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In this paper, the problem of material accountability
in industrial plants is analyzed. For this purpose a
reference time is considered which contains a sequence of
n inventory periods, i.e. during this reference time a .
physical inventory is performed n times and compared
with the book inventory at that time. A decision
problem arises if all necessary measurements can only
be performed with limited accuracy as in this case one
has to decide if a book-physical inventory difference
is caused by missing material or simply by measurement
errors.

In case it has to be assumed that there exists one
party which may intend to divert material, the problem
can be formulated as a two-person zero-sum inspection
game, the payoff of which is the probability of detection.

In the first part of this paper the game theoretical
model is established and the sets of strategies of both
parties are given. In the second part the solutions of
the game, i.e. saddlepoints, are analyzed: sufficient
conditions in the form of systems of equations are given
which also can be used for numerical calculations.
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1. Introduction

There are cases where the material to be processed by
an industrial plant is so expensive that it is necessary to
perform an accurate accountability in order to know whether
in a given period of time material has disappeared or not.
Here, accountability means the establishment of the so-called
book inventory (i.e. starting inventory plus receipts minus
shipments) over a certain period of time, and the comparison
of the book inventory with the physical inventory (i.e. the
material physically found in the plant) at the end of that
period of time.

The problem of accountability becomes difficult in case
the measurement of the material to be accounted for cannot be
carried through without committing measurement errors. In
this case, when some material seems to have disappeared, the
problem arises of deciding if in fact some material has
disappeared or if the material unaccounted for simply can be
interpreted as being caused by measurement errors.

In addition, there arises the problem of the appropriate
choice of the starting inventory for each inventory period:
if it has been decided at the end of the foregoing inventory
period that no material has disappeared, one could choose
either the book or the physical inventory, or a combination
of both as the starting inventory period for the next

inventory period. In any case however, because of the



starting inventory one gets stochastic dependencies between
different inventory periods.

In some situations, it has to he assumed that there
exists one party which intends to divert material. Furthermore,
in case different modes of diversion exist, it has to
be assumed that this party will select the optimal diversion
"strategy"--whatever "optimal" means.

The problem as it has been sketched plays a very
important role in the nuclear material safeguards developed
in fulfillment of the Non-Proliferation Treaty for nuclear
weapons [I]. In fact, the analysis presented in this paper
has been performed on the basis of this specific problem.
However, it is‘obvious that it can be applied to quite
different problems.

In the first part of this paper, the principle of
material accountability is sketched and the decision problem
is treated for the case of a single inventory period. The
problem of a sequence of inventory periods is formulated,
the sets of strategies of the inspection authority as well
as of the plant operator as a "would-be diverter" are
described, and the game theoretical problem is formulated.

In the second part, the question of the existence of
saddlepoints of the probability of detection--which plays
the role of the payoff of a two-person zero-sum game for
specific reasons--is analyzed. It is shown that sufficient

conditions for the existence can be formulated and that these



conditions are fulfilled by elements of specific sets of
strategies. In addition, these conditions can be used
for the numerical calculation of the saddlepoints.

The paper concludes with general remarks on the
optimality criteria being used, and possible extensions of

the considerations.



2. The Model: Sequence of Inventory Periods

2.1 One Inventory Period

Let IO be the starting inventory in a plant (or more
generally, in a material balance area) at time to and let Dy
be the sum of all material inpufs and outputs in the interval
of time (tg,ty). Then By: = Iy + D; is called the book in-

ventory at time t Let Il be the physical inventory at time

1°
t1. It is assumed that all material measurements have normally
distributed measurement errors and that the variances of

these errors are known.

If no material disappears in (to’tl)’ the expectation

value of the difference!

MUFl:= Bl - Il (2-1)
is zero (Null hypothesis H,). If the amount Ml misses, the
expectation value of MUF is Ml (Alternative hypothesis H;).
In the formulae

E(MUF1|H0) =0 , E(MUF1|H1) =M. (2-2)

In order to check at the end of one inventory period whether
or not material has disappeared, a significance test is per-
formed. Let a and B be the probabilities of the errors first

and second kind,

!The term "Material Unaccounted For" is not very precise,
as a non-zero difference between B, and Il may also or mainly
be caused by measurement errors, not only by missing material.
However, it seems to be impossible to change this.



aj: = prob {MUF; > xy[Hq} , By: = prob {MUF, < x [H},

(2-3)

where x is the significance threshold. One obtains

M
By = 8(U(L - o) - =) . (2-la)
1 5
1
Here, ¢ is the Gaussian distribution function, U its inverse

and

1

2, .
g;: = var IO + var Dl

+ var Il (2-U4p)

the sum of all measurement varliances. In the following, 1-8
is called probability of detection, and a is called false

alarm probability.

2.2 Starting Inventory for the i-th Inventory Period

At the beginning of the inventory period for the

time interval (ti_l,

starting inventory S, ; for this period. In order to make

ti) the problem arises how to choose the

the best use of the information obtained so far Stewart [2]
has proposed to use an unbiased minimum variance estimate
formed from the book and ending physical inventories of the

foregoing inventory period:

Theorem 2.1. The unbiased minimum variance estimate Si—l

for the starting inventory of the i-th inventory period is

given by



S. = a. + B. + (1 - ai—l) « I. s (2-5a)

where

var Ii-l
a._, = . (2-5b)
i-1 var Bi-l + var Ii_l

The variance of this estimate is given by

1 1 1
= + . (2-6)
var S, _; var By 4 var 1. _

Proof. An unbiased estimate for the starting inventory is

given by

o4

¥, = 3. « B. + (1 - Xi_

1-1 1-1 1-1 i-1 =

The variance of this estimate is

- % 2
var B. ; + (1 - d._,)* var I, -

LY
var gi_ = as 1 i-1

2
1 1-1
The value of gi-l which minimizes var gi-l is determined by
the equation

aj_, = var B;_; - (1 - ai_l)-var I, =0 . (2-7)

As can be seen easily the variance of this estimate is smaller



than both the variances of the ending book and physical in-
ventories of the foregoing inventory period.

It should be noted that this estimate is not necessarily
the best estimate from the point of view of detecting missing
material, see e.g. Ref. [3].

The estimate as given above however, has a further prop-

erty which is important for the following:

Theorem 2.2. If for every inventory period the starting
inventory is chosen as described in Theorem 2.1, then the
book-nphysical inventory differences of different inventory

periods are uncorrelated.

Proof. The book-physical inventory difference for the j-th

inventory period is given by

« I + B, - I.

+ (1 - a, ; .
( a j-1 j j

J=1 J-l)

Let be j > i. Then Sj—l can be written as

where the 5.1 term involves I's and B's with subscripts

larger than i, and b,_ involves only constants. Then

1



cov (MUF;,MUF;) = cov (S;_; + Dy = I;,8; 5 + D; - I)

= bj—l cov (Si,S +D; - I)

i-1 i

= bj—l cov (aiIi + (1 - ai)(si_1 + Di—l)’
Si-1 * 0 - Iy

LT (a; var I; - (1 - ay)

© var (8;_; + Di_l)] .

Use of eq. (2-7) completes the proof. [ ]

As it has been assumed in the beginning that all measure-
ment errors are normally distributed, it follows from Theorem
2.2 that the book-physical inventory differences of different
inventory periods are independent.

According to the choice of the starting inventory, the
expectation value of the book-physical inventory difference
at the end of an inventory period is not simply given by the

amounts of material disappearing in these inventory periods:

Theorem 2.3. Under the assumption that in the j-th inventory
period (j = 1l...1i) the amount Mj disappears (Alternative
hypothesis H,) the expectation value of the book physical
inventory difference of the i-th inventory period is

determined by the recursive relation
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E(MUF; |Hy) = a;_; * E(MUFi_1|Hz) + M E(MUF1|H,) =M.
(2-8)
Proof. 1If one defines
EIj = Ej » J = 0,1,...,n,
one has according to the assumption
E + ED. - E. = M .
J-1 J J J
Therefore,
E (MUF,|Hy) = ES;_; + ED; - E;
= a5 (ESi__2 + EDi-l)
+ (1 - ai_l)- Ei—l + EDi - E
=a; (E(MUFi_llHl) - ED;_; + E; 4
My - By v B
+ (1 - ai-l) E._, + ED; - E;
=a;_; *E (MUFi_l|H1) + Mo -

In the following the abbreviation



_ll_
E(MUF |Hy) = & ¥4 (2-9)
will be used. Then one has instead of (2-8)
Vi F 2.yt Vi v Mo y1 = M (2-8")

or in matrix language,

t t
(Fpoeeesyy) = A s (M, M7, (2-8")
where A: = {aij} and

0 for j > i

1 for j = 1
1507 )il

for j < 1.,
ak J
k=]

Let us consider a reference time interval (0,T) containing
n inventory periods. Then the probability to detect missing
material in case the amount Mi is missing in the i-th inventory
period is given by

1 -8=1-~- prob {MUF, < x

1 £ XA AMUF) < x[Ha} . (2-10)

According to the foregoing considerations one obtains

Y-
1-8=1-T[ *Ull-ay) - =), (2-11a)
1
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where y; is given by equation (2-8'), where oy is the false
alarm probability for the i-th inventory period, and where o?
is given by

2
o; = var S;_ ; + var D; + var I, . (2-11b)

1

The resulting false alarm probability o is determined by the

relation
n

l-a-= WWf (1 - ui) . (2-12)

i=1

2.3 Strategies, Two-person Zero-sum Inspection Game

For the purpose of optimization of the material ac-
countability procedure as described above two boundary conditions
have to be agreed. It 1s assumed in the following that

(i) the resulting false alarm probability o is fixed, and

(ii) the "sensitive" amount of missing material is either
zero or M ='§ Mi and fixed.

In order to deteié%ne the optimal probability of detection

with respect to all possible "strategies"

n n
S:={Slz(alp---,an) E]R, || (l"ai)=l-u >
i=1

0<a; <a Vi = l1,...,0} , (2-13)

one has to take into account all possible strategies of the

adversary party
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Sy: = {s, = (Ml,...,Mn)e“Q n, M. = M} . (2-14)

1

nes-13

i=1

Note: 1In the definition of S, the possibility is included
that in some inventory periods there is more material than
accounted for. In the last section of the next chapter the

special case M; > 0, i = 1...n is considered.

According to the foregoing considerations the optimal

guaranteed probability of detection is given by

n y.
1 - min ma x 1_r e(U(L - a;) - Ei)
. i=1 1
O) sevrsOp Ml""’Mn
n n (2-15)
l I (1-a;) = 1-a , My = M
i=1 i=1

It should be mentioned that this optimization problem had to

be considered in the course of the establishment of the nuclear
material safeguards system of the International Atomic Energy
Agency in fulfillment of the requirements of the Non-Prolifera-
tion Treaty. There, it had to be assumed that in case a
diversion was planned it was planned in the most effective way.
The value of the false alarm probability for a reference period
of time had to be not larger than a given value for political
reasons. The value of the sensitive amount of material was
agreed to be not smaller than a given value in that specific
connection. A two-person zero-sum game was constructed with
the sets of strategies as given above and with the following

payoff to the operator
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0 in case of no diversion and no false alarm

0 in case of a false alarm (which was expected to be
identified as a false alarm in a second action level)

-c in case of detected diversion

d in case of not detected diversion.

Therefore the expected gain a of the operator is
0 in case of no diversion

-¢ » (1-8) +d « B in case of diversion .

As the game (Sl,se,a) is strategically equivalent to the
game (51’82’3) in the sense that the optimal strategies of
both games are the same only the latter one was considered as
a) it was not possible to agree on values for the payoff
parameters and b) only the operational strategies, not the
value of the game, were interesting.

Therefore, the general problem of the optimal choice of
the significance thresholds leads to the problem of the solu-

tion of the two-person zero-sum game (Sl’SZ’B)'



_15_

3. Saddlepoints

3.1 Formulation of the Problem

A saddlepoint is defined by the following

Definition 3.1. Let H be a real valued function defined on

the nonempty set C x D. Then (co,do) is called a saddlepoint

of Hon C x D if
H(ey,d) < H(eqy,dy) < H(e,dy) (3-1)

holds for all ceC and deD.
For saddlepoints the following theorem is valid (cf. [4],

Th. 6.29)

Theorem 3.2. Let H be a real valued function defined on the
nonempty set C x D.
a) If H has a saddlepoint (co,d0)€ C x D, then there

exist min max H(ec,d) and max min H(c,d) and it is
ceC deD deD ceC

min max H(c,d) = H(co,do) = max min H(e,d) . (3-2)
ceC deD deD ceC

b) If (cl,dl), (°2’d2)e C x D are saddlepoints of H then
also (cl,dz), (CZ’dl) are saddlepoints of H on C x D.
Therefore, the problem formulated at the end of the foregoing
chapter can be formulated in the following way:

Determine the saddlepoints of the function 8(51’52)’

defined by egs. (2-11), the region of definition of
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which is given by the Cartesian product Sl x S,, eqs. (2-13)
and (2-14).

Instead of B(s,,s,) defined on §; x §,, the function

1
n X. Ve
F(x,y): = ) fn & (Ue 7)) - 52) (3-3)
i=1 i
with the region of definition X x Y,
: n n
X o= {x = (Xy5.005%)) eR, I % =@ (1-0a) ,
1=1
0>x; >en(1-a)V¥iz=1,...,n (3-4a)
n-1

[
1

will

Io t

v = (yseeesyy) eRY yp + I (1 -ap) yg = Mb (3-bp)

i=1

be considered in the following.

As the condition ] M; = M is equivalent to the condition
n-1 i=

! (1 -a;)y; =M, the following lemma is evident:

i=1

* *
Lemma 3.3. If (31’32) asl x S, is a saddlepoint of B on

Sl X
A .

is a

on X

eSl X

* * * * t
82, then (x ,y ) = ((2n(1l - al),...,ln (1 - un))

*
(M M, )t)e X x Y, where A is defined by eq. (2-8"),

1
saddlepoint of F on X x Y.

If on the other hand (x,y ) eX x Y is a saddlep01nt of F
x Y, then (sl,s Y} = ((1L -e 1,...,1 -e ™, A (yl,. o¥n ) )
52 is a saddlepoint of B on Sl X Sz.

With the help of this lemma, the problem formulated above
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may be formulated in the following way:

Determine the saddlepoints of the function F(x,y)
defined by eq. (3-3) the region of definition of
which is given by the Cartesian product X x Y,

eqs. (3-4),

The advantage of this formulation is that X x Y is
a convex set whereas this is not the case for the set
Sl X Sz.

In the following we will prove the existence of a
saddlepoint of F on X x Y as well as its uniqueness, For
this purpose, in the next section convexity and concavity
properties of F are derived. With the help of these
properties in section 3.3 we will give sufficient conditions
for the saddlepoint of F on X x Y and then show that these
conditions can always be fulfilled by some point of X x Y.
This way we also obtain a simple method for the calculation

of the saddlepoint. We will use the following theorem for

Lagrange multipliers (cf. [5]):
n
Theorem 3.5. Let C ¢ Wa be an open and convex set. Let
G: ¢—TR
be a real valued, convex differentiable function, and let

g: C —R
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be a real valued, convex differentiable function.

If there is a coeC and a A > 0 with

grad G(co) + A grad g(co) = 0

gley) = 0

then ¢. is a minimum of G on the set {ceC,g(c) = 0O}.

0

It should be noted that the properties of F derived in
section 3.2 permit the application of the following theorem
(ef. [u], Th. 6.3.7):

Minimax-Theorem of Sion-Kakutani 3.4

Let C eﬂlk , D E1R} be convex compact sets. Let
H: ¢ x D—R

be a real valued continuous convex-concave function on C x D,

i.e. let H(-,d) be a convex function on C for every deD and H{c,-)

be a concave function on D for every ceC. Then H has a saddle-
point on C x D.

This way the existence of a saddlepoint of F on X x Y
can be proven in a very simple way; however, no idea is given
how the saddlepoint could be determined.

In the last section, we will consider the saddlepoint

problem on the special set X x Y' where Y' is given by

n n=1
Yt: = {y = (yl,-“.‘yn)ER ’yn + lzl (- al)yl =M,
ANy sy O 2 (0,000 (3-5)

i.e. the case Mi >0 fori=1,...,n is considered.
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3.2 Convexity and Concavity Properties of F; Existence of

Saddlepoints
In order to show that F is convex-concave on
n
Xt x R + where

Xt o= X = (x.0x )eR™: 201 - a) ¢ x; ¢ OVi = 1,...,n}  (3-6)

TR?: {reR™"; r; > ovi = 1,...,n} (3-7)

(in fact this is not true for X, x “zn), the following lemma

will be used.

Lemma 3.6. Let Q(x),xelR, be defined by

- 9 (x)

Q(x): = W . (3'8)
Then it is for xeR
-1 <Q'(x) <0 . (3-9)

Proof. Let R(x),xeﬂi, be defined by

52 - _t2
R(x): = e° J e 2 ar . (3-10)
X
R is called "Mills Ratio." Then one can show (cf. [6], or

[7], p-177) that for xelR

O<('R_%7)')'<l

Since Q(x) = ET%;T , the proof is completed. n
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For the purposes of section 3.3 and in order to apply the
Minimax Theorem 3.4, the following two theorems have to be

established.

Theorem 3.7. For every ye?R? the function F(-,y) is convex

on X, where X, is given by (3.6),

t t

Proof. We have to show

F(ax'

+

(1 = Mx",y) < AF(x',y) + (1 - A)F(x",y) (3-11)

for all x' $ x" with x‘,x"eXt,yeﬂag and Ae(0,1). With the

definition
g(t): = F(x" + t(x' - x"),y)
this 1s equivalent to showing
g(2) < Aag(l) + (1 - A)g(0) , for xe(0,1) .

Therefore, it is sufficient to show that g(t) is convex in [0,1].

This will be done by showing that

1" 1 1"
2 X: o+ t(xs - x:) 2
3 gn o(u(e * 1 -2 >0, for te(0,1)

3t 2 o

(3-12)

as from this inequality one obtains immediately
d2

—5 g(t) >0 , for te(0,l) .
dt
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With the definition

Z Vi
h(z): = ¢n ¢(U(e”) - ET) s for z < 0 ,
i
one obtains
Vs
i z
_1(23)2 eci uce™)
%Z h(z) = e « e H % N T
#(U(e”) - 37)
i
1.2, 2
2 U“(e®) y. ¥
d _d o) . . 02 . 2 i _ z, =Y1i
Ezh(z)-ﬁhu) L+ /2%« e% e h Q(U(e)Ti)].

Y. ¥
Now by Lemma 3.6 the funetion El - Q(U(ez) - Ei) is monotonous-
i i
ly increasing in y;. As we have by assumption y; 2 0 we

obtain

[+

' Y.
== - Q(u(e?) - =2) > - a(u(e®)) .
1 1

This yields (with strict inequality for y; > 0)

1l.z2,.2
2 U (e™)
d d z 2 z -
2 h(z) > g7 h(z2)[1 - e*/ZT e Q(uEe®n] = o .
(3-13)
Since we have
2 " t( 1 ")
X. + X. = X. ¥
9—2 no(u(e + 1) -3
dt O3
" 2 d2
= (x1 - x.)° +« —_ h(z) >0
1 dZ2 " ' " -
z = x5 + t(xi - xi)
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1 1 .
(with strict inequality for x; $ X;,¥; > 0), the proof of (3-12)

and therefore, the proof of the theorem is completed. n

Theorem 3.8. For every xsxt the function F(x,+) is concave on R

Proof. We have to show

F(x,Ay' + (1 - My") > AF(x,y') + (1 - MF(x,y")
n
for all y' % y" with y',y"eR | xeX, re(0,1).
As in the proof of the foregoing theorem it is sufficient
. to-prove the concavity of the function

f(t): = Flx,y" + t(y'' - y")) on [0,1] .

Now, we have

2

d Xy 1 " ' "
32 (en ¢(U(e 7)) = q (y; + t(yi - yi))
Yi 7 Y4 ' X n ' "
= (=X R 1)2 . Q (U(e 1) - %; (y; + t(y; - y3)) <0 (3-14)

1
for all te[0,1] since @ < O according to Lemma 3.6. There-

fore, we have

2
& £(t) <0 ,  for all te[0,1]
dt
and f(t) is concave in [O,l] which completes the proof. n

With the help of these two theorems we can establish the

following
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Theorem 3.9. Let Xl c Xt’Yl CWR? be closed convex sets,

Yl bounded. Then F has a saddlepoint on xl ple Yl‘

Proof. Xl and Yl are compact convex sets. F is convex-

concave on X1 X Yl because of Theorems 3.7 and 3.8. There-

fore, the application of Theorem 3.4 completes the proof.

3.3 Sufficient Conditions for the Saddlepoint, Unigueness

In the following theorem a sufficient condition for a

saddlepoint of F on X x Y is established.

« % 0 ®n 0 ﬁ{n
Theorem 3.10. Let (x ,y )EXt x“2+, where X, andiR denote

the open core of X andTRT respectively, be a solution of

t
the following two systems of equations:

2, *i 2, *ia1
-(x + U (e )) _(x + U (e ))
e i - e i-1 - 2
- =0 , i=2,..
o;(1 - ay) 0527 @ (1 - a;_4)
2, *n 2, *n-1
- U (e ) - U~ (e )
. (xn + 5 . (xn_l + )
- - O R
%n -1 (17 apy)
n
Y x, = 2n(l - a) ;
j=1 Y
X X
N i CO . L et
1 2 1 1 i-1 2
e « Q(U(e ) - E—) -e
i
X _ Vi_
. Q(ue 7Yy Ei—l) =0 , i=1,...,n,
i-1
n-1

(3-15)

(3-16)
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* * “
Then (x ,y ) is a saddlepoint of F on X x Y.

Proof. Let us regard the following systems of equations:
) s
2 F(x,y) fp * (en(l - o) - .Z xj) =0 , i =
ees Bxi Bxi j=1
n
an(l - a) - Yy x. =0 ;
j=1 ?
3 n-1
- - F(x,y) + A(M -y~ § (1-ag)y:) =0 |, i=1,
. n .2 Jd"7d
Ay . - Jj=1
i
n-1
M- (y + Y (1L-a;)y.) =0 .
n J=1 J J
If one puts
*
X
x* + U2(e l) x* yt
1 2 1
o= e cae b -3,
1
* *
one sees immediately that (x ,y ) and p solve system (3-17)
*
since (x*,y*) solves system (3-16). Since Xy < 0 it is
x# *
Q(U(e 1) - El) > 0 by definition of Q, hence p > O. From
1
system (3-17) follows for all 1 = l,...,n
e X
X.
2 1
* *
X3 Vi -(x: + y (S )
Que ™) - 2) =0 - e , (3-19)
i

Thus, system (3-18)

following system of

*
is solved by (x ,y ) and A > O if the

equations

(3-17)

N,

(3-18)



-25-

2 i
U (e 7)
e"(Xl + —7—)
e p~A=0 , i=1,...,n-1,
ci(l - ai)
2,.5n (3-20)
uc(e )
e—(xn + 5 )
« P - X =0
%n

*
is solved by x and X > O. This can be seen however, from

system (3-15) by putting «
X
St e B D,
o X1t T
A=op . .
ci(l - al)

* *
Having shown that (x ,y ) and p > 0,1 > O solve systems (3-17)

and (3-18), we can apply Theorem 3.5. For this purpose we define
. n
Gy(x): = F(x,y ) , gl(x): = e¢n(l - a) - § x.

. * n .
Since y EWQ+,G1 1s convex on Xt by Theorem 3.7. Furthermore.
* *
sinze (x ,y ) solves system (3-17) with p > O, from Theorem
* 0
3.5 it follows that x 1is a minimum of Gl on XtFEX. Because of

*
the continuity of F(:,y ) on X, one therefore obtains
x x x
F(x ,y ) < Flx,y ) for xeX NX = X . (3-21)
Let us now define

* n-1
Go(y): = = F(x ,y) go(y): = M -y -jzl (1 -ap)y; -
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n
*
Since - F(x ,+*) 1s convex on R because of Theorem 3.8 and

* *
since (x ,y ) solves system (3-18) with A > 0, it follows from

*
Thecrem 3.5 that y 1is a minimum of G2 on “{nf\Y, therefore

* * *
F(x ,y ) > F(x ,y) for ye¥

According to definition 3.1 one sees from (3-21) and (

* *
that (x ,y ) 1is a saddlepoint of F on X x Y.

(3-22)

3-22)

With the nelp of the following Lemma 3.1l we shall prove

Theorem 3.12 which states that the system of equations (3-15)

0 1]
and (3-1¢) can bc solved in Xt x'mf.

Lemma 3.11 . Let h .,hn be continuous and strictly

12"

monotonous increasing functions defined on [0,») with

lim h.(x) =« for i = 1,...,n
X

and let the following system of equations be given:

hi(xi) hl—l(xi'l) =0 > 1= éa"')n s (3_233)
n
y od.x. =cC , §. >0 for j = l,...,n (3-23b)
Ly d7d J
J_
Let X; = 0 for i = 1,...,n be a solution of the homogeneous
form (i.e. C = '0) of system (3-23). Then for every C > O there

exists a unique solution x; > 0 for i = 1,...,n of system (3-23),
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Proof. Let us define

: jop for i = 2,...,n, (3-24)

where h£1 denotes the inverse of hi' From the properties of
the h; it follows that the g; are continuous and strictly

monotonous increasing functions defined on [0,=) with

lim gi(x) =w fori=2,...,n ,
X—

and furthermore, because of the assumption that X5 = 0 for

i = 1,...,n solve the homogeneous system (3-23)
g;(0) = 0 for i = 2,...,n .

Evidently for every x-

i1 e[0,»), i = 2,...,n the system

) = x; fori=2,...,n, (3-25)

is equivalent to the system (3~23a).

Let us define now
f.: = gy 0 vt 0 g, for i = 2,...,n .

From the properties of the 25 it follows that the fi are con-

tinuous and strictly monotonous increasing on [0,=) with
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fi(O) = 0 and 1lim f.(x) = o for i = 2,.,..,n
X—do

Evidently for every xie[O,W) the system
£,(xy) = x;  for i=2,...,n , (3-26)

is equivalent to system (3-25) and therefore to system (3-23a).
n

Since the function Z 6ifi(xl) is a continuous and strictly
i=2

monotonous increasing function on [0,=) with

n

5,0:(0) = 0 lim(6,x + § 6.0.(x)) = =
2 1t Toxoe gz 13

ne~13

i

by reasons of continuity there exists a unique solution Xy > 0

of the equation

"~

. difi(xl) = C - 8%

1=2

for every ¢ > O and therefore, there exists a unique solution
of the system (3-26) together with (3-23b) which completes

the proof. [ |

x x_0 0
Theorem 3.12. F has a saddlepoint (x ,y )EXt x1R? on X x Y which

solves the systems of equations (3-15) and (3-16),.

Proof. Let us regard system (3-15) which we write with

Z;t o= -xy in the following form:
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-z, -z
- U2(e 1) . ) U2(e 1 l)
o 1 2 e i-1 2
- =0 for i = 2,...,n-1,
a; » (1 - 2;) o517 ¢ (1 - a5 )
-z -2
, vt ™ vt Th
e I 2 o n-1 )
- =0 (3-15")
%n Op-p = (1 -2 .4)
n .
2 z: = -2n(l1 - a)
i=1 ‘
Let us define _
2, 7%
.. - U (e )
e 1 2
hi(zi): = for i = 2,...,n-1,
ci(l - ai)
-2
_ UE(e n)
eZn
hn(zn): = .
n
hi(o): =0 for i = 1,...,n,
6i: =1 for 1 =1,...,n,
C: = - an(l - a)

Since the function z - % Uz(e—z) is strictly monotonous in-

creasing on [0,) and since

. 1l 2, .-z
lim (z - U“(e ?)) = =
25w 2

(both statements are proven in the appendix) it follows that

the h, are strictly monotonous increasing on [0,») with

lim hi(z) S for i =1,...,n .
7 —00
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Therefore, as trivially z; = O for i = 1,...,n solves the
homogeneous system, the application of Lemma 3.11 immediately
gives the result that there exists a set z; >0 fori=1,,..,n

. *
which solves system (3-15'). Hence X;1 = —zf, i=1,...,n

i
solves system (3-15).
. *

It remains to be shown that X; 2 n(l - a) for i = 1,...,n.

However, this is evident as the assumption x; < 2n(l - a),
. . - *
equlvalent with the assumption z; > -¢n (1 - a), together
: * . *

with z; > O would lead to the contradiction J z; > -an (1 - a).

i=1
Let us consider now system (3-16). We define

X
2 1
xj v g X, Y
hi(y;): = e + Q(U(e 7) - E;) for i = 1,...,n,
650 0= 1 - ay for i = 1, sn

Because of Lemma 3.6 the hy are strictly monotonous increasing

on [0,»). As proven in the appendix, it is

lim Q(-y) = =

y—3e

*®
hence, since U(e ~) < « for x; < 0, we have

lim.hi(y) = o for i = 1,...,n
N

Furthermore, it is *

. X
h;(0) =e * 2 Qe M) =
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Hence, vy = 0 for i = 1,...,n solves the homogeneous form of

system (3-16). Therefore, the application of Lemma 3.11 gives

* *
the result that there exist vitoovy 2 0 for i = 1,...,n which
* * * * * *
solve system (3-16). As x : = (xl,.”,xn) and y : = (yl,.“,yn)

* *
fulfill the assumptions of Theorem 3.10, (x ,y ) is a saddle-

point of F on X x Y. o

Theorem 3.13%. F has a uniquely determined saddlepoint on

X x Y,

Proof. Because of Theorem 3.12 only the uniqueness of the
saddlepoint remains to be shown. Let (x*,y*)sX x Y be the
saddlepoint of F according to Theorem 3.10, therefore,

y; >0 fori=1,...,n. Let (x',y')eX X Y be another saddle-

] *
point of ¥, Because of Theorem 3.2 (x ,y ) is a saddlepoint

*
of F, too. Since y sﬂzz is convex on X therefore,

* 1 * * * [ * v
F(x + A(x = x ),y ) < AF(x ,y ) + (1 - MF(x ,y ) Vielo,1).
Obviously equality must hold. This implies
* 1 *
— F(x + xMx -~-x),y)=20

1,...,n because of (3-13) this can be

1

*
But as y; 2 0 for i
1 *

' *
the case only if Xy = X4 for i = 1,...,n hence, x = x .

* 1] -
Because of Theorem 3.2 (x ,y ) is a saddlepoint of F, too.

x
Therefore, because of the concavity of F(x ,*) on Y we have

F(x ',y + Ay =y ) > AR(x ,y ) + (1 - VF(x L,y ) Vae[0,1).



-2

Since equality must hold we have

* 1 *
2 * ' * ' n Y; T ¥ ' X
0= Fra" Ly T -y = 1 (D e Twe
di i=1 i
1 * 1
yi + vy - yy)
- — )
1

X «
Since U(e ) < = for X; < 0, because of Lemma 3.6 we have

*
+ Ayy - vy)

* !

X Y-
Qe 7)) - S 1) <0
i
* ]
and therefore, Yy = ¥; * O for i = 1,...,n which completes the

proof. u

As it can be seen easily from Theorem 3.12 the x-coordinate
of the saddlepoint depends only on o but not on M whereas the
y-coordinate depends on both a and M. This property of the
saddlepoint is important for the applications. Theorem 3.12
and Lerma 3.11 provide a simple method for the numerical cal-
culation of the saddlepoint. Because of Theorem 3.12 we have
to solve only two systems of equations of the type used in
Lemma 3.11. Let x' be the solution of system (3-23). Because

*
of Lemma (3.11) we have xlg(O,C) for C > 0. We define xil): =0

and xél): = C and choose

X =

i}) BRSNS

Then the xgl), i=2,...,n are calculated by consecutively

solving the equations
(L), (1), . o
he (x;77) h (xi_l) =0 fori=2,...,n

i i-1
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n n

if 3 5ix§l) > C we put xéz) = x(l), ir § 5.x1) < ¢ we put
i=1 i=

L (2) (1)

L Xq and start the aleorithm again :'ith

(2) (2)
,  txg )

(

. i)
It can be seen easily that {x 7y converges to X

3.4 Treatment of a Special Case

In the following we will analyze the question of a

L} T
saddlepoint of F on X x Y where Y had been eiven by (3-5):

] n -
Y = {y = (yl,...,yn) ETR , A 1(y1,...,yn)t3 (O,...,O)t,
n-1
yn + igl (1 - ai)yi = M} s

i.e. the case M; > O for i = 1,...,n (see egs. (2-8)). As
Y' is convex, closed and bounded, F has according to Theorem 3.9
a saddlepoint (x',y') on X x ¥Y'. As yi >0 for i=1,...,n
must hold which can easily be seen, one can show
with the same arguments as used in the proof of Theorem 3.13
that the saddlepoint (x',y') is unique. If for the saddlepoint
(x*,y*) of Fon X x Y' holds y*eY' then evidently one has
(x',y') = (x*,y*). Since Y 2 Y', this must not be the case,
in fact, there are counter-examples.

In the following we will establish a sufficient condition
for y* to be an element of Y'; thus, in case this condition

* * '
is fulfilled (x ,y ) is a saddlepoint of Fon X x Y .
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Theorem 3.14. Let the following inequalities be fulfilled:

(1) o5 * (1 - a;) > 051 ° (1 - a;.y) for i=2,00.05n
O 2057 ¢+ (L -2 y)
(ii) 0; > 057 * a5y for i = 2,...,n
v - . * '
Then 1t 1s y €Y .
*
Proof. Let us assume y ¢Y'. Then, using eq. (2-8), there exists

* *
an index i > 1 with M; < O. Because of Theorem 3.12 Yi-1

* * .
and y; = Mi taj; g yi—l fulfill the equation

2, % 2, Xi-1
xf + Y (e 7) xf MY o+ yf X, P )
e 1 2 . Q(U(e 1) _ A 1-1 1~1) - e i-1 2
.o i
* *
X
Cae Th - 22
i-1
* ' -
Since Mi < 0 and.Q < O (Lemma 3.t) we have
*
2, *i *
o U (e ) * * * 2 X .
X: 4 ——e 2 X: s 1 % Vi X _ U (e7i-1)
o 1 ‘2 . Q(U(e 1) - 2 l0 1 l) > o 1 1+ 5
i
* *
X: Vi
s uie Ty o Zizdy (3-26)
o.
1-1
3 . *
Because of assumption (i) and Yi-1 2 0 we have
a. Vs
1-1 * 1-1
0. Yi-1 X3 ) (3-27)
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* *®
Since x;_, and x; solve the equation
X X,
e s D e T
e i 2 e i-1 2
Oi < (1 - al) Ul'l + (1 - ai_ly
we have

X3 2% (3-28)

because of assumption (ii) and the fact that -x - % U2(ex) is
strictly monotonously decreasing on (-«,0) which is nroven in
the appendix.

However, as the function
e < QU™ - L)
i

is monotonously increasing in y since Q' < 0 and as it is
monotonously increasing in x (see 3-13), inequalities (3-27)
and (3-28) yield a contradiction to inequality (3-26). There-
fore, the assumption‘y*¢Y is wrong. n

Let us consider the special case
_ 2 . L2 .
var Ii = 0g for i = 0,1,...,n and var Di = 0p for i = 1,...,n

Then for n = 2 the assumptions for Theorem 3.14 are fulfilled

as with (2-11b) and (2-5) we have

20, + (1l -a))ando, >0, *a; .
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For n > 2 however, the assumptions for Theorem 3.14 are not

fulfilled: as we have

O2
a = I
1,272 >
1,2
assumption (i) of Theorem 3.14 is not fulfilled if g, < 0.

Now we have according to eq. (2-6)

- var S, < o1

Therefore



- 37..

4., Concluding Remark

The material accountability problem treated in this
paper has been formulated as a two-person zero-sum inspection
game, the payoff of which was the overall probability of
detection for the sequence of inventory periods under
consideration. This may be considered to be consistent
with the intuitive criterion of optimization that any
disappearance or diversicn of even small amounts of material
should be detected with a probability of detection as high
as possible.

There is, however, another criteron: any disappearance
or diversion of material should be detected as early as
possible. As in the framework of our model the detection
time is determined by the length of an inventory period--
only at the end of an inventory period can a statement be
made. According to the second criterion one would like to
have the greatest possible number of inventory periods per
reference time.

It is clear that for economical reasons only a limited
number of physical inventories can be performed per reference
time. In fact, in nuclear fabrication and reprocessing plants
not more than two to four physical inventories will be
performed for safeguards purposes. However, apart from the
economical point of view, the criterion of early detection--

i.e. large number of inventory periods per reference time--
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may conflict with the eriterion of high probability of
detection for the reference time. There are cases where an
increasing number of physical inventories leads to a decrease
of the probability of detection; the question of an "optimal"
combination of both criteria thus arises.

This problem is subject to further investigation.
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Appendix: Properties of the G.ussian Distribution Function

Lemma. ‘Let ®(x) be the Gaussian Distribution Funetion, U(x)

its inverse and

Q(x): = (x) .
d(x)

Then the following statements are valid:
a) Q(x) > -x for x < O
b) x - %Uz(e-x) is strietly monotonously increasing
on [0,=)
¢) lim (x - %—Uz(e_x)) -
X

Proof

a) For R(x), defined by eq. (3-10), the inequality
R(x) < % for x > O

is valid (ef. [6]). Since Q(x) = ﬁT%;7 the proof is completed.

b) With the substitution x = -gn y we have to show
d 1.2
Iy (=&n y - ?U (y)) <« O for ye(0O,o)
As we have
2
U™ (y)
Siny - 30%(y)) = - & - V27 u(ye :

the inequality is valid for y > %. Therefore, in the follow-
ing we assume y < % . By substituting z = U(y) we have z < 0,

and it remains to be shown that

22

ET%T > ~ /3T «z e © for z < 0 .
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This inequality however, is equivalent to the inequality
Q(z) > - 2 for z < 0
which has been proven in a).

c) As x - %Ue(e—x) is monotonous we have either

lim (x - %Uz(e_x)) = » or lim (x - %Uz(e-x)) = :k ¢ »
X X —3eo

In the following we assume the second relation to be valid

and show that this will lead to a contradiction.

We have

X - %Uz(e-x) < k for xelR
There fore

- ¥2(x - k)> U(e_x) for x > tn 2
or

o(-/2{x - k) >e * for x > w2

This is equivalent to

K '%("2(" —%D°
e - ¢(=/ATx - K)) , e for x > In 2
ver - vor -

or

> Q(-v2{x - k)) for x > n2 .

[
31~
=

This however, cortradicts (a),
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