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Foreword

In this paper, we focus on multiobjective nonlinear integer programming problems with
block-angular structures which are often seen as a mathematical model of large-scale
discrete systems optimization. By considering the vague nature of the decision maker’s
judgments, fuzzy goals of the decision maker are introduced, and the problem is inter-
preted as maximizing an overall degree of satisfaction with the multiple fuzzy goals. For
deriving a satisficing solution for the decision maker, we develop an interactive fuzzy sat-
isficing method. Realizing the block-angular structures that can be exploited in solving
problems, we also propose genetic algorithms with decomposition procedures. Illustra-
tive numerical examples are provided to demonstrate the feasibility and efficiency of the
proposed method.
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Abstract

This paper considers multiobjective nonlinear integer programming problems with block-
angular structures. Considering the vague nature of the decision maker’s judgments, an
interactive fuzzy satisficing method is presented. Realizing the special structures that can
be exploited in solving problems, genetic algorithms with decomposition procedures are
also proposed.

Keywords: Multiobjective programming, fuzzy programming, nonlinear integer pro-
gramming, block-angular structures, genetic algorithms, decomposition
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An Interactive Fuzzy Satisficing Method for
Multiobjective Nonlinear Integer Programming Problems

with Block-angular Structures through Genetic
Algorithms with Decomposition Procedures

Masatoshi Sakawa (sakawa@hiroshima-u.ac.jp)* **

Kosuke Kato(kosuke-kato@hiroshima-u.ac.jp)*

1 Introduction

Genetic algorithms (GA) [13], initiated by Holland, his colleagues and his students at the
University of Michigan in the 1970s, as stochastic search techniques based on the mech-
anism of natural selection and natural genetics, have received a great deal of attention re-
garding their potential as optimization techniques for solving discrete optimization prob-
lems or other hard optimization problems. Although genetic algorithms were not much
known at the beginning, after the publication of Goldberg’s book [11], genetic algorithms
have recently attracted considerable attention in a number of fields as a methodology for
optimization, adaptation and learning. As we look at recent applications of genetic algo-
rithms to optimization problems, especially to various kinds of single-objective discrete
optimization problems and/or to other hard optimization problems, we can see continuing
advances [18, 1, 2, 7, 21, 22, 4, 8].

Sakawa and his colleagues proposed genetic algorithms with double strings (GADS)
[26] for obtaining an approximate optimal solution to multiobjective multidimensional
0-1 knapsack problems. They also proposed genetic algorithms with double strings based
on reference solution updating (GADSRSU) [27] for multiobjective general 0-1 program-
ming problems involving both positive coefficients and negative ones. Furthermore, they
proposed genetic algorithms with double strings using linear programming relaxation
(GADSLPR) [25] for multiobjective multidimensional integer knapsack problems and
genetic algorithms with double strings using linear programming relaxation based on ref-
erence solution updating (GADSLPRRSU) for linear integer programming problems [23].
Observing that some solution methods for specialized types of nonlinear integer program-
ming problems have been proposed [12, 16, 17], as an approximate solution method for
general nonlinear integer programming problems, Sakawa and his colleagues [24] pro-
posed genetic algorithms with double strings using continuous relaxation based on refer-
ence solution updating (GADSCRRSU).

* Graduate School of Engineering, Hiroshima University.
** Corresponding author.
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In general, however, actual decision making problems formulated as mathematical
programming problems involve very large numbers of variables and constraints. Most of
such large-scale problems in the real world often have special structures that can be ex-
ploited in solving problems. One familiar special structure is the block-angular structure
to the constraints and several kinds of decomposition methods for linear and nonlinear
programming problems with block-angular structure have been proposed [15]. Unfortu-
nately, however, for large-scale problems with discrete variables, it seems quite difficult
to develop an efficient solution method for obtaining an exact optimal solution. For multi-
dimensional 0-1 knapsack problems with block-angular structures, by utilizing the block-
angular structures that can be exploited in solving problems, Sakawa and his colleagues
[21, 14] proposed genetic algorithms with decomposition procedures (GADP). For deal-
ing with multidimensional 0-1 knapsack problems with block angular structures, using
triple string representation, Sakawa and his colleagues [21, 14] presented genetic algo-
rithms with decomposition procedures. Furthermore, by incorporating the fuzzy goals of
the decision maker, they [21] also proposed an interactive fuzzy satisficing method for
multiobjective multidimensional 0-1 knapsack problems with block angular structures.

Under these circumstances, in this paper, as a typical mathematical model of large-
scale multiobjective discrete systems optimization, we consider multiobjective nonlinear
integer programming problems with block-angular structures. By considering the vague
nature of the decision maker’s judgments, fuzzy goals of the decision maker are intro-
duced, and the problem is interpreted as maximizing an overall degree of satisfaction
with the multiple fuzzy goals. For deriving a satisficing solution for the decision maker,
we develop an interactive fuzzy satisficing method. Realizing the block-angular structures
that can be exploited in solving problems, we also propose genetic algorithms with de-
composition procedures for nonlinear integer programming problems with block-angular
structures.

2 Problem formulation

Consider multiobjective nonlinear integer programming problems with block-angular struc-
tures formulated as:

minimize fl(x) = fl(x1, . . . ,xP ) , l = 1, 2, . . . , k
subject to g(x) = g(x1, . . . ,xP ) ≤ 0

h1(x1) ≤ 0
...

...
hP (xP ) ≤ 0

xJj ∈ {0, 1, . . . , V J
j }, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ


(1)

wherexJ , J = 1, 2, . . . , P arenJ dimensional integer decision variable column vectors
andx = ((x1)T , . . . , (xP )T )T . The constraintsg(x) = (g1(x), . . . , gm0(x))T ≤ 0 are
called as coupling constraints withm0 dimension, while each of constraintshJ(xJ) =
(hJ1 (x1), . . . , hJmJ (xJ))T ≤ 0, J = 1, 2, . . . , P is called as block constraints withmJ

dimension. In (1), it is assumed thatfl(·), gi(·), hJi (·) are general nonlinear functions.
The positive integersV J

j , J = 1, 2, . . . , P , j = 1, 2, . . . , nJ represent upper bounds for
xJj . In the following, for notational convenience, the feasible region of (1) is denoted by
X.
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As an example of nonlinear integer programming problems with block-angular struc-
tures in practical applications, Bretthauer et al. [3] formulated health care capacity plan-
ning, resource constrained production planning and portfolio optimization with industry
constraints.

3 An interactive fuzzy satisficing method

In order to consider the vague nature of the decision maker’s judgments for each objective
function in (1), if we introduce the fuzzy goals such as “fl(x) should be substantially less
than or equal to a certain value”, (1) can be rewritten as:

maximize
x∈X

(µ1(f1(x)), . . . , µk(fk(x))) (2)

whereµl(·) is the membership function to quantify the fuzzy goal for thel th objective
function in (1). To be more specific, if the decision maker feels thatfl(x) should be less
than or equal to at leastf0

l andfl(x)) ≤ f1
l (≤ f0

l ) is satisfactory, the shape of a typical
membership function is shown in Figure 1.

0

1

f l
0f l

1

xf l( ( )

xf l ( )

)l

Figure 1: An example of membership functions.

Since (2) is regarded as a fuzzy multiobjective optimization problem, a complete op-
timal solution that simultaneously minimizes all of the multiple objective functions does
not always exist when the objective functions conflict with each other. Thus, instead of
a complete optimal solution, as a natural extension of the Pareto optimality concept for
ordinary multiobjective programming problems, Sakawa and his colleagues [28, 20] intro-
duced the concept of M-Pareto optimal solutions which is defined in terms of membership
functions instead of objective functions, where M refers to membership.

Definition 1 (M-Pareto optimality) A feasible solutionx∗ ∈ X is said to be M-Pareto
optimal to a fuzzy multiobjective optimization problem if and only if there does not exist
another feasible solutionx ∈ X such asµl(fl(x)) ≥ µl(fl(x∗)), l = 1, 2, . . . , k and
µj(fj(x)) > µj(fj(x∗)) for at least onej ∈ {1, 2, . . . , k}.

Introducing an aggregation functionµD(x) for k membership functions in (2), the
problem can be rewritten as:

maximize
x∈X

µD(x) (3)
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where the aggregation functionµD(·) represents the degree of satisfaction or preference of
the decision maker for the whole ofk fuzzy goals. In the conventional fuzzy approaches,
it has been implicitly assumed that the minimum operator is the proper representation of
the decision maker’s fuzzy preferences. However, it should be emphasized here that this
approach is preferable only when the decision maker feels that the minimum operator is
appropriate. In other words, in general decision situations, the decision maker does not
always use the minimum operator when combining the fuzzy goals and/or constraints.
Probably the most crucial problem in (3) is the identification of an appropriate aggregation
function which well represents the decision maker’s fuzzy preferences. IfµD(·) can be
explicitly identified, then (3) reduces to a standard mathematical programming problem.
However, this rarely happens, and as an alternative, an interaction with the decision maker
is necessary to find a satisficing solution for (2).

In order to generate candidates of a satisficing solution which are M-Pareto optimal,
the decision maker is asked to specify the aspiration levels of achievement for all mem-
bership functions, called reference membership levels. For reference membership levels
given by the decision maker̄µl, l = 1, 2, . . . , k, the corresponding M-Pareto optimal so-
lution to µ̄, which is nearest to the requirements in the minimax sense or better than that
if the reference membership levels are attainable, is obtained by solving the following
augmented minimax problem (4).

minimize
x∈X

max
l=1,2,...,k

{(µ̄l − µl(fl(x))) + ρ
k∑
j=1

(µ̄j − µj(fj(x))) (4)

whereρ is a sufficiently small positive real number.
We can now construct an interactive algorithm in order to derive a satisficing solution

for the decision maker from among the M-Pareto optimal solution set. The procedure of
the interactive fuzzy satisficing method is summarized as follows.

An Interactive Fuzzy Satisficing Method

Step 1: Calculate the individual minimum and maximum of each objective function un-
der the given constraints by solving the following problems.

minimize
x∈X

fl(x), l = 1, 2, . . . , k (5)

maximize
x∈X

fl(x), l = 1, 2, . . . , k (6)

Step 2: By considering the individual minimum and maximum of each objective func-
tion, the decision maker subjectively specifies membership functionsµl(fl(x)),
l = 1, 2, . . . , k to quantify fuzzy goals for objective functions.

Step 3: The decision maker sets initial reference membership levelsµ̄l, l = 1, 2, . . . , k.

Step 4: For the current reference membership levels, solve the augmented minimax prob-
lem (4) to obtain the M-Pareto optimal solution and the membership function value.

Step 5: If the decision maker is satisfied with the current levels of the M-Pareto optimal
solution, stop. Then the current M-Pareto optimal solution is the satisficing solution
of the decision maker. Otherwise, ask the decision maker to update the current
reference membership levelsµ̄l, l = 1, 2, . . . , k by considering the current values
of the membership functions and return to Step 4.
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In the interactive fuzzy satisficing method, it is required to solve nonlinear integer
programming problems with block-angular structures (4) together with (5) and (6). It is
significant to note that these problems are single objective integer programming problems
with block-angular structures. Realizing this difficulty, in the next section, we propose
genetic algorithms with decomposition procedures using continuous relaxation based on
reference solution updating (GADPCRRSU).

4 Genetic algorithms with decomposition procedures

As discussed above, in this section, we propose genetic algorithms with decomposi-
tion procedures using continuous relaxation based on reference solution updating (GAD-
PCRRSU) as an approximate solution method for nonlinear integer programming prob-
lems with block-angular structures.

Consider single-objective nonlinear integer programming problems with block-angular
structures formulated as:

minimize f(x) = f(x1, . . . ,xP )
subject to g(x) = g(x1, . . . ,xP ) ≤ 0

h1(x1) ≤ 0
...

...
hP (xP ) ≤ 0

xJj ∈ {0, 1, . . . , V J
j }, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ


(7)

Observe that this problem can be viewed as a single-objective version of the original
problem (1).

Sakawa and his colleagues [24] have already studied genetic algorithms with double
strings using continuous relaxation based on reference solution updating (GADSCRRSU)
for ordinary nonlinear integer programming problems formulated as:

minimize f(x)
subject to gi(x) ≤ bi, i = 1, 2, . . . ,m

xj ∈ {0, 1, . . . , Vj}, j = 1, 2, . . . , n

 (8)

where an individual is represented by a double string. In a double string as is shown in
Figure 2, for a certainj, ν(j) ∈ {1, 2, . . . , n} represents an index of a variable in the
solution space, whileyν(j), j = 1, 2, . . . , n does the value among{0, 1, . . . , VJ}) of the
ν(j)th variablexν(j).

ν(1) ν(2) · · · ν(n)
yν(1) yν(2) · · · yν(n)

Figure 2: Double string.

In view of the block-angular structure of (7), it seems to be quite reasonable to define
an individualS as an aggregation ofp subindividualssJ , J = 1, 2, . . . , P , corresponding
to the block constrainthJ(xJ) ≤ bJ as shown in Figure 3.
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Figure 3: Division of an individual intoP subindividuals.

If these subindividuals are represented by double strings, for each of subindividuals
sJ , J = 1, 2, . . . , P , a phenotype (subsolution) satisfying each of the block constraints
can be obtained by the decoding algorithm in GADSCRRSU.

Unfortunately, however, the simple combination of these subsolutions does not always
satisfy the coupling constraints. To cope with this problem, a triple string representation as
shown in Figure 4 and the corresponding decoding algorithm are presented as an extension
of the double string representation and the corresponding decoding algorithm. By using
the proposed representation and decoding algorithm, a phenotype (solution) satisfying
both the block constraints and coupling constraints can be obtained for each individual
S = (s1, s2, . . . , sP ).

sJ =

rJ

νJ(1) νJ(2) · · · νJ(nJ)
yJνJ (1) yJνJ (2) · · · yJνJ (nJ )

Figure 4: Triple string.

To be more specific, in a triple string which represents a subindividual corresponding
to theJ th block,rJ ∈ {1, 2, . . . , P} represents the priority of theJ th block, eachνJ(j) ∈
{1, 2, . . . , nJ} is an index of a variable in phenotype and eachyJνJ (j) takes an integer value
among{0, 1, . . . , V J

νJ (j)}. As in GADSCRRSU, a feasible solution, called a reference
solution, is necessary for decoding of triple strings. In our proposed GADPCRRSU, the
reference solution is obtained as a solutionx∗ to a minimization problem of constraint
violation. In the following, we summarize the decoding algorithm for triple strings using
a reference solutionx∗, whereN is the number of individuals andI is a counter for the
individual number.

Decoding algorithm for triple string

Step 0: Let I := 1.

Step 1: If 1 ≤ I ≤ bN/2c, go to step 2. Otherwise, go to step 10.

Step 2: Let x := 0, r := 1, L := 0.

Step 3: FindJ ∈ {1, 2, . . . , P} such thatrJ = r. Let j := 1, l := 0.

Step 4: Let xνJ(j)J := yJνJ(j).

Step 5: If g(x) ≤ 0 andhJ(xJ) ≤ 0, let L := r, l := j, j := j + 1 and go to step 6.
Otherwise, letj := j + 1 and go to step 6.
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Step 6: If j > nJ , let r := r + 1 and go to step 7. Otherwise, go to step 4.

Step 7: If r > P , go to step 8. Otherwise, go to step 3.

Step 8: If L = 0 andl = 0, go to step 10. Otherwise, go to step 9.

Step 9: FindJ(r) such thatrJ(r) = r for r = 1, . . . , L−1. Then, letxJ(r)

νJ(r)(j)
:= y

J(r)

νJ(r)(j)
,

j = 1, 2, . . . , nJ(r). Furthermore, findJ(L) such thatrJ(L) = L and letxJ(L)

νJ(L)(j)
:=

y
J(L)

νJ(L)(j)
, j = 1, 2, . . . , l. The remainder elements ofx are set to0. Terminate the

decoding process.

Step 10: Let x := x∗, r := 1 and go to step 11.

Step 11: FindJ ∈ {1, 2, . . . , P} such thatrJ = r and letj := 1.

Step 12: Let xJνJ(j) := yJνJ(j). If yJνJ(j) = x∗JνJ (j), let j := j + 1 and go to step 14. If
yJνJ (j) 6= x∗JνJ (j), go to step 13.

Step 13: If g(x) ≤ 0 andhJ(xJ) ≤ 0, let j := j + 1 and go to step 14. Otherwise, let
xJνJ (j) := x∗JνJ(j), j := j + 1 and go to step 14.

Step 14: If j ≤ nJ , go to step 12. Otherwise, letr := r + 1 and go to step 15.

Step 15: If r ≤ P , go to step 11. Otherwise,I := I + 1 and go to step 16.

Step 16: If I ≤ N , go to step 1. Otherwise, terminate the decoding process.

It is expected that an optimal solution to the continuous relaxation problem becomes a
good approximate optimal solution of the original nonlinear integer programming prob-
lem. In the proposed method, after obtaining an (approximate) optimal solutionx̂Jj ,
J = 1, 2, . . . , P , j = 1, 2, . . . , nJ to the continuous relaxation problem, we suppose
that each decision variablexJj takes exactly or approximately the same value thatx̂Jj does.
In particular, decision variablesxJj such aŝxJj = 0 are very likely to be equal to0.

To be more specific, the information of the (approximate) optimal solutionx̂ to the
continuous relaxation problem of (7) is used when generating the initial population and
performing mutation. In order to generate the initial population, when we determine
the value of eachyJνJ (j) in the lowest row of a triple string, we use a Gaussian random
variable with mean̂xJνJ (j) and varianceσ. In mutation, when we change the value of
yJνJ (j) for some(J, j), we also use a Gaussian random variable with meanx̂JνJ (j) and
varianceτ . Various kinds of reproduction methods have been proposed. Among them,
Sakawa et al. [26] investigated the performance of each of six reproduction operators,
i.e., ranking selection, elitist ranking selection, expected value selection, elitist expected
value selection, roulette wheel selection and elitist roulette wheel selection, and as a result
confirmed that elitist expected value selection is relatively efficient for multiobjective 0-1
programming problems incorporating the fuzzy goals of the decision maker. Thereby, the
elitist expected value selection – elitism and expected value selection combined together
– is adopted. Here, elitism and expected value selection are summarized as follows.

Elitism: If the fitness of an individual in the past populations is larger than that of every
individual in the current population, preserve this string into the current generation.
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Expected value selection: For a population consisting ofN individuals, the expected
number of eachsJn, J = 1, 2, . . . , P , each subindividual of thenth individualSn, in
the next population is given by

Nn =
f(Sn)
N∑
n=1

f(Sn)

×N.

Then, the integral part ofNn (= [Nn]) denotes the definite number ofsJn preserved
in the next population. While, using the decimal part ofNn (= Nn − [Nn]), the
probability to preservesJn, J = 1, 2, . . . , P , in the next population is determined by

Nn − [Nn]
N∑
n=1

(Nn − [Nn])

.

If a single-point crossover or multi-point crossover is directly applied to upper or middle
string of individuals of triple string type, thekth element of the string of an offspring may
take the same number that thek′th element takes. The same violation occurs in solving the
traveling salesman problems or scheduling problems through genetic algorithms. In order
to avoid this violation, a crossover method called partially matched crossover (PMX)
is modified to be suitable for triple strings. PMX is applied as usual for upper strings,
whereas, for a couple of middle string and lower string, PMX for double strings [26] is
applied to every subindividual.

It is now appropriate to present the detailed procedures of the crossover method for
triple strings.

Partially Matched Crossover (PMX) for upper string
Let

X = r1
X r2

X . . . rPX

be the upper string of an individual and

Y = r1
Y r2

Y . . . rPY

be the upper string of another individual. Prepare copiesX ′ andY ′ of X andY , respec-
tively.

Step 1: Choose two crossover points at random on these strings, say,h andk (h < k).

Step 2: Seti := h and repeat the following procedures.

(a) FindJ such thatrJX ′ = riY . Then, interchangeriX ′ with rJX ′ and seti := i+ 1.

(b) If i > k, stop and letX ′ be the offspring ofX. Otherwise, return to (a).

Step 2 is carried out forY ′ in the same manner, as shown in Figure 5.
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Figure 5: An example of PMX for upper string.

Partially Matched Crossover (PMX) for double string
Let

X =
νJX(1) νJX(2) · · · νJX(nJ)
yJ
νJ
X

(1)
yJ
νJ
X

(2)
· · · yJ

νJ
X

(nJ)

be the middle and lower part of a subindividual in theJ th subpopulation, and

Y =
νJY (1) νJY (2) · · · νJY (nJ)
yJ
νJY (1)

yJ
νJY (2)

· · · yJ
νJY (nJ )

be the middle and lower part of another subindividual in theJ th subpopulation. First,
prepare copiesX ′ andY ′ of X andY , respectively.

Step 1: Choose two crossover points at random on these strings, say,h andk (h < k).

Step 2: Seti := h and repeat the following procedures.

(a) Find i′ such thatνJX ′(i
′) = νJY (i). Then, interchange(νJX ′(i), y

J
νJ
X′(i)

)T with

(νJX ′(i
′), yJ

νJ
X′ (i

′))
T and seti := i+ 1.

(b) If i > k, stop. Otherwise, return to (a).

Step 3: Replace the part fromh to k of X ′ with that ofY and letX ′ be the offspring of
X.

This procedure is carried out forY ′ andX in the same manner, as shown in Figure 6.
It is considered that mutation plays the role of local random search in genetic algo-

rithms. Only for the lower string of a triple string, mutation of bit-reverse type is adopted
and applied to every subindividual.

For the upper string and for the middle and lower string of the triple string, inversion
defined by the following algorithm is adopted:



– 10 –

Figure 6: An example of PMX for double string.

Step 1: After determining two inversion pointsh andk (h < k), pick out the part of the
string fromh to k.

Step 2: Arrange the substring in reverse order.

Step 3: Put the arranged substring back in the string.

Figure 7 illustrates examples of mutation. Now we are ready to introduce the ge-

Figure 7: Examples of mutation.

netic algorithm with decomposition procedures as an approximate solution method for
nonlinear integer programming problems with block angular structures. The outline of
procedures is shown in Figure 8.
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Figure 8: The outline of procedures.

Computational procedures

Step 1: Set an iteration index (generation)t = 0 and determine the parameter values for
the population sizeN , the probability of crossoverpc, the probability of mutation
pm, the probability of inversionpi, variancesσ, τ , the minimal search generation
Imin and the maximal search generationImax.

Step 2: GenerateN individuals whose subindividuals are of triple string type at random.

Step 3: Evaluate each individual (subindividual) on the basis of phenotype obtained by
the decoding algorithm and calculate the mean fitnessfmeanand the maximal fitness
fmax of the population. Ift > Imin and(fmax − fmean)/fmax < ε, or, if t > Imax,
regard an individual with the maximal fitness as an optimal individual and terminate
this program. Otherwise, sett = t+ 1 and proceed to Step 4.
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Step 4†: Apply the reproduction operator to all subpopulations{sJn | n = 1, 2, . . . , N},
J = 1, 2, . . . , P .

Step 5†: Apply the PMX for double strings to the middle and lower part of every subindi-
vidual according to the probability of crossoverpc.

Step 6†: Apply the mutation operator of the bit-reverse type to the lower part of every
subindividual according to the probability of mutationpm, and apply the inversion
operator for the middle and lower part of every subindividual according to the prob-
ability of inversionpi.

Step 7: Apply the PMX for upper strings according topc.

Step 8: Apply the inversion operator for upper strings according topi and return to Step
3.

It should be noted here that, in the algorithm, the operations in the steps marked with
† can be applied to every subindividual of all individuals independently. As a result, it
is theoretically possible to reduce the amount of working memory needed to solve the
problem and carry out parallel processing.

5 Numerical Examples

In order to demonstrate the feasibility and efficiency of the proposed method, consider
the following multiobjective quadratic integer programming problem with block-angular
structures.

minimize fl(x) =
P∑
J=1

(
cJl x

J + (1/2)(xJ)TCJ
l x

J
)
, l = 1, 2, . . . , k

subject to gi(x) = −
P∑
J=1

(
aJxJ + (1/2)(xJ)TAJxJ

)
+ bJi ≤ 0,

i = 1, 2, . . . ,m0

hJi (xJ) = −
(
bJxJ + (1/2)(xJ)TBJxJ

)
+ bJi ≤ 0,

J = 1, 2, . . . , P, i = 1, 2, . . . ,mJ

xJj ∈ {0, 1, . . . , V J
j }, J = 1, 2, . . . , P, j = 1, 2, . . . , nJ



(9)

For comparison, genetic algorithms with double strings using continuous relaxation based
on reference solution updating (GADSCRRSU) [24] are also adopted. It is significant to
note here that decomposition procedures are not involved in GADSCRRSU.

For this problem, we setk = 3, P = 5, n1 = n2 = · · · = n5 = 10, m0 = 2 and
m1 = m2 = · · · = m5 = 5, V J

j = 30, J = 1, 2, . . . , 5, j = 1, 2, . . . , 10. Elements of
c andA in objectives and constraints of the above problem are determined by uniform
random number on[−100, 100] and those ofb in constraints are determined so that the
feasible region is not empty.

Numerical experiments are performed on a personal computer (CPU: Intel Celeron
Processor, 900MHz, Memory: 256MB, CCompiler: Microsoft Visual C++ 6.0).

Parameter values of GADPCRRSU are set as: population sizeN = 100, crossover
ratepc = 0.9, mutation ratepm = 0.05, inversion ratepi = 0.05, variancesσ = 2.0,
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τ = 3.0, minimal search generation numberImin = 500 and maximal search generation
numberImax = 1000.

In this numerical example, for the sake of simplicity, the linear membership function

µl(fl(x)) =


1 , fl(x) < fl,1

fl(x)− fl,0
fl,1 − fl,0

, fl,1 ≤ fl(x) ≤ fl,0
0 , fl(x) > fl,0

(10)

is adopted and the parameter values are determined as [29]:

fl,1 = fl,min = fl(x
l
min) = min

x∈X
fl(x), l = 1, 2, . . . , k

fl,0 = max{fl(x1
min), . . . , fl(x

l−1
min), fl(x

l+1
min), . . . , fl(x

k
min)}, l = 1, 2, . . . , k.

For the initial reference levels(1.000, 1.000, 1.000), the augmented minimax problem
(4) is solved. The obtained solutions are shown at the second column in Table 1. Assume
that the hypothetical decision maker is not satisfied with the current solution and he feels
thatµ1(f1(x)) andµ3(f3(x)) should be improved at the expense ofµ2(f2(x)). Then, the
decision maker update the reference membership levels to(1.000, 0.9000, 1.000). The
result for the updated reference membership levels is shown at the third column in Table 1.
Since the decision maker is not satisfied with the current solution, he updates the reference
membership levels to(1.000, 0.900, 0.900) for obtaining better value ofµ1(f1(x)). A
similar procedure continues in this way and, in this example, a satisficing solution for the
decision maker is derived at the third interaction.

Table 1: The whole process of interaction.

Interaction 1st 2nd 3rd
µ̄1 1.000 1.000 1.000
µ̄2 1.000 0.900 0.900
µ̄3 1.000 1.000 0.900

µ1(f1(x)) 0.496 0.552 0.554
µ2(f2(x)) 0.497 0.450 0.474
µ3(f3(x)) 0.491 0.558 0.524
f1(x) 1500050 1335423 1326906
f2(x) −1629427 −1475077 −1553513
f3(x) 158226 86012 123127

Computation time (sec)
GADPCRRSU (Proposed method) 26.7 32.8 24.2
GADSCRRSU (No decomposition) 539.6 584.7 503.3

Table 1 shows that the proposed interactive method using GADPCRRSU with de-
composition procedures can find an (approximate) optimal solution at each interaction in
shorter time than that using GADSCRRSU without decomposition procedures.

Furthermore, in order to see how the computation time changes with the increased size
of block-angular nonlinear integer programming problems, typical problems with 10, 20,
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30, 40 and 50 variables are solved by GADPCRRSU and GADSCRRSU. As depicted
in Figure 9, it can be seen that the computation time of the proposed GADPCRRSU in-
creases almost linearly with the size of the problem while that of GADSCRRSU increases
rapidly and nonlinearly.

0

100

200

300

400

500

600
GADSCRRSU

GADPCRRSU

10 20 30

Number of decision variables

Computation time (sec)

40 50

Figure 9: The comparison of computation time.

6 Conclusions

In this paper, as a typical mathematical model of large-scale discrete systems optimiza-
tion, we considered multiobjective nonlinear integer programming with block-angular
structures. Taking into account vagueness of judgments of the decision makers, fuzzy
goals of the decision maker were introduced, and the problem was interpreted as max-
imizing an overall degree of satisfaction with the multiple fuzzy goals. An interactive
fuzzy satisficing method was developed for deriving a satisficing solution for the deci-
sion maker. Realizing the block-angular structures that can be exploited, we also propose
genetic algorithms with decomposition procedures for solving nonlinear integer program-
ming problems with block-angular structures. Illustrative numerical examples were pro-
vided to demonstrate the feasibility and efficiency of the proposed method. Extensions
to multiobjective two-level integer programming problems with block-angular structures
will be considered elsewhere. Also extensions to stochastic multiobjective two-level in-
teger programming problems with block-angular structures will be required in the near
future.
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