified, there are
two ways in which RNAM can notify the Application program
that the operation has been completed. If the Application
program associates an Event Control Block (ECB). with the
request, RNAM posts the ECB when the operation has been
completed.

Alternatively the Application program can associate an
exit-routine with the request. When the operation is
completed. RNAM schedules the routine. In Figure 22 and

- 81 -

RNAM

1- - - - - - - -. - - - - - - - -
I
I

Application
I
I

SEND
--------.--------------1

,request
J accepted
I
J
I
I
ISEND completed,_____ oJ

Figure 21 Synchronous requests handling

Application RNAM,
I

SEI'ID..... _----- - -+---- - - ---- -- --, request
: accepted

,- - - - - - - - - -.- - - - - - - - - - - - - - - - -,
. I .

J. nte.I£1ryiJ..2£ - - - - - ... - - - - - - - - - - - - - - -,
SEND completed

'ECB posted
I

r----------~-----------------
I
I

check ECB or WAIT

Figure 22 Asynchronous request with ECB

Figure 23 it is possible to see examples of asynchronous
processing in an Application program using ECB or an exit
routine.

~.~.l.! ~.E.E!A£~tio!! I?!:.Q.g~a~ ~ac!:.~ instructions. RNAM
provides the Application program with--a---se~ of macro
instructions to perform all the allowed Network activities
Basically, the macro instructions can be divided in five
classes, as follows:

Application

- 82 -
RNAM

EXIT
ROUTINE

S ENIl_ - - - - - - - - ..- - - - - - - - - - - - - - -1 r e que s t

I accepted
r---------·--------------~
I
I

i n t e :tor~l2..t i (~..n • _
I SEND completed
I Exit Routine

f---- JScheduled

Figure 23

---- - - .,-'
Icontrol

r- - - - - - - - - - -. - - - - - - - - - - _L r et urn e d

I
J

Asynchronous request with Exit-routine

a) macros to set-up and release LUs
OPENLU The OPENLU macro instruction acquires
port(s) on the Communication System.
CLOSELU The CLOSELU macro instruction releases
the LUs acquired

b) connection macros
BIND The BIND macro instruction is a request
for connecting the referred LU to a LU of the
specified Application (in the Network
environment), in order to establish a session.
INVITE The INVITE macro instruction is used to
place the corresponding LU in INVITE state,
waiting for the connection with another LU that
wants to establish a session issuing the BIND
macro instruction.
UNBIND The UNBIND macro instruction is a
request to break-up the connection between the
referred LU and its counterpart in the
established session.

c) I/O macros
SEND The SEND macro instruction is a request to
transfer data from the requesting LU to its
counterpart in the established session.
RECEIVE The RECEIVE macro instruction is a
request to transfer into the Application
program area data coming, on the referred LU,
from the counterpart LU during the session
BREAK The BREAK macro instruction enables the
Application program to break-up the send-

- 83 -

receive data flow, allowing
send asynchronous data to
the session, whatever its
receiver) may be.

the Application to
its counterpart in
role (sender or

d) support macros
TESTLC The TESTLC macro instruction enables the
Application program to test and to get
information on the logical path from the
referred LU to its counterpart LU in the
established session.
CANCEL The CANCEL macro instruction enables the
Application program to cancel (under certain
conditions) the operation pending on the
referred LU.

e) Network Services macros
INQUIRE The INQUIRE macro instruction enables
the Application program to inquiry about the
Network environment, using the services offered
by the Communication System.
MAIL The MAIL macro instruction enables the
Application program to send messages to another
Netuser, using the mailing services offered by
the Communication System.

~.~.!.~ QEerat!~n and ~~~chronous ~ctivities ~~~~!i~g.
As far as RNAM is concerned, every operation might be
considered completed as soon as it has been scheduled for
the execution on the Communication System. Although due to
the particular nature of the utilized system (a Computer
Network), some of the operation must be considered completed
only when a feed-back information is provided to RNAM by one
or more of the Communication System components

A distinction can be made between immediate and non­
immediate operations like in a standard I/O system. In
parallel with a standard I/O system, RNAM may consider
completed either the operation (for immediate operation
request), or its role (for non-immediate operation request),
as soon as it receives a positive condition code on its
operation execution request (the SIO instruction for the I/O
system). At this point, the operation control passes to the
Communication System component (Channel, Control Unit and
Device for the I/O system) .

One or more of these components will subsequently
provide the ending status of the operation to the requesting
module (RNAM). Depending upon the type of the request, the
ending condition might be an unique collection of
intermediate ending status (Channel end, Control Unit end
and Device end for the I/O system), or can appear as

- 84 -

subsequent and separate ending states (for instance, first
Channel end then Control Unit end, and finally Device end
for the I/O system) .

In the following Figure 24 a scheme of the handling of
the single operations, as far as the ending conditions is
concerned, is presented. The only immediate operations are
related to the MAIL and UNBIND macros. In the figure only
normal completion is considered.

Besides the standard operation activity, an
asynchronous activity versus the Application program must be
considered in RNAM. The asynchronous activity is introduced
in RNAM, through the LUs, by the Communication System, and
can be divided in four classes:

a) Exception messages: not directly required by the
Application program, the exception message
represents the new logical status of a LU, or a
LU to LU logical path, when modified by an
exception condition.

the
macro
case,

b) Exception responses: directly required by
Application program when it uses the SEND
instruction and wants to have only the, in
negative feed-back of the operation.

c) Break data: not directly required by the
Application program, break data represent an
information, coming from the connected
Application during a session, that breaks-up the
present sender-receiver data flow.

d) Mail: because of the mailing service offered by
the Communication System, it is possible at any
time to receive mail messages from other Network
users. This activity is not directly required by
the Application program, and can be suspended on
direct Application program request.

5.2.1.6 Data flow control. The data flow control
service- offered~y RNAM is limited to the implementation of
a data flow control protocol based on the service offered by
the Communication System to each LU. This protocol is used
to handle such data structures as "chains", or to manipulate
state conditions such as "send" or ~receive" state of the
associated LUs during a session.

The data flow control protocol does not perform any
transformation function on the "end user" request, but
assists "end users" in controlling the flow of the requests.

- 85 -

-data-

---.--------

---t~... -_.- - - _

-+- ---

- - -b nd--resp nse--

Communication
System

LU Interf. Common Interf. LU RNAM pplicat.

- -- .
I
I

RNAM

- -:a:-~~
- - -_ L_

Applic.

INVITE

UNBIND -- - - --,
op. com 1 ..

BREAK

SEND i
(no res.op. I
or exc. sched. L

ope:- Com 31.

MAIL

SEND
(resp.)

Figure 24 RNAM handling of the operations

building and
and parameter
checking and

be provided by
and might be

- 86 -

Normally, every access method for data transfer
handling provides not only a set of basic macros as RNAM
does, but also a set of support macros for building and
handling of control blocks and parameter list.

This set of macros could be operating system dependent
at least at the implementation if not at the formal level.
An improved access method based on RNAM is presented in this
section, in which only a few macros have been added in order
to achieve, at least at the formal level, an operating
system independence. The fact that an Access Method had to
be implemented on different operating systems was taken in
consideration.

Beside this, a different implementation migth require
some new macros beside the basic set presented in this
section, or a different use of the described macros. In any
case, the following description must be considered only a
suggestion on how to implement an RNAM based Access Method.

5 3.1 General characteristics of the Access Method

All the RNAM characteristics have to be maintained in
the Access Method moreover the macro function services of
the Access Method have to be improved.

The new services comprise an authomatic
handling of all the necessary control blocks
lists, as well as on user oriented operation
error handling. All these functions have to
the Access Method via macro instructions
tailored to the particular operating system.

5.3.2 Macro instruction structure

In the following paragraph a formal structure of the
Access Method supported macro instruction is given.

All the macro instructions are divided in six classes:

a) Declarative macros
RPL Request Parameter List
LueB Logical unit Control Block
EXLST Exit-routines List

- 87 -

b) Manipulative macros
GENCB Generate a Control Block
MODCB Modify a Control Block

c) LUCB based macros
OPENLU Open Logical Unit
CLOSELU Close Logical Unit

d) RPL based macros

Connection macros
BIND
INVITE
UNBIND

Data transfer macros
SEND
RECEIVE
BREAK

e) Macros that support connection or I/O
CHECK
CANCEL
EXECRPL
TESTLC

f) Macros for the Network environment
INQUIRE
MAIL

- 88 -

5.3.3 Macro Instructions

Each macro instruction description contains a three
column table that shows how the macro intruction has to be
coded. Since macro instructions are coded in the same format
as assemble intructions, the three columns correspond to an
assembler intruction label, operating code and operand
fields. All the operands are keyworded or positional
operands, depending on the particular implementation.

Keyword operands consist in a first character string
(the operand keyword), an equal sign, and a single or
multiple operand value. Keyword operands do not have to be
coded in the order shown in the operand column, and must be
separated by commas. If more than one value can be coded
after a keyword, the parentheses are required.

A notation scheme is illustrated in the
show how, when and where operands can
notational symbols are never coded.

following,
be coded.

to
The

an exclamation point (1) means "exclusive or"

vertical ar rows C') are used to
alternative operand values One of
alternative values enclosed within the
must be chosen.

group
the

arrows

a value enclosed between two plus signs (+)
means that if no value is selected for that
operand, that value is assumed as default value.

percentages (%) denote optionals operands.

an ellipsis (...) indicates that whatever
precedes it (either an operand value, or an
entire operand) can be repeated any number of
times.

parentheses, equal signs and uppercase
characters must be coded exactly as shown in the
operands column. Lowercase words represent
values that the user must supply.

- 89 -

LUCB ~ogic~l Un~t f~nt~ol ~!Qc~

The LUCB identifies the Logical Unit to be obtained
from the communication system. Every Application port must
have a LUCB; an Application may have more than one LUCB. A
LUCB macro instruction causes a LUCB to be built during the
program assembly. The LUCB can also be built during program
execution using the GENCB macro instruction, and can be
modified during program execution by means of the MODCB
macro instruction, see Figure 25.

r-;::--r;:~:t;o-~-I-o~erand~-"-
1_ ..__ /._.. _. . ._._. __ .~. _

! label I LUCB %,BREAKLN= break area length
%,DATALEN= max data transfer
%A,ECB= event contr. block addr.

A,EXIT= Exit routine address
%,EXTLST= Exit routine list addr.

Figure 25 LUCB macro instruction

the area (in
the incoming

BREAK macro
session. The
is 128. If
field is set
be accepted.

BREAKLEN = break area length
Indicates the length (in bytes) of
LUCB) destinated to accomodate
asynchronous data generated by a
issued by the counterpart during a
maximum number which can be specified
this operand is omitted, the BREAKLEN
to 0, and no incoming break data will

DATALEN = max record length for data transfer
Indicates the maximum length (in bytes) that will
be specified for data transfer requests related to
this LU (during a session).

ECB = event control block address
Indicates the location of an event control block
to be posted by RNAM when a not requested
asynchronous activity (break data coming or
exception response arrived) has to be signalled on
the Logical unit related to this LUCB. The ECB can
be any word of addressable storage. The ECB field
and the EXIT field share the same LUCB field. The
ECB-EXIT field is used in this manner:

- 90 -

If ECB = address has been specified, RNAM uses
the field as the address of an external ECB.

If EXIT = address has been specified,
this field as the address of the
routine and schedules the routine as
below (under EXIT operand) .

RNAM uses
LUCB Exit­
indicated

If neither ECB = address, nor EXIT = address has
been specified, RNAM uses this field as an
internal ECB. RNAM does not clear the ECB. Users
of ECB must be sure to clear the ECB once the
ECB itself has been posted.

EXIT = LUCB Exit-routine address
Indicates the address of a routine to be scheduled
when an asynchronous activity has been required on
this LU When the routine receives control, some
general purpose registers will contain the
following:

Reg X: the address of the LUCB associated with
the LU whose asynchronous activity has caused
the LUCB Exit-routine to be entered;

Reg Y : the address in RNAM program to which the
LUCB Exit-routine must branch when it has
finished (return address);

Reg z: the address of the LUCB Exit routine
itself. No register save area is provided upon
invocation of the LUCB Exit-routine.

EXTLST = exit routine list address
Indicates the address of a list of Exit-routines
to be entered when particular events are
recognized on the LU by RNAM.

All the LUCB fields above are fields set by the
Application program. The fields described below are set by
RNAM, and can be tested by the Application program.

CONTROL After an asynchronous information has been
received, CONTROL is set to one of the following
values:

BRKREC Break data received. See BRKAREA and
ASYLEN fields.
LUSTAT Logical unit status indicator received,
check LUSENSEI.
EXCRESP Exception response received. See
RESPNUM field for the number of request which

- 91 -

this response is referred to; and the LUSENSEI
field for further information.

ASYLEN The ASYLEN field is set by RNAM when an
asynchronous input operation is finished, to
indicate the length of the data just received.

RESPNUM The RESPNUM field is set by RNAM when an
asynchronous response (exception response or
network inquiry response) is received. This
field contains the sequence number of the
request the response is referred to.

LUSENSEI When
status) or
the LUSENSEI
system error

an exception message (Logical unit
an exception response is received,
field indicates the presence of a
code.

LUSENSEM The LUSENSEM field contains the system
indicator modifier bits.

BRKAREA This field, whose length (in bytes) is
specified in the BREAKLN field, will contain the
incoming break data address.

- 92 -

RPL Request P~rameter List fo~ ~ Logical ~ni~

Every request that an Application program makes for
connection, data transfer or Network services operations,
must refer to an RPL. A Request Parameter List (RPL) is a
control block used by the Application program to describe
the request it makes to RNAM, and it is related to a
particular Logical Unit by the LUCB field. The RPL macro
instruction builds an RPL during assembly. An RPL can be
generated also during program execution with the GENCB macro
instruction Request for RPL modification can be made as
part of a request macro, or by the MODCB macro instruction,
see Figure 26.

-----,...----_._---------------
OperandsOperationINam~

..._-------_ ..- .,_._. . .._.._- ---.-- "'---'" .._--_..._-----
label RPL LUCB= LUCB address

%,AREA= data area address
%,AREALEN= data area length
%~RECLEN= data length
$,OPTION= +SYN+!ASY
%A,ECB= event contr. block addr.

A,EXIT= Exit routine address
%,CHNGDIR= YES!+NO+

%,REQRESP= !EXC!DEF!+NO+
%,DESTID= destination identifier
%,APPLID= application identifier
%,PASSW= authorization keyword

Figure 26 RPL macro instruction

LUCB = LUCB address. Associates the request that will
use this RPL to a LUCB

AREA = data area address. When used by a SEND or
RECEIVE macro instruction, AREA indicates the address of an
area in program storage from which data is to be written or
into which data is to be read. When used by an INVITE macro
instruction, with option BINDMSG = YES, AREA indicates the
address of an area where the data obtained by the LU which
wants to connect the Application, is to be placed. When this
operand is omitted, AREA field is set to ~.

AREALEN = Data Area Length (only for RECEIVE) .
Indicates the length (in bytes) of the data area identified
by the AREA operand. The AREALEN operand is meaningful only
for input operations. For the RECEIVE macro instruction,
AREALEN = ~ means that no input data area is available. If

- 93 -

omitted, AREALEN is set to 0. RECLEN = Data Length (only for
SEND). When used by a SEND or BREAK operation, RECLEN
indicates the length (in bytes) of the data to be
transferred. For RECEIVE operation, the RECLEN operand has
no meaning, but this field is set by RNAM when the input
operation is completed, to indicate the length of data
received. When a RECEIVE operation is completed and excess
data is detected, RECLEN contains the total length of the
originally available data. If omitted, this field is set to
o•

OPTION = Option Code. Indicates options that are to
affect the request made using this RPL.

SYN!ASY Indicates whether RNAM
synchronously or asynchronously
request made using this RPL.

should
handle any

SYN Synchronous handling means that, when a request
is made, control is not returned to the
Application program until the requested
operation has been completed (successfully or
otherwise). The Application program should not
use the CHECK macro instruction for synchronous
requests; RNAM automatically performs this
checking (which includes clearing the ECB). When
control is returned to the Application program,
a general purpose register will contain the
completion code.

ASY Asynchronous handling means that after RNAM
schedules the requested operation, control is
immediately passed back to the Application
program. When the event has been completed, RNAM
makes one of the following actions:

If the ECB address is specified for the RPL,
RNAM posts a completion indicator in the event
control block indicated by this operand. If
neither an ECB nor an EXIT address is specified
in the RPL, the ECB field itself is used as an
event control block. The Application program
should issue a CHECK (or a system WAIT) macro to
determine whether the ECB has been posted.

If the EXIT operand is in effect, RNAM schedules
the Exit-routine indicated by this operand.

- 94 -

Note: After an asynchronous request has been
accepted, and before that request has been
completed, the RPL being used by the request
must not to be modified. A modification during
this interval could cause RNAM to be unable to
complete the request in a normal manner, which
in turn would cause RNAM to terminate the
Application program.

ECB = event control block address Indicates the
location of an event control block to be posted by RNAM when
the request associated with this RPL is completed The ECB
field and the EXIT field share the same RPL field. If
asynchronous handling of the request has been specified (ASY
option in the RPL) the same happens as it did for the ECB
parameter in LUCB. If synchronous handling (SYN option in
the RPL) has been specified, the ECB-EXIT field is used as
follows:

If ECB = address has been specified, RNAM uses
that field as an the address of an external ECB.

If EXIT = address has been specified, RNAM uses
the field as an internal ECB, thus destroying
the Exit routine address.

If neither ECB = addres, nor EXIT = address has
been specified, RNAM uses this field as an
internal ECB.

RNAM clears internal ECBs when it begins processing any
RPL-based macro, and when the RPL is checked. RNAM clears
external ECBs only when the RPL is checked. RPL checking is
made by RNAM at request completion for synchronous handling,
and it is made by the user issueing CHECK for asynchronous
request handling). Users of external ECBs must therefore be
sure that the external ECB is cleared before the next RPL­
based macro is issued.

EXIT = RPL Exit Routine Address. Indicates the address
of a routine to be scheduled when the request represented by
this RPL is completed. If the SYN option has been specified,
the Exit-routine is not used; if specified, the address is
overwritten before the synchronous request completes (RNAM
uses this field as an internal ECB in this situation). The
RPL Exit-routine is scheduled only if asynchronous handling
of the request has been specified. When the routine receives
control, three general purpose registers contain the
following:

to which this
it is through

- 95 -

Rx the address of the RPL associated with the
request whose completion has caused the RPL Exit
routine to be entered.

Ry the address (in RNAM program)
routine must branch when
processing (return address).

Rz the address of the RPL Exit-routine itself.

REQRESP = (EXC1DEF1+NO+) When a SEND macro is issued,
the REQRESP field designates the type of response desired
for this request.

EXC Only exception response expected. Only in case
of a Network error a response will be sent to
this request.

DEF Definite response expected. A response is
expected in any case to complete the request.

NO Neither positive nor negative
expected for this request.

response is

CHNGDIR = (YES1+NO+). When a SEND macro is issued, the
CHNGDIR field designates if the Change Direction Indicator
is to be set on (YES) or off (NO).

YES the Change Direction Indicator is set to signal
the port that the transmitting LU ceases
transmitting on its own initiative, and prepares
to receive.

NO no change in the actual role of the transmitting
LU.

DESTID = Destination Identifier. This field is used by
the BIND macro instruction to indicate the Network location
where the Application to be bound is. The DESTID operand
contains either the address of the identifier, or the
identifier itself. The DESTID field contains directly the
identifier.

APPLID = Application Identifier. This field is used by
the BIND macro instruction to indicate the identifier of the
Application to be bound. The APPLID operand contains either
the address of the identifier, or the identifier itself The
APPLID field contains directly the identifier.

PASSW = Authorization Keyword. This field is used by
the BIND macro instruction to indicate the keyword necessary
to access the requested Application. The PASSW operand

- 96 -

the
the

directly
directly

contains either the address of the keyword or
keyword itself. The PASSW field contains
keyword.

All the RPL fields described above are fields set by
the Application program. The fields described below are set
by RNAM at the completion of the request.

RTNCD A general return code returned by all of the
RPL based macro instructions

FDBK (Feedback): Specific error return code returned by
all the RPL based nacros that are accepted by RNAM but are
not completed successfully.

REQ: A value returned by all of RPL based macros,
except EXECRPL and CHECK, that identifies the type of macro
instruction.

CHAIN: When a RECEIVE macro has been completed, the
CHAIN field indicates the message's relative position in the
Chain. The possible settings are: FIRST, MIDDLE, LAST or
ONLY.

RESPONSE: The
when a SEND or
exception response
required) .

RESPONSE field indicates further details
BREAK operation has been ended with an
(SEND operation with Definite Response

GENCS Generate a control block

The GENCS macro instruction builds a LUCS or an RPL.
The advantage of using the GENCS macro is that the control
blocks are generated during the program execution. GENCB not
only builds the control block during program execution, but
can also build the control block in dynamically allocated
storage.

The GENCS user specifies the type of control block to
be built, and the contents of its fields. The operands used
to specify the field contents are exactly the same as those
used in the macro instruction that builds the control block,
see Figure 27.

r--" --_._..,.,-- A f--·--······_-_···_--

I Name IOperation Operands! _-- "- -._-' _ '--"'.' _.- -..__.__.._._.._---_.. ..

label GENCB BLK= r-RPLILUCBf,'
%,KEY~ORD= value% ...
%,COPIES= auantity
%,WAREA= work area address
%,LENGTH= work area length

Figure 27 GENCS macro instruction

SLK= RPLILUCB: indicates the type of control block to
be generated.

KEYWORD= Value: indicates a control block field
value that is to be contained or represented within
. keyword O. can be coded any keyword that can be used

macro instruction corresponding to the SLK operand.

COPIES= Quantity: indicates the number of
blocks to be generated. The copies are identical in
contents; they are placed contigously in storage.
operand is omitted, one control block is built.

and the
it. For
in the

control
form and
If this

WAREA= Work Area Addres: indicates the location of the
storage area in the Application program where the control
block is to be built. If this operand is specified, the
LENGTH operand must be specified too. If the WAREA and
LENGTH operands are omitted, storage area can be dynamically
obtained (it depends on the operating system) via some
system facility, and the control block is built.

- 98 -

LENGTH= Work Area Length: indicates the length (in
bytes) of the storage area designated by the WAREA operand.

ALVCB= LUCB address
ARPL= RPL address
%,Field name= new value%, ..•

- ~9 -

MODCB modifies the contents of one or more fields in a
control block. MODCB works with control blocks created
either by declarative macros, or by the GENCB macro. The
user of the MODCB macro instruction indicates the location
of a LUCB or RPL, the fields within that control block to be
modified and the new values that are to be placed or
represented in these fields. Any field whose content can be
set by the LUCB or RPL macro instructions, can be modified
by the MODCB macro. The operands used to do this are the
same as those used when the co~trol block_is created, see
Figure 28. .r--- ..·····_·_···_·__··_·_·_··· ->--J.----~.-_--...-,..------.""-"""
I Na~e IOperation Operands
1, ...-.- . 1_ ··---·-·-··--·-----1-........ -_._. _ ..'-.'...-"- ..- ...--.---- _.', . -~ ----~.-,._.-

. II label I r.1ODCB

I I

Figure 28 MODCB macro instruction

LUCB= LUCB address

RPL= RPL Address: indicates the type and location of
the control block whose fields are to be modified. Field
Name= New Value: indicates a field in the control block to
be modified, and the new value that is to be considered or
represented within it

- 100 -

OPENLU

The OPENLU macro instruction requires RNAM to acquire
one or more Logical units on the Communication System.

The characteristics of the required Logical Units are
contained in the referred LUCB! see Figure 29.

r~a~:=-rop~~~:T~~~r~~~s_~'--~~==:__. .._
I

i label OPENLU LUCB= LUCB address
i %, •••

Figure 29:-oPENID macro instrUctlOn

LUCB= Address: indicates the address of the LUCB that
contains the characteristics if the Logical Unit to be
activated.

- 101 -

CLOSELU

The CLOSELU macro instruction requires RNAM to release
one or more Logical units previously acquired.

The LUs to be released are indicated by the referred
LUCB, see Figure 30.

r------~--- '---T-'- ..-.---..--.-----~ ._..__ ...-.-
I Naree IOperation I Operands
i .. _ -.-- ---1-- ·.._.. ··_-_·_····..·,' ---- , --.. _._ _.,.__.._'_.~---_._._---_.

label CLOSELU LUCB= LUCB addressI %, •••

Figure 38 CLOSELU macro instruction

LUCB= Address: indicates the address of the LUCB of the
Logical Unit to be released and de-activated.

- 102 -

BIND

The BIND macro instruction is a request for connecting
the referred LU to a LU of the specified Application, in
order to establish a session. The LU involved in the
operation is identified by the LUeB field of the RPL.

The amount of data that can be transferred with the
BIND message is limited. This limit is fixed by the
Communication System and, in any case, it can not overcome
the maximum length permitted for a packet by the
Communication System, see Figure 31.

,'_.•.•. -....__ ..,....__... -.__..__.-: ..__ ._-_....-._..,--_..•.....

I Naree i operation! Operands
r- .. T" - . ··----'1'· .. ·' _--_ ..-. ...'- _'_.,__.~'J_" _ ..

• label I BIND : RPL= RPL address
, Ii %,RPL field naree= new value

%, •••

I
I
I

Figure 31 BIND macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the BIND operation.

RPL Field Name= New Value: indicates an RPL field to be
modified, and the new value that is to be contained or
represented within it.

Although any RPL operand can be specified, the
following operands apply to the BIND macro instruction.

DESTID= Destination Identification: indicates the
Network location where the Application to be bound is. The
DESTID operand contains either the address of the identifier
or directly the identifier itself The DESTID field contains
direcly the identifier.

APPLID= Application Identification: indicates the
identifier (1 to 8 alphanumeric characters) of the
Application to be bound. The APPLID operand contains either
the address of the identifier or directly the identifier
itself. The APPLID field contains directly the identifier.

- 103 -

PASSW= Authorization Keyword: indicates the keyword (1
to 8 alphanumeric characters) necessary to access the
desiderate Application. The PASSW operand contains either
the address of the keyword, or directly the keyword itself.
The PASSW field contains directly the keyword,

BINDMSG= YES!+NO+: indicates whether or not the
Application program wants to send a binding message to the
desidered Application.

AREA= Data Area Address: data contained at the location
indicated by this field is to be used in the operation.

RECLEN= Data Length: indicates the length (in bytes) of
the data to be transferred.

ACTION= +BIND+!REJECTIACCEPT: indicates how the
Application program wants to use the BIND macro instruction:
to request a connection or to accept or refuse a connection.

BIND. The Application program wants to request a
connection, the DESTID and APPLID fields are
used to determine the counterpart in the
desidered connection, the PASSW and BINDMSG
fields are used to collect authorization
information to be presented to the required
Application

REJECT. The Application program wants to reject
the connection request presented via a binding
message. The BINDMSG indicates if the
Application wants to send further information
explaining the connection rejection.

ACCEPT. The Application program wants to accept
the connection request presented via a binding
message. The BINDMSG field is used to establish
whether or not the Application wants to send
further information about the accepted
connection.

- 104 -

INVITE

The INVITE macro instruction enables the Application
program to place the referred Logical unit in "INVITE"
state, waiting for the connection with another Logical unit
that wants to establish a session with the Application
issueing the INVITE macro instruction. The involved Logical
unit is indicated by the referred RPL, see Figure 32.

I~Naro'~ ~. ·1-_~p~~~_~~~__L~~:~~d~-·- -- ..--=~.==,-.,
! label il INVITE I RPL= RPL address
I, I 1%,RPL field name= new va ue

I I %, •••

I

Figure 32 INVITE macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the INVITE operation.

RPL Field Name= New Value: indicates an RPL field to be
modified; and the new value that is to be contained or
represented within it

Although any RPL operand can be specified, the
following operands apply to the INVITE macro instruction:

AREA= Data Area Address: the area at the location
indicated by this field is to be used to place the coming
binding message (if required).

AREALEN= Data Area Length: indicates the length (in
bytes) of the data to be transferred.

---_._._-_._-

- 105 -

UNBIND

The UNBIND macro instruction is a request to break-up
the connection between the referred Application Logical Unit
and its counterpart in the established session.

The involved LU is indicated by the referred RPL, see
Figure 33.r- ._. '--' --- -- -.----.-..- -.---.-- ~-

! Name Operation Operands
1·_·······.. . - _ - .._.. '--'-'--' --------..,.-.,.. -.- __._._--
I I

I label I UNBIND RPL= RPL address
I '
i
I

I

Figure 33 UNBIND macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the UNBIND operation.

- HJ6 -

SEND

The SEND macro instruction is
data from the requesting LU to
established session.

a request to transfer
its counterpart in the

The SEND macro instruction can be used only when the
session has been established and only by the part to which
the Communication System has assigned the ., sender II role in
the use of the Logical Channel.

The "sender" role is assigned, at the opening of the
session, to that part which played the active role in the
connection (using the BIND macro instruction) and can be
exchanged only on initiative of the "sender ll itself, that
can pass this role using the Change Direction Indicator
field. The involved LU is indicated by the referred RPL, see
Figure 34.

r-----
I Name

I'·
label

I

Figure 34 SEND macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the SEND operation.

RPL Field Name= New Value: indicates an RPL field to be
modified, and the new value that is to be contained or
represented within it.

Although any RPL operand can be specified, the
following operands apply to the SEND macro instruction:

AREA= Data Area Address: the data contained at the
location indicated by this field are Sent to the connected
LU.

RECLEN= Output Data Length: the number of bytes
indicated in this field is sent to the connected LU.

- 107 -

REQRESP= EXC!DEF!+NO+: this field designates the type
of response desiderated for this request.

EXC Only exception response expected.

DEF Definite response expected.

NO No response expected.

CHNGDIR= YESl+NO+: this field designates if the Change
Direction Indicator is to be set on (YES) or off (NO).

CHAIN= FIRSTIMIDDLEILASTl+0NLY+: indicates the relative
'position of the message within the chain currently being
transmitted. ONLY means that the message is the sole element
of the chain.

108 -

RECEIVE

The RECEIVE macro instruction is a request to
in the Application program area, data corning,
referred LU, from the connected LU during a session.

transfer
on the

%, •••

RPL= RPL address
%,RPL field name= new value

The RECEIVE macro instruction can be used only when the
session has been established, and only by the part to which
the Communication System has assigned the ~receiver" role in
the Logical Channel utilization. The "receiver" role is
assigned, at the opening of the session, to that part that
played the passive role in the connection (using the INVITE
macro instruction). The "receiver~ role can be exchanged
only on initiative of the "sender" (see the SEND macro
instruction). The involved LU is indicated by the RPL field,
see Figure 35.

.. ", ·T-~····~·--·· ,,_.-r- N:~- Operation I OperandsI ' !
• '7'0' _ .. , __ , __ • __ _l _ , ,,_¥_~. __.' _N._ ._ .~_. __... , " .~_. ,--.-_._ .' .' -"...-.. -..•-_._....•.::.-........ ---,-._...... ~ .._-_........,---

" I ;i ! II label I RECEIVE I
I. [I

I I

Figure 35 RECEIVE macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the RECEIVE operation.

RPL Field Name= New Value: indicates an RPL field to be
modified, and the new value that is to be contained or
represented within it.

Although any RPL operand can be specified, the
following operands apply to the RECEIVE macro instruction:

AREA= Input
received must be
field.

Area Address: the data that will be
placed at the location indicated by this

AREALEN= Input Data Area Length: indicates the length
(in bytes) of the data area identified by the AREA operand.

- 109 -

BREAK

The BREAK macro instruction enables the Application
program to break-up the send-receive data flow, allowing the
Application to send asynchronous data to its counterpart in
the session, also if its role is "receiver"

The BREAK macro instruction can be used only when the
session has been established. The amount of data that can be
transferred is limited to the maximum length permitted by.
the Common Network. The involved LU is indicated by the LueB
RPL field, see Figure 36.

label RPL= RPL address
%,RPL field na~e= new value
Cf
10 , •••

Figure 36 BREAK macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the BREAK operation.

RPL Field Name= New Value: indicates an RPL field to be
modified, and the new value that is to be contained or
represented within it.

Only the following RPL operands can be specified:

AREA= Data Area Address:
location indicated by this
operation.

the data
field are

contained at the
to be used in the

RECLEN= Data Length: indicates the length (in bytes) of
the data to be transferred

- llf' -

CHECK

The CHECK macro instruction enables the Application
program to check the status of a requested operation, and,
in case. waits for the completion of the operation itself.

When asynchronous handling has been specified for a
request (ASY option in effect), the Application program
receives control when the requested operation has been
scheduled. A CHECK macro instruction must be issued for the
RPL used for the request. CHECK should not be issued for
synchronous requests.

When CHECK is used, the following action occurs:

If the requested operation is not yet completed,
CHECK suspends program execution until it is
completed. If the RPL indicates an external ECB,
or if the ECB-EXIT field is not set, CHECK
returns the control to the Application program,
when RNAM posts the ECB complete. CHECK clears
the ECB before returning control. Users of
external ECBs with asynchronous request handling
must clear the external ECB (with CHECK or with
assembler instructions) before the next RPL
based macro is issued.

If the operation completed with a logical or
other error. CHECK causes the LERAD or ERAD
exit-routine to be invoked, assuming that one is
available.

This action also occurs when CHECK is issued in any RPL
Exit-routine, see Figure 37.

RPL= RPL Address: indicates the location of the RPL to
which the CHECK macro is to be referred.

- 111 -

RPL= RPL addresslabel

Nam~--r--o~:'::~~onr-~'~pera~ds'"-------..

.....L _.., ._. _.__ ;-.. _._._ _ _. --_.. --_.--- --_.-_ .

I II CHECK

Figure 37 CHECK macro instruction

CANCEL

The CANCEL macro instruction enables the Application
program to cancel the operation pending on the referred LU.
Only the operations that require local (at Communication
System level) execution and for which data transfer has not
yet begun, can be cancelled.

The CANCEL macro instruction can be issued only when
the asynchronous handling has been specified (ASY option
code in effect), see Figure 38.

Operands

RPL= RPL address

--------r---------------
r;,....e] Operationr"---- ---...-----...

1abe1 CANCEL

.;1

Figure 38 CANCEL macro instruction

RPL= RPL Address: indicates the address of the RPL
associated with the request that is to be cancelled.

- 112 -

EXECRPL

The EXECRPL macro instruction permits the Application
program to re-issue a previously issued request without
modifying the related RPL.

---_._ ..~..._._.'-

.. __.- _.- ._---

The EXECRPL macro instruction can be
any RPL based request except CHECK,
EXECRPL macro, see Figure 39.

r'~::-'-l~~~~~:i:n-I;;e:'~d:--'~"-'
; _". '.' ! __ 0-."_' .- :-._ _. -" '. __••_.

label I EXECRPL RPL= RPL address
i

used
CANCEL

to execute
or another

Figure 39 EXECRPL macro instruction

RPL= RPL Address: indicates the address of the RPL to
be executed.

113 -

TESTLC

The TESTLC macro intruction enables the Application
program to test and to get information on the status of its
LU, or, if a session has been established, on the status of
the logical path connecting the LUs in session, see
Figure 40.

r---"-' --,.' ---- -··---r-------·-'---·~·-·~I Narr.e I Operation I Operands

r
.. ·.. ."_.__.--- _.\.-_.. _. -. _.... _.. "-" ,,!....-.-.-- ..--- -- --_._-- -_._-_..~. -----...-..---.-

I I
i label I 'l'ES'l'LC I :RPL= RPL address
i I %~LU~ ~+LOCAL+~REMOTE~PATH

I
I

I
Figure 40 TESTLC macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the TESTLC operation

LU= LOCAL!REMOTE!PATH: indicates the LU to be tested:

LOCAL: Only the local LU has to return its logical
status

REMOTE: only the connected LU (in a session) has
to return its logical status.

PATH: the full logical path status has to be
returned.

- 114 -

The INQUIRE macro instruction enables the Application
program to enquiry about the Network environment, using the
services offered by the Communication System. This macro has
not been implemented in RPCNET, until now.

- 115 -

MAIL

The MAIL macro instruction enables the Application
program to send and receive messages to and from another
Network user or Network operator, utilyzing the mailing
service offered by the RPCNET Communication System.

The MAIL macro instruction can be used only referred to
an already opened LU. When used to receive messages, the
MAIL macro instruction sets up a "mail box;' that remains
active until a mail message arrives, closing the mail
request operation. When used to send a message, the MAIL
macro instruction enables the Application program to specify
the addressed identifier and the message text. The
Communication System, on RNAM request, prepares the mail
message, and forwards it to the appropriate destination. The
mail request operation is considered closed as soon as the
message BIU leaves the node. The information carried by the
mail message as text can not be more than 128 bytes long,
see Figure 41.

r~' .._- .
I Name I. .

Operation

- 1-···· "'_'''_'''''~''--''',.__ _- .."..--_ _-'---' ---~.

Operands
,....
I

I label

I
I

I

}'I~IL RPL= RrL address
r-rRPL field name= new value
rtf
/0 I •••

%,~~ILOPT= lSENDlRECEIVE
%,BOXLAB= mail box identifier

Figure 41 MAIL macro instruction

RPL= RPL Address: indicates the location of the RPL
that describes the MAIL operation.

MAILOPT= Option Code: indicates options that are to
affect the mail request.

SEND!RECEIVE: indicates whether the Application
program wants to send a mail message (SEND), or
to set-up a mail box (RECEIVE).

RPL Field Name= New Value: although any RPL operand can
be specified, the following operands apply to the MAIL macro
instruction:

- 116 -

AREA= Data Area Address: the area at the location
indicated by this field is to be used to extract
the message text or to place the incoming mail
message.

AREALEN= Data Area Length: indicates the length
(in bytes) of the data to be transferred.

LOCID= Location Npme: this field is used to
indicate the Network location where the message
is to be sent. The LOCID operand contains either
the address of the identifier, or the identifier
itself.

APPLID= this field indicates the name of the
Application which the mail message is addressed
to. The APPLID operand contains either the
address of the identifier, or the identifier
itself.

- 117 -

5 3.4 Macro instruction return codes

RNAM posts return code information in a general purpose
register and for the RPL based macros, in certain fields of
the requested RPL.

These fields are referred to as "feedback" fields. The
manner in which the general register and the feedback fields
are posted depends on whether synchronous request handling,
asynchronous request handling with a ECB, or asynchronous
request handling with an RPL exit-routine is used. RNAM
always sets the general register to zero if a request has
been accepted or has completed normally. When a request is
not accepted, or it is completed abnormally, RNAM schedules
the LERAD or ERAD exit-routine. If LERAD or ERAD exit
routine is executed, upon return of control to the next
sequential instruction, the general register contains
whatever value was placed in it by the exit-routine. If RNAM
cannot find an exit to schedule, then it sets the general
register, and returns control to the next sequential
instruction. RNAM, at now, uses only one non-zero return
code in the general register: 4. This is termed a general
return code. The errors are organized in 6 classes,
according to the program recovery action that is appropriate
for each error. TO summarize:

There are 2 general return codes: 0 (normal), 4
(abnormal) .

There are 6 recovery action codes that apply for
abnormal completion. These are posted in the
RTNCD field of the RPL. If LERAD or ERAD are
invoked, the exit-routine can return its own
general register value to the next sequential
instruction.

There are numerous specific error return codes,
that apply for abnormal completion. These are
posted in the FDBK field of the RPL.

~.l.l.l ~~~ific err~~ ~~~ur~ co~~ (FDBK): The return
code set in the FDBK field is meaningful only when it is
considered together with the recovery action return code in
the RTNCD field. The specific error return codes apply only
when RTNCD contains a non-zero recovery action code.

RTNCD = 4 Special condition

- 118 -

FDBK:l Cancel issued with I/O in progress. A
CANCEL macro instruction has been completed
abnormally, because data transfer is in
progress No effect on the referred Application.
2 Cancel issued successfully. The operation
has been terminated due to a CANCEL request.
3 Unknown Network destination specified.
The request addresses a destination unknown to
the Network.
4 Required binding message not sent. The
BIND message is abnormally terminated, due to
the absence of the binding message.
S Password incorrect. The authorization
keyword is incorrect.
6 BIND refused by the requested
Application. The requested Application, after
checking the bind message, has refused the
connection.
7 Referred LU not in session. An in session
request has been made to a LU not in session.
8 LU not in "send" state. A SEND request
has been made to a LU not in "received state.
9 LU not in "receive;; state. A RECEIVE
request has been made to a LU not in "receive"
state.
l~ Inquiry incorrect. An incorrect INQUIRY
request has been made (reserved for future
use) .
11 Inquiry information not available. The
required information is not available (reserved
for future use).

RTNCD = 8 Retry

FDBK 1 Temporary storage shortage. RNAM is
temporary unable to receive enough storage to
process the request. The request can be re­
issued (for ex. via a EXECRPL).
2 No LU available. The LU request has not
been accepted due to a temporary unavailability
of the Communication system to assign a LU. The
request can be re-issued.
3 No Application port available. The BIND
request has been refused due to a temporary
unavailability of a port (LU) on the requested
Application. The request can be re-issued.

RTNCD = 12 Data integrity damaged

The referred
shut-down. All
sessions and

- 119 -

FDBK 1 Input area too small. The issued input
request specified an input area that is too
small RNAM has placed the required length (in
bytes) in the RPL s RECLEN field. Only a part
of the data has been placed in the area.
2 Incoming response indicates exception
condition, A negative response to the send data
request has been received.
3 Exception condition for incoming data.
Data has been received for which an exception
condition exists.

RTNCD = 16 Environment error.

FDBK 1 Session partner unreacheable. The
Communication System is unable to reach the
other session partner. The session can be
considered closed or suspended.
2 Network in shut-down.
Network interface has decided to
the Application could close its
release all LUs.
3 Requested Application not available. The
requested Application (for bind) is not
available at the indicated Network location.

RTNCD = 20 Logical Error

FDBK 1 Control block invalid. The RPL's LUCB
field does not contain the address of a valid
LUCB.
2 Zero EXIT field The RPL indicates that
the ECB-EXIT field is being used as an EXIT
field, but the RPL Exit routine address is
zero. No RPL Exit routine has been scheduled.
3 Zero ECB field. The RPL indicates that
the ECB-EXIT field is being used to point to an
external ECB, but the address in the related
field is zero. No ECB has been posted.
4 Inactive RPL checked. CHECK was issued
for an inactive RPL (an RPL that had been
posted complete, and for which CHECK was issued
successfully). All RPL based macros, however,
must use an active RPLi an RPL cannot be
checked twice.
5 Active RPL referred. A request has been
made for an active RPL (a RPL that has an
operation pending). All RPL based macros,
except CHECK, must use an active RPL.
6 CANCEL issued for an inactive RPL. A
CANCEL request has been issued for an inactive
RPL (a RPL that had been posted complete, and

- 120 -

for which CHECK has been issued successfully.
7 Invalid option. The request failed
because of an incorrect setting of the involved
option.
8 Invalid data area. Either all or part of
the output area lies beyond the addressable
range of the Application program.
9 Invalid data or length. For an input
operation either an input area address beyond
the addressable range of the Application
program has been supplied, or the area length
has been invalidly indicated as zero
10 Max. number of ports for the Application
exceeded. with this OPENLU request, the
specified max. number of ports for the
Application has been exceeded.
11 Invalid destination identifier. The
identifier for the Network location to be
addressed has been invalidly specified.
12 Invalid Application identifier address.
The identifier for the Application to be
addressed has been invalidly specified.
13 Invalid password or password address.
The authorization keyword to be utilized in
addressing the Application has been invalidly
specified.
14 Application identifier unacceptable. The
specified Application identifier is already
active or not valid.
15 Invalid BIND or INVITE request. The
specified request is unacceptable because the
referred LU has Network requests (MAIL or
INQUIRY) pending.
16 Network service request unacceptable.
The specified Network service request (MAIL or
INQUIRY) is unacceptable because the referred
LU has a session active.

- 121 -

5.4 User ~pEJic:~~i2~ prot~c21.~

5.4.1 Introduction

The introduction in the RPCNET of a general access
method like RNAM; makes it possible to write programs (in
Assembler language), which can communicate each other using
the Communication Systems.

These programs, in the RPCNET! were called
Applications: every user can write -an Application, but there
exist some special Applications. that we could call System
Applications, which have to perform more general functions
and/or services.

These Applications must have their own, well defined
protocol, and very often they require an operating system
modification.

In RPCNET, two System protocols were studied and
implemented as System Applications:

a) the Virtual Terminal Protocol

b) the File Transfer Protocol.

- 122 -

5.4.2 File Transfer Protocol

One can consider a File Transfer in two different ways:

in the first way files are transmitted from a
"spool system" to another one, wi thout any other
intervention of the user than the first command
(for ex. SEND).

in the second way,
statically stored in
disk), and they can be
a local device.

files are considered
a remote device (tape or
accessed as they were in

The first kind of File Transfer was called Spool-to­
Spool Transfer Protol, while the second one is called Remote
Files Access Protocol. In the RPCNET, the Spool-to-Spool was
designed and implemented, while the Remote File Access
Protocol is in course of final definition, and was
implemented only in one particular environment, the VM!370
environment. So that, we will describe in the following only
the Spool-to-Spool Protocol.

5 4.~! The ~po~!-~~-~P2~l pro~~col. Some of the
problems to be solved for such a protocol were:

Type of Logical Channel to be used

Rules for opening and closing communication

Coded information describing files (File Tag)

User Data Unit (UDU) in
communication

a Spool-to-Spool

Acknowledgment and error recovery

Since a spool file exchange is typically a one-way
communication, simplex Logical Channels are used.

A Channel is opened each time a Spool System (Sender)
has to send a spool file (or a set of spool files) to
another Spool System (Receiver). The Channel is released
when the transmission has been successfully completed. This
Channel is the normal vehicle for transmission of File Tags
and data.

Other kinds of information, however, need to be
exchanged between Sender and Receiver. These are: connection
requests (the channel does not yet exists; messages of
acknowledgment and requests for error recovery. These latter

- 123 -

must be sent in the opposite direction to the main flow.

For connecting purposes, RPCNET offers the uBIND
message" facility, which allows the Sender to send also a
little amount of information to its Receiver. The RPCNET
BREAK will be used for messages which must go from Receiver
to Sender. The underlaying hypothesis is that Break packets
cannot get lost. In other words, the subnetwork is supposed
to guarantee the arrival of this type of messages.

As a very first approach, card image and print lines
seem to be the natural transmission units for spool files.
It must be considered, however, that the percentage of
trailing blanks in spool lines or cards is generally very
high. Considering also that the physical unit of
transmission (packet) in the subnetwork may be much longer
than lines or cards, the disadvantages in performance that
such a choice could bring is easily seen:

Logical Channel overhead: whatever amount of
data is contained in a packet, it needs a fixed
length amount of protocol information. This
implies that the percent of data information
being transferred on a Logical Channel could be
very low;

System overhead: checking protocol must be done
on every packet, independently on the amount of
useful data it may contain;

resource overhead: along all the path from
Sender to Receiver, there could be an
overallocation of buffers in the intermediate
Nodes.

Some of these disadvantages could be eliminated by
packing printer lines or cards into packets. However, this
solution would have a non-negligible CPU time cost, and
would be dependent on the packet length. So, in order to
mantain independence from subnet packet length, and in order
to minimize the percentage of control information, we have
to use spool disk blocks as User Data Units (UDUs) or BIUs,
in RPCNET notation.

A spool block however, cannot be considered as a
standard unit. In fact, the various operating systems which
can be present in a Network, will generally have different
spool systems. This implies, in particular, different
lengths and different logical structures (formats) of
blocks. As far as format is concerned, a nnetwork spool
format" was to be decided upon, which is unique in the
Network. Every spool system shall be made able to send and

- 124 -

receive files using this standard format.

However, in each particular spool-to-spool activity,
Spool Systems have been given the possibility to choose some
other format that seems to be more suitable for that
particular activity. This will happen of course, when both
Sender and Receiver run under the same operating system; but
it can be useful, also in other cases, that only one of the
two partners adapts to the other's format, instead that both
of them adapt to the standard net format.

Standard net format is shown in Figure 42. In the last
block of the file, the end-of-block character.FF is replaced
by the end-of-file character EF.

LEN CCW DATA

LEN CCW DATA I LEN I.....- - --
. · . · · · ·

1--- - - - - -- -- - - - - - - -
· · . · · ·

--- - - -- - ---- - - - - - --
· . · . · · ·

1 FF I100- - - - -

Figure 42 NET format for spool blocks

As far as output files are concerned, some information
is necessary at the receiving station, concerning name, type
and birthdate of files, and, possibly, about the output
device to which they must be addressed. All these parameters
(File Tag) are grouped at the beginning of the first BIU
(block), as shown in Figure 43. At present time, the File
Tag area is left empty for input files. For batch-oriented
Spool Systems, FILENAME will mean jobname, and FILETYPE can
be replaced by programmer's name. OUTDEVID denotes a
particular remote or local output device.

The size of the BIUs is decided while establishing the
Logical Channel, according to the rule that the system
having the larger block size shall adapt to the "smaller"
one. In fact, it is more difficult to handle core buffers
larger than those normally used in the System, than sending

Figure 43

- 125 -

FILENAM FILETYPE DATE

HOUR OUTDEVID

LEN CCW DATA LEN

CCW .
-------------.......... i

I~----- FF

BIU format for File Transfer

or receiving a block splitted in two or more BIUs.

A session for opening a communication is made up of
three steps: INVITE, BIND and BIND RESPONSE.

Since no information can be received if it has not been
requested, the Receiver must notify to the Network its
availability to perform Network operations. This is done by
means of the INVITE function, that is, a request to the
local Communication System to receive a message from the
Network. Information supplied by INVITE contains:

Receiver identification (SPOOL)

Address of a fixed size core
message from a partner
communication.

area
asking

to
to

store
open

a
a

The Sender spool system asks to open the
by sending a BIND to its partner. BINQ
following information:

communication
contains the

Type of file(s) to be sent (input, punch
print);

Spool block length;

Spool block format (s) .

In order to use the BIND, the user must supply the
following information:

- 126 -

Destination Node;

Destination Host;

Destination Application Name (SPOOL).

It is assumed, in any case, that a BIND must receive an
answer, which specifies the status of the Receiver. This
status may be one of the following:

Ready and allocated;

Busy;

Not active (not present at the moment in the
Network);

Invalid destination addressing.

In the first case,
in the last case, the
will be notified. In the
following procedures can

Retry later;

a communication can be established;
operator or the originating process

intermediate cases, one of the
be used:

Retry after an operator command;

Retry immediately;

Retry when another file has to be sent to the
same destination;

Retry when a Network re-configuration occurs;

Etc.

According to its own parameters and to those of its
partner, the Receiver decides length and format of the BIU
to be used. After that, it sends back a BIND RESPONSE to the
Sender; this is an acceptance of connection and contains the
following information:

BIU length to be used;

BIU format to be used. According to the
mentioned before hypothesis of BREAK facility,
no error recovery procedure will be implemented
concerning the BIND RESPONSE.

It can happen that a block sent by the Sender does not
reach the Receiver, and gets lost. This happens, for

- 127 -

example, when a packet gets lost because a Node has
acknowledged the packet, and fails before sending it.

In order to guarantee to the receiving process the
completeness of the file, both Sender and Receiver need to
be involved. The Receiver should be able of recognizing the
lack of blocks, the Sender of sending them again, and the
Receiver of reconstructing block sequence within the file.

First of all, each block needs a sequence
identification number, which must be generated by the
Sender. This number will be used 'both by the Receiver, for
check and response, and by the Sender, for any possible
retransmission. The Sender has to keep pointers to the
blocks just sent until it is made aware that a certain
number of them is successfully arrived. Otherwise, it should
read again the whole spool file, looking for those
particular blocks.

Therefore, at the Sender side, this protocol requires a
table of pointers to the blocks. The size of the table is to
be decided during the connection phase, with an algorithm
which will be discussed later. Each entry is composed of:

the sequence (or identification) number of the
BIU;

the complete disk address which allows the
Sender to resend the BIU when necessary.

At the Receiver side, the sequence of received blocks
is controlled before writing them on disk. When the normal
sequence is broken because of the absence of one or more
blocks, this fact is registered in a Hhole table". This
table will be used both for asking the Sender to resend
lacking blocks, and for writing these blocks in the proper
area of disk when they finally arrive. In fact, space is
reserved in every case in the receiving buffer or on disk,
and the receiving process goes on. Each element of the table
contains complete information about every missing block,
that is to say, each entry is composed of:

sequence identification number of the missing
block;

complete address of the disk area reserved for
the block

- 128 -

pointer to the next block on disk, which will be
written with the block for chaining purposes.

When the Receiver realizes that the normal sequence is
interrupted by one block whose sequence identification
number is less than it was supposed to be, a scan of the
"hole table" is made. If that sequence identification number
is registered on the table, the block is written in the
reserved disk area, and the respective entry is erased from
the table. If, on the contrary, the sequence identification
number is not in the table, the block is considered as a
duplicate, and for this reason ignored.

The "hole table" has the same number of entries as the
corresponding Sender table. The size of the table is choosen
in such a way that one recovery is possible before the space
in the table is exhausted. That is to say that failures, as
a rule, are supposed to be recovered at the first attempt.

Let 2N be the number of entries in the table. Whenever
a received block has a sequence identification number equal
to (or greater than) N, 2N, 3N ... , the Receiver sends a
message to its Sender for signalling the state of the
previous N blocks. If all N blocks have been received
properly, the Sender releases the corresponding half table
In case of loss of one or more of these blocks, the Sender
stops normal sending sequence for resending the missing
blocks.

The integer N must be chosen in such a way to allow the
arrival of an acknowledgment about the N blocks pointed in
the first half of the table, before the second half has been
completely filled in. In order to comply with this
requirement, it is sufficient that the shipment time of N
BIUs is greater than, or equal to the time requested to
repeat twice the following sequence:

one BIU from Sender to Receiver;

one control block from Receiver to Sender.

Let be:

2N number of blocks in buffer

La number of characters per control block

Lb number of characters per BIU

- 129 -

S line speed in characters per second

n number of links between Sender and Receiver.

Then, the time requested for sending N blocks will be:

T = N * Lb/S

and the time requested for repeating twice the sequence
above described is:

T' =,2n * La/S + 2n * Lb/S

We want to find N in such a way that T>= T'. That is:

N>=2n*(1+ La/Lb)

As La is supposed to be not greater than Lb, N=4n seems to
be a good solution for our purposes.

The number n of links between Sender and Receiver can
be obtained during the Connecting phase.

It may happen that the Sender fills up one half of its
table before the other half can be released. This happens in
two cases:

The Sender has sent 2N BIUs
feedback.

without any

Some resent blocks have been lost again.

In the first case, the Sender starts a timeout, and if
nothing arrives within a fixed time, the Sender closes the
connection. In the second case, the last received holes are
resent again, and a timeout mechanism is started; if the
timeout expires without replies, the Sender closes the
connection.

On the other side, the Receiver starts a timeout
mechanism each time a block arrives; when the timeout
expires, a break message is sent, containing the present
situation of received blocks, and a second timeout is
started. If also the second timeout expires, the connection
is closed.

After a whole file has been successfully sent, the
Sender can begin the transmission of another file. If there
are no more files of the same type for the same destination,
the Sender issues a CLOSE, that is to say, a request to
close the Logical Channel used until that time. Then the
Sender expects no more messages from the Network.

- 130 -

When a Receiver got an entire file, it expects to
receive an UNBIND or another file. If nothing arrives, the
Receiver uses the same procedure as in the case of
interruption of communication during file transmission.

- 131 -

5.4.3 Virtual Terminal Protocol

The Terminal Application is made up of a line driver
that maps a real terminal into an idealized terminal (here
called a Virtual Terminal, or VT), a Network Command
Processor, and a module for communicating with the Host
Application via the RPCNET Logical Channel.

The Host Application maps the Virtual Terminal Protocol
into actions meaningful to the Host computer. As far as the
Host and Terminal Applications were concerned, a full-duplex
facility was easier to work with. In RPCNET the Logical
Channel provides a full-duplex facility (if we use the BREAK
facility), with error detection in case of loss of messages,
or out-of-sequence messages between the components. The
error recovery is the same as for both loss and out-of­
sequence .

. It is worth noting that the first implementation of
RPCNET was intended to insure that the message loss occurred
only with a loss of a Network Node containing the message.
Thus, although the error recovery is necessary, it is seldom
invoked, except to prevent "hang;' conditions, in the rare
case of a crash of a node holding a message relevant to the
Host and Terminal intercannection.

Relevant to this discussion are
BREAK and TESTLC RPCNET operations. Due
Logical Channel, it is necessary to
before a Receiver can send and a Sender

the SEND, RECEIVE,
to the nature of the

oj change direction II
can receive.

In the RPCNET VTP, the terminal side is always kept in
RECEIVE mode, while the Host side is always kept in SEND
mode. This produces only minor restrictions on the terminal
side, which has to stop its current RECEIVE, in order to
send its message by BREAK.

Other functions for controlling the Logical Channel of
interest here are those used for making and breaking
connections between the Applications. Typically, the Host
Application will have as many INVITEs in action as there are
free ports (emulated terminals) available for connection to
its Host. When a user of a terminal requests a connection to
a Host, a BIND is done, and if there is a corresponding
INVITE at the Host, then the connection is made.

Since the IIdirection·· of the Log ical Channel is
initially not as desired (the terminal is the Sender, the
Host is the Receiver), the terminal Application issues a
SEND with change direction, to turn the channel around. At
any time, either Application can do an UNBIND to break the

- 132 -

connection. This is normally done either at the request of
the terminal user, or when the Host computer "crashes". The
Figure 44 illustrates the states in which a virtual terminal
can be.

A "line down" puts any State into the DISABLE State

Figure 44 states of a virtual Terminal Protocol

The write state is when the terminal is writing to the
terminal user, and the read state is when the user can type
input on the terminal. The prepare state is used to watch
for asynchronous attentions, or the disconnection of the
terminal. The prepare, the write and the read state are
haltable by the program driving the VT.

The virtual terminal character set is the EBCDIC.

The behaviour of the two Applications when contacting
each other is illustrated in Figure 45.

There is a state diagram for each Application,
indicating how the BIND and INVITE operations are used. The
BIND message used by the Terminal and Host Applications is
described later. If the BIND request is accepted by the
Host, a BIND message is sent by the Host Application.
Finally, the terminal BIND request operation ends, with an
indication of the successor failure of the connection
making attempt.

TERMINAL ApPLICATION

- 133 -

HOST ApPLICATION

Bind
Rejec
&Rese

Cancel

Figure 45 state diagram for the Virtual Terminal

The BIND message can be up to almost a packet in
length, allowing a very long protocol message. In the RPCNET
implementation, the first byte is used to specify the type
of protocol to be used. i.e. the type of the Host to be
connected with. At now, the hexadecimal value 140' is used
to specify a VM/370 Host, 180' is a 5/7, and' 20' is an
OS/TSO. Other values are free. According to the first byte,
the length of the BIND message can be different: for
example, in the VM/370 implementation, there are 5 bytes
more, to describe the device type, the device class, etc.

Read, write, halt, attention and related activities
proceed until one of four situations arise, signalling the
end of the session. If the terminal is disconnected, or the
Host goes down, or if the Host disables the terminal, the
session is ended. in addition, behavior of the Network

- 134 -

itself can end the session, as when access is lost between
the Application due to Network failure.

All the messages, during the session, are "data", with
respect to RPCNET facilities that support Logical Channels
These messages compose the elements of VTP. The first byte
reflects the four classes of messages in bits 0 and 1. A
value of 00 designates terminal and Host action messages,
such as write, read, halt, attention, and acknowledgments
thereof. A value of 01 designates terminal and Host oriented
control messages, such as type-ahead control. A value of 10
designates a Network oriented action message, such as the
~do TESTLC" message. A value of 11 designates Network
oriented control messages, such as disable, host down, or
terminal down.

Bit 2 of the first byte indicates which Application is
the Sender. A value of 0 designates the Host, and 1
designates the terminal. Bits 3-7 are used to further
distinguish the message.

byte 1
00000000
00000001
00000010
00000011
00100000
00100001
00100010
00100011
01100000

XY=00
XY=01
XY=10
CCCC=

10100000
11000000
11100000

byte 2 byte 3
n------n halt n
n------n read request n
n------n data.... write request n
m------m acknowledge attention m
n------n acknowledge wr. or ht n
n------n data.... read reply n
n------n m------m wr. n ended by attn. m
m------m attention m
XY00CCCC wr. ahead mode control

no write ahead; no message save
no write ahead; message saved for error recovery
write ahead allowed
count of messages the Host Application can write
ahead.

do TESTLC
disable
terminal disconnected

The Host Application does not need a queue for
messages. It needs only a counter to record the number of
unprocessed attentions, and a variable to hold the latest
attention sequence number. The terminal Application will
need queues for both input and output, to communicate with
the Host Application. The output queue is to hold items
delayed because the current RECEIVE could not be cancelled
since it was busy receiving a message. The input queue holds
read write and halt requests from the Host. There is a
second queue between the terminal and' the input queue; it is
used for processing terminal Application control messages,
and it is otherwise empty.

- 135 -

The Host Application assigns numbers sequentially and
cyclically running from 0,1, ... ,255,0, •. to read, write and
certain halt requests of the host computer.

A halt is assigned a number if it halts a read or
write, otherwise it is not counted and is ignored. Notice of
each such halt, read or write is sent to the terminal
Application, where each is enqueued for presentation to the
terminal handler

As each is processed by the' 'terminal handler, it is
acknowledged by a message sent back to the Host Application.
The message contains the message number assigned by the Host
Application originally. The acknowledgment mechanism is
necessary to prevent the Host from flooding the Network with
a series of write messages. The acknowledgments messages are
of several sorts: normal write or halt acknowledgments,
write ended with attention, and read reply (which includes
the data that was requested to be read from the terminal).

Successive attentions are designated in the message
formats by successive attention numbers, running cyclically
from 0,1, ... ,255,0, ... The terminal Application assigns the
sequence numbers for attention.

When an attention is presented to the Host computer, by
the Host Application, a message acknowledging the attention
is returned to the terminal application.

Two messages designate an attention, one normal (not
interrupting a read or write), and one ending a write.
Attentions ending a read are not included in the attention
mechanism described here, since by convention they are
designated by a read reply message, that lacks a "new line"
character as its last character. One message is used to
designate that an attention has been presented to the Host.
Such presentation is done by ending the current (if one) or
the next read, write or prepare with an appopriate attention
indication. No more than two attentions can be sent from the
terminal to the Host at any time which have not yet been
acknowledged. Note that attentions ending a read are not
counted in this figure.

- 136 -

APPENDIX A

Y Cable Hardware Connections

137 -

CABLE ADAPTOR: CA1A

2705 BSC TSTM.
female connection

protective ground
transmit data
receive data
request to send
clear to send
data set ready
signal ground
data carrier detect.
transmit timing
receive timing
data terminal ready

2703 BSC RCV.
fe~ale connection

protective ground
transmit data
receive data
request· to send
clear to send
data set ready
signal ground
data carrier detect.
transmit timing
receive timing
data terminal ready

1----
2---­
3----
4----
4---­
6----
7----
8----
15--­
17--­
20---

1----
2-----
3---­
4----
5----
6----
7----
8----'
15--­
17--­
20---

----1
----2
----3
----4
----5
----6
----7
----8
----15
----17
----20

protective ground
transmit data
receive data
request to send
clear to send
data set ready
signal ground
data carrier detector
transmit timing
receive timing
data terminal ready

- 138 -

APPENDIX B

An Example of the NETCHANGE Protocol

- 139 -

In this Ap~endix B we give an example of how the protocol works for
a particular network.

The network is the one described in Figure 2.

Initial configuration

A ABIA.D

A - - - -

.,] 1 3 1 B

C 2 2 2 B

n 3 1 1 0

E 3 2 2 0

B BA BC

A 1 3 1 ~

R - - - -
C 3 1 1 C

n 2 2 2 ~

E 3 2 2 ~

C CB~D roE

A 2 2 3 2 ;B

R 1 3 3 1 B

C - - - - -.

n 3 1 2 1 0

E 3 2 1 1 E

D bA DC)E

A 1 3 3 1 A

R 2 2 3 2 A

C 3 1 2 1 C

n - - - - -
E 3 2 1 1 E

E EC D

A 3 2 2 D

R 2 3 2 C

C 1 2 1 C

-n 2 1 1 D

E - - - -

The link EC goes down. Changes occur in nodes C and E.

A AB~D

A - - - -

B

C

n

E

B BA 3C

A

R - - - -
C

n

E

C CB D E

A 2 2 5 2 B

R 1 3 5 1 B

C - - - - -.

n 3 1 5 1 0

E 3 2 5 2 0

D DA DcbE

A

R

C

n - - - - -
E

E EC D

A 5 2 2 D

R 5 3 3 D

C 5 2 2 D

-n 5 1 1 D

E - - - -

After the changes, the node C sends its Routing Table (distance column)
to B and Dr the node E sends its Table to Dr the Tables are changed.

A AB I\D

A - - - -

R

C

n

E

B BA BC

A 1 3 1 A

R - - - -
C 3 1 1 C

n 2 2 2 A

E 3 3 3 A

C CB~D roE

A

R

C - - - - -.
n

E

D bA DcbE

A 1 3 3 1 A

.R 2 2 L! 2 A

C 3 1 3 1 C

n - - - - -

E 3 3 1 1 E

E EC D

A

R

C

-n

E - - - -

- 140 -

The Routing Table for the node D has not been changed, so that only
a sends its Routing Table to C and A.

A AB it\D

A - - - -
R

1 3 1 a

C 2 2 2 C

n 3 1 1 D

E 4 2 2 D

B BAac
A

R - - - -
C

n

E

C CB CD E

A 2 2 5 2 a

R
1 3 5 1 a

C - - - - ~

n 3 1 5 1 D

E 4 2 5 2 D

D DA DC bE

A

R

C

n - - - - -
E

E EC D

A

R

C

-n

E - - - -

As the Routing Tables of A anc C have not been changed, the process ends.
Now, let's see what happens if the link EC comes up again.

Changes occur in C anc E.

A AB f\D

A - - - -
B

C

n

E

B BA~C

A

R - - - -
C

n

E

C CB~D~E

A 2 2 5 2 B

R 1 3 5 1 ~

C - - - - -.
n 3 1 5 1 0

E 4 2 1 1 E

D DA DebE

A

R .
C

n - - - - -
E

E EC D

A 5 2 2 D

R 5 3 3 D

C 1 2 1 C

on 5 1 1 D

E - - - -

C sends its Routing Table to a, D and E. E sends its Routing Table to C
and D.

A AB1AD

A - - - -
R

C

n

E

B BA BC

A 1 1 1 A

R - - - -
C 3 1 1 C

n 2 2 2 A

E 3 2 2 C

C CB D E

A 2 2 3 2 a

R 1 3 4 1 a

C - - - - -.
n 3 1 2 1 D

E 4 2 1 1 E

D bA DC bE
A 1 3 3 1 A

R 2 2 4 2 A

C 3 1 2 1 C

n - - - - -

E 3 2 1 1 E

E EC D

A 3 2 2 D

R 2 3 2 C

C 1 2 1 C

-n 2 1 1 D

E - - - -

- 141 -

E, D and B modify their Routing Tables, which are sent to the neighbors.

A AB AD

A - - - -
R 1 3 1 B

C 2 2 2 B

n 3 1 1 D

E 3 2 2 D

B BA BC
A

R - - - -
C

n

E

C CB D E

A 2 2 3 2 Ie

B 1 3 3 1 IE

C - - - - -
n 3 1 2 1 10

E 3 2 1 1 IE

D bA DC JE

A 1 3 3 1 A

R 2 2 3 2 A

C 3 1 D 1 C

n - - - - -

E
3 2 1 1 E

E EC D

A 3 2 2 D

B
2 3 2 C

C 1 2 1 C

-n 2 1 1 D

E - - - -

None of the Routing Tables has been modified. The process ends, and the
configuration is the same as the beginning of our example.

- 142 -

APPENDIX C

Protocol Packets Formats

- 143 -

Protocol Packets Formats

As we saw, for every Network request, there is a packet
with a well specified packet format. Here we will describe
the formats of all the packets for all the requests.

First of all,
operations (note:
exadecimal format).

we must specify the codes describing the
from now on, all the codes are in

X 40' BIND wait

X 41 Bad Password

X'48 BIND response

X 80' INVITE general broadcast

X' 40' INVITE single broadcast

X'80' MAIL send

X'00" SEND

X'l0 RECEIVE

X' 20' BREAK

X'30' TESTLC

X'50' CANCEL

X'58' REJECT

X'70' UNBIND

X'B0' INQUIRE

X'C0' OPEN

X'F0' CLOSE

- 144 -

In the following, there are the messages exchanged by
the Interface Functions Layer components.

MAIL

+--+----+----+----------------+
!LR! RH ! LU ! ORID !
+--+----+----+----------------+
! DESTID ! BOXLAB !
+--+---------+----------------+
!TL! TEXT !
= =

+------~----------------------+

where:

LR Last packet received in sequence (1 byte)

RH Request Header (code of the request) (2 bytes)

LU LU Identificator (2 bytes)

ORID Originator identification (8 bytes)

DESTID Destination identification (8 bytes)

BOXLAB Boxlabel name (8 bytes)

TL Text length.

- 145 -

BIND RESPONSE

+--+----+----+--+------+------+
!LR! RH !MAXL!MW! OAF! OAF!
+--+----+----+--+------+------+
!TL! TEXT !
= =

+-----------------------------+, ,

where:

LR Last packet received in sequence (1 byte)

RH Request Header (operation code) (2 bytes)

MAXL Maximum BIU length (2 bytes)

MAXW Maximum window width (1 byte)

DAF Destination Address Field (3 bytes)

OAF Originator Address Field (3 bytes)

TL Text length (1 byte)

- 146 -

UNBIND

+--+----+------+--+--+
!LS! RH ! OAF !LB!LP!
+--+----+------+--+--+

where:

LS Last packet received in sequence (1 byte)

RH Request Header (operation code) (2 bytes)

OAF Originator Address Field (3 bytes)

LB Last BIU sent (1 byte)

LP Last PIU sent (1 byte)

- 147 -

BIND

+--+----+----+--+-------+
!LR! RH !MAXL!MW! LCT!
+--+----+----+--+-------+
! DESTID ! !
+-------+-------+-------+
! PASSW! ORID !
+-------+-------+-------+
!TL! TEXT !
= =

+-----------------------+
where:

LR Last packet Received in sequence (1 byte)

RH Request Header (operation code)

MAXL Maximum BID length (2 bytes)

(2 bytes)

MW Window width (1 byte)

LCT Logical Channel Termination id. (3 bytes)

DESTID Destination identification (8 bytes)

PASSW Authorization keyword (8 bytes)

aRID Originator identification (8 bytes)

,TL BIND message text length (1 byte)

- 148 -

INVITE

+--+----+----------------+
!LR! RH ! aRID !
+--+----+-------+--------+
! APPLID !
+---------------+

where:

LR Last packet received in sequence (1 byte)

RH Request Header (operation code) (2 bytes)

aRID Originator ide (8 bytes)

APPLID Application ide (8 bytes)

149 -

STATUS (NSM)

+-----+-----+
LS ! ST !

+-----+-----+

where:

LS Last packet received in sequence (1 byte)

ST NSM Restart Number (1 byte)

- 150 -

STATUS (SH)

+--------+--------+--------+--------+--------+--------+----
! SHCD ! WLF ! WW ! NER ! PER ! TER !

+--------+--------+--------+--------+--------+--------+----
where:

SHCD Session
X' 80'
X'40'
X'20'
X' 01'

Handler Status Message
Status message
Request For status
Information Message
Reconfiguration Flag

Code:

If the message is not a status message (X'80'), only
three fields are used:

SHCD with the meaning described above

WLF Last PIU sent

WW Last PIU sent before a reconfiguration.

If the message is a status message (X'80'):

SHCD Status Message (X'S0 ')

WLF Dinamic window left edge (1 byte)

WW Dinarnic window width (1 byte)

NER Number of error

PER PIU in error

TER Type of error

- 151 -

REFERENCES--------- ._--

(1) Caneschi F., Ferro E., Lenzini L., Martelli M.,
Menchi C., Sommani M., Tarini F. "The
Architecture and the Service Facilities provided
by RPCNET An Italian Computer Network for
Educational and Research Institutions", ICCC
Conference Kyoto 1978.

(2) Fusi A. Editor: "CNS/VM Computer Network
Subsystem for VM/370. General Information",
RPCNET internal document No. UG019-00 Pisa, May
1976.

(3) Gori G. A., Maier M.: "The OS/VS Network Station
(CNS-VS) in a RPCNET node ll

, RPCNET internal
document No. UG010-01 pisa, Jan. 1976.

(4) Guidotti P., Lazzeri L., Lenzini L., Martelli
M. : "Network Manager implementation on
System/7", RPCNET internal dicument No. U1023
Pisa Oct. 1975.

(5) La z ze r i L. , Le n z in i L . , Ma r tell i M.: "A
proposal for the introduction of traffic load in
NETCHANGE protocol", RPCNET internal document
No. IG015-00 Pisa Jan 1975.

(6) Springer A., Lazzeri L., Lenzini L.: "The
implementation of RPCNET on a minicomputer",
Computer Communication Review, Cambridge Ma.,
Jan 1978.

(7) Tajibnapis W. D.: " The design of a Topology
Information Maintenance Scheme for a Distributed
Computer Network, ACM Conference, S. Diego Ca.,
Nov. 1974.

