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PREFACE

Risks have emerged as an important constraint in the
evaluation and selection of energy strategies. The work of
the Joint IAEA/ITIASA Risk Assessment Project (IAEA: Inter-
national Atomic Energy Agency) is oriented toward providing
information on technological risks, and their social aspects,
for use in decisions related to the management of risks.

The emphasis of this research is upon energy systems.

This Research Memorandum brings together the scattered
literature on formal theories of risk and risk preference.
The various approaches are presented and critically discussed,
especially with reference to expected utility theory, which
is the standard theory of decision making under uncertainty.
As far as available, the results of experimental tests of
the theories are presented, too. Finally, more general
aspects of risk are discussed, especially those related to
new energy technologies.
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ABSTRACT

The notion of "risk" plays an important role in decisions
about modern technologies. We have to learn the discomforting
lesson that modern technologies do not only provide benefits,
but also "risks", potential loss of monetary values, of
environmental quality, of health, or even life. But what
exactly is meant by the term "risk"? The present paper con-
siders more formal aspects of "risk". The concept of risk in
mathematical statistics and expected utility theory is discussed
in some detail. The major part of the paper describes the
existing formal axiomatic (measurement-theoretic) theories of
risk and risk preference.

Risk refers to the perception of the riskiness of an
option (risk estimation), whereas risk preference refers to
decision makers' preferences over a set of risky options.

Some people are risk seekers, they like gambling, or mountain
climbing etc., others prefer to be on the safe side. These
theories are discussed in their relation to each other and to
expected utility theory. The position is formulated that
expected utility theory does not deal with risk in an adequate
and psychologically meaningful way. Some results of empirical
tests of the various theories are also presented.

The paper closes with a more general discussion of aspects
of risk concerning technological and social decisions. It may
very well be the case that aspects of risk have to be consid-
ered that do not enter in the formal theories as they are
formulated at present.
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1. INTRODUCTION

The term "risk" seems to play an important role in much of
the current writing on political, social, and technological is-
sues. Especially for the latter, we find references to the risk
of the various sources of energy, in particular, of course,
atomic energy, power plants, waste disposal, etc. More and
more we learn the lesson that technology does not only guarantee
benefits of various kinds, but also "risks"--hazards, potential
loss of equipment, of health, and eventually even of life.

These considerations radiate also into the socio-political
sphere, we find phrases like "social risk of the nuclear
option", or "risk of an authoritarian development" due to ex-
cessive safety requirements of the nuclear options and many
others. Almost always the term "risk" is left undefined, is
used in an everyday-life meaning. But for scientific purposes,
especially when we try to measure risk we have to define it

and give an operational definition first. This might seem to
be a rather easy task at a first glance, but it is not. There
is much fuzziness and disagreement about it, as will be evident
later. This paper 1s addressed to the questlon of what we mean
when we talk about "risk".

It might be helpful to give a short outline of the text to
follow. First of all, we shall trace some of the definitions
of the term "risk". ©Next, we will have a look how "risk" is
defined and used in various branches of science, in which it
plays a role. Third, some empirical psychological work is
reported that was devoted to the study of risk, which had an
outflow in first attempts to formulate theories of risk and
risk preference, which are studied next, together with some
experiments that tested their empirical appropriateness.
Finally, it is analyzed whether "risk" gains a new dimension
when applied to large-scale technological problems.

2. SOME HISTORY AND "AD HOC" DEFINITIONS OF RISK

Obviously, the term "risk" is used to denote very different
things. Many authors use risk synonymously with uncertainty,
e.g., they speak of "decision making under risk" instead of
"decision making under - -uncertainty". Some use it synonymously
with probability (of a negative event), such as "the risk that
a patient has a certain illness" (Norusis, 1973, p. 10).
Fischhoff, et al. (1977) define risk as the perceived probabil-
ity of dying from various sources. Knight (1921), in his much-
quoted early work, uses "risk" for an objective and measurable
uncertainty, while the term "uncertainty" is reserved for sub-
jective and non-measurable uncertainty. This differentiation
is still made today by some authors, especially in the German
economic literature. More recently, this distinction between
risk and uncertainty has become less clear since the Bayesian




approach to probability assumes that all probabilities are
subjective and that there is hardly ever complete lack of
knowledge.

Some authors use "risk" only to indicate the possibility
of (financial) losses, e.g., Redlich (1957, p. 35), who says,
"To repeat, in my language, ‘'risk' is equated with the chance
of loss and this definition applies to both business and non-
business ‘risk'".

The notion of risk as used by Redlich and many others is
in line with what has been called "pure" risk: Only potential
losses are affected. If also potential gains (and their
probabilities of occurrence) are to be considered to have an
impact on "risk", then this is called "speculative" risk by
some authors.

If gains and losses and their respective probabilities are
involved, it is very practical to introduce the notion of a
lottery (or gamble) which is defined as a probability distribu-
tion over outcomes (or consequences, which will be used
synonymously). A lottery L is then defined as a set of probabil-
ities Pi and a set of consequences X which occur with probabil-

ities P i=1, 2, ..., n. Some of the consegquences might be

losses, others gains, with "win" and "lose" probabilities
attached to them. Pure risk, then, refers to lotteries that
are defined over the negative part of the real line, whereas
there are no such restrictions in the case of "speculative"
risk. From a purely formal point of view, there might not be
much to it to distinguish between the two, but psychologically
there might very well be a difference.

There are in principle two ways to characterize probabil-
ity distributions over outcomes. In the discrete case one could
use the set of consequences {xi} together with their probabil-

ity of occurrance {pi}, i=1, 2, ..., n. A simple lottery

could then be given by {$5, %; $-3, %}, i.e., the risky options
of winning five dollars with probability of one half, or
loosing three dollars with the same probability. A different
way to characterize lotteries would be by their moments, that
is, expected value (E), variance (V), skewness (SK), and so on.

For two-outcome gambles of the type {a, p; b, l-p} as used in
the example, the moments are as follows

E

pa + (1 - p)b

v p(l - p)(a - b)?2

_ 1 ‘iP ’
Sk
v'p(l =7




with a > b. In the continuous case, probability distributions
over outcomes can only be described by their moments. Which
parametrization to use in the discrete case will depend
primarily on the risk model to be used.

Alternatively to these parametrizations, lotteries could be
characterized by the whole utility function. If expected utility
models are used, the distinction to the parametric case is less
clear since some of those models lead to (restricted forms) of
expected utility models.

A natural extension would be not to consider losses per se,
but expected losses, or average loss. This could be set into
perspective to the positive side, i.e., expected gains. Domar
and Musgrave (1944) define the utility of a lottery as expected
gains minus expected loss.

Once the situation is formalized as a choice between
lotteries, or a lottery and a sure thing, it seems obvious
that risk could depend on numerical characteristics or para-
meters, of lotteries, such as

(a) the expected value (mean) of the lottery-—-the
higher the stakes, the more risky the option,
and more important,

(b} some index of dispersion of the lottery--the
larger the dispersion, the higher the perceived
risk.

It is intuitively evident that the risk of an option
depends in part on the expected value--if much is at stake, the =
whole thing appears riskier. But on the other hand the
perceived risk of an option will also depend on "what else
could happen". Therefore, some measure of dispersion seems to
be the prime candidate for "risk" in the literature. The first
one, to my knowledge, to propose a measure of dispersion to
quantify risk was Tetens (1786), who proposed one-half of the
mean deviation. Markowitz proposed risk to be either the
variance or the semi-variance around a chosen value, defined by
v = E [x - X ] 2 for all x £ x
b b - b .
The semi-variance is then the mean squared deviation of all x
below Xy which is a free parameter and can be set to the deci-

sion makers' choice (e.g., Xp could be a target rate of return,
and only deviations to the left of it could be considered). 1If
Xy is set equal to zero, Vo is the "variance over losses". Since

lotteries do not have to be symmetric, the semi~variance is not
equal to one half of the variance and skewness may very well
have an impact on risk perception. Such models were discussed




by Markowitz (1959), Mao (1970a, b}, Hogan and Warren (1972,
1974), and by Porter (1974).

In an experimental context, Pollatsek (1966) used the range
as an indicator of risk, while Rapoport (1970) or Royden, Suppes
and Walsh (1959) used the variance. Measures of dispersion also
play an important role in formal risk theories. It seems clear
that some notion of dispersion must be an ingredient in any
definition or theory of risk. '

Definitions or models of risk can be classified according
to several points of view. The most important aspects are
whether one or more than one parameter is involved, and if
several parameters have to be considered, whether the model is
compensatory or noncompensatory. Examples of single parameter
models are the maximum expected return model (lottery A is
preferred to B if and only if A has a higher expectation than
B) or the minimum loss probability model (A is preferred to B
if it has a smaller loss probability). If more than one para-
meter is involved, models can be either compensatory or non-
compensatory. In compensatory models a bad value of one para-
meter can be counter-balanced by a good value in some other
parameter~-the values of the parameters are traded off against
each other. The most well-known two parameter trade-off model
is the mean-variance trade-off model, as proposed in Markowitz'
(1959) portfolio theory. Obvious variants of such models are
mean-standard deviation trade-off, mean-semivariance trade—-off,
mean-probability of loss trade-off, etc. (Libby and Fishburn,
1977). Such models are discussed by many authors, including
Borch (1969, 1974), Tsiang (1972, 1974), and Levy (1974).

Some references for the mean-semivariance trade-off model were
given above.

The most prominent class of noncompensatory risk models are
lexicographic models. Lottery A is preferred to lottery B if
and only if the risk value of A is smaller than of B (or, if
the risk values are the same, if A has a higher expectation than
B). The risk value could be equated with the probability of
"ruin", for example. Some similar models are discussed in Libby
and Fishburn (1977), a general discussion of such models can be
found in Fishburn (1974).

Mean and variance are, of course, moments of a probability
distribution. If probability distributions are of a normal type,
these two characteristics are sufficient to completely determine
the distribution. To describe more general types of distribu-
tions, more moments are needed. Especially the relation between
the third moment, skewness, and the fourth, kurtosis, have to be
analyzed in their relation to "risk". But till now there are no
formal definitions or models of risk incorporating these higher-
order moments.

The only agreement researchers in the area of "risk" could
reach up to now seems to be the statement that there is no
definition of risk which could be accepted by any larger fraction
of the scientific community. Not only might risk perception and
risk evaluation be a highly idiosyncratic enterprise, the same
may hold true for risk definitions and models.
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3. THE CONCEPT OF RISK ACROSS SCIENCES

In the following sections the concepts and definitions of
risk are analyzed as they appear in various branches of science
without trying to achieve completeness. We will then (in
Chapter 5) try to find out (1) what the definitions have in
common or where they differ, respectively, and (2) whether
they agree with, or differ from the psychological, pre-
scientific meaning of the term "risk".

3.1. The Concept of Risk in Mathematical Statistics

The following presentation is in the spirit of the
decision-theoretic approach to mathematical statistics, since
"risk" plays a less important role in "classical" statistics.
The definitions follow closely those of Ferguson (1967), see
also Raiffa and Schlaifer (1961) and DeGroot (1970) for similar
treatments. Only those concepts of decision theory are intro-
duced which are needed for the definition of "risk".

Definitions

1. H a nonempty set, called alternatively
states of nature, hypotheses, or
parameter space, depending on the
context in which they are used;
generic element 8

2. A a nonempty set, called action space,
actions available to the decision
maker (DM); generic element a

3. X a random variable, whose distribution
depends on 6; x indicates an
observation of X

4. S sample space (taken here as finite
dimensional Euclidean space)

5. P probability measure, defined on
(Borel) subsets of S

6. Pe probability measure, defined on
8 € H for subsets of S

7. L(&, a) real-valued function, defined on the
Cartesian product of H and A.

A statistical decision problem (or "game" can be charac-
terized by the triple (H, A, L); "nature" chooses a 6 in H and
an actor (the decision maker; DM) chooses an action a in A. Be-
for choosing a, the actor does not know the "true statue of na-
ture" nor has he any influence on nature. Depending jointly on
his action a and nature's 6, the DM will suffer a loss L(8, a).




The loss is zero if the DM chooses the best action in the
situation.

To be able to choose the best action, the DM will want to
get some information. He obtains information by performing an
experiment in which he observes the realization (outcome) x of
a random variable X, the density Pe of which depends on the ©

choosen by nature. The action the DM will take depends, of
course, on x. A decision function is a function d: X'» A
which preassigns a decision a = d(X) to each observation.

The loss the decision maker will suffer depends on the
random variable X. Therefore, the loss itself can be consid-
ered as a random variable,

L(8, d({X)) .

The expected loss of L(8, d(X)) when 8 is the true state
of nature is called the risk function,

R(8, d) = Eg [L(S, d(X))] '

which gives the average loss when 6 is the true state of nature
and the DM chooses d.

For many purposes it is sufficient to define the expecta-
tion as the Rieman integral

R(e, ) = [ L(8, d(x)) dF, (x/8)

where Fx(x/e) indicates the distribution function of the random

variable X, given the true state of nature is 6.

The definition of a risk function may be interpreted by a
quote from Ferguson (1967, p. 9): "It is a custom, ..., that
the choice of a decision function should depend only on the
risk function R(6, d), (the smaller the value the better) and
not otherwise on the distribution of the random variable
L(®, d(X)). (For example, this would entail the supposition
that a poor man would be indifferent when choosing between the
offer of $10,000 as an outright gift, and the offer of a gamble
that would give him $20,000 with probability one half and $0
with probability one half.)" Ferguson then continues in stating
that there is good reason for the statistician or DM to behave
this way, provided the loss is measured in terms of utility.
This point is not further elaborated in the book. Other
statisticians do not care at all how the loss is measured, e.g.,
Mood and Graybill (1963).

If the statistician is willing to assume a prior distribu-
tion over the parameter space H, as it is done in Bayesian
statistics, the Bayes risk of a decision rule is defined as the




expectation of the risk function. (The formal statement is
somewhat more involved and will not be presented here.)

To summarize:

1. The risk function is the expected value of the loss
function (no prior distribution assumed)

2. The Bayes risk is the expectation of the risk function
(prior distribution is assumed).

If the DM chooses a decision rule as to minimize risk,
he will minimize an expectation, i.e., the first moment of
the loss (or risk) function. This is formally equivalent to
the expected value or expected utility principle to be
discussed in Section 3.3. It must be kept in mind that the
expectation is just a real number. The whole situation is
reflected in this number in such a way that the DM has a
preference ordering over his actions with respect to that
number: minimize loss (or risk). No specific psychological
meaning is attached to the term "loss". The fact that only
loss is considered but not gains is only induced by the
problem formulation, for methodological convenience.

3.2. Risk in "Modern" Utility Theory

"Modern" utility theory begins with the pioneering work
of one of the greatest mathematicians of our century, John
von Neumann, and was laid down in 1944 in a book entitled
"Theory of Games and Economic Behavior", by von Neumann and
Morgenstern. Mostly the second edition, published in 1947,
is referenced, because it contains the proofs of the theorems.
Later work by Savage (1954), Luce and Raiffa (1957), Fishburn
(1964, 1970), Keeney and Raiffa (1976), and many others, has
substantially enriched and refined the theory. This kind of
utility refers to conditions of decision making under un-
certainty, as opposed to decision making under certainty of
the (neo)classical economic school.

I will not try to describe what "modern utility" is, but
will right away describe how risk is handled within this frame-
work. To be able to do so, some formal machinery is required.
This will be introduced first. For a systematic introduction
into unidimensional utility theory, the readers may wish to
consult Chapter 4 of Keeney and Raiffa. We follow their
presentation.

A lottery, L, is defined as a probability distribution
over consequences (outcomes), i.e., the lottery yields outcome
x5 with probability P/ i=1, 2, ..., n. The (uncertain)

consequences of a lottery are conceived as a random variable X.
By definition of the expectation operation, the expected
consequence is given by




_ > n
X = E [%] = P P;Xs ' (1)
i=1
and the expected utility by
[ _ n
E u(x)] = L p: u(x:) ' (2)
i=1 *+ *

where u(xi) denotes the utility attached to outcome x;. It

is assumed that the decision maker wishes to choose the
lottery which maximizes expected utility ("EU-model").

The certainty equivalent of a lottery is the amount Q such

that the DM is indifferent between L and the sure-thing Q (i.e.,
the prospect of getting amount x for certain), i.e., Q ~ Ll/.

The utility of Q is given by u(Q), the utility of the lottery
is defined by its expected utility in Equ. (2), so we have:

u(®) = E[u(’i)] ] (3)

The certainty equivalent is also called cash equivalent and
selling price of L.

Now we come to the definition of risk aversion. Speaking
intuitively, a person is risk averse if he or she 1s conserv-
ative, does not like to gamble, etc. In the framework of
utility theory, risk aversion is defined as preferring the
expected consequence of any nondegenerate lottery L to L it-
self. (A lottery is called nondegenerate if no single
consequence has the probability of one of occuring, a sure-
thing is therefore a degenerate lottery.) From this it
follows directly that the utility of the expected consequence
must be greater than the expected utility of the lottery,
again valid for all nondegenerate lotteries,

u[E(EZ)] > E[u(§)] . (4)

An immediate consequence of that definition is the fact that a
decision maker is risk averse if and only if his utility
function is concave; this theorem is very simple to prove

é{The sign ~ indicates indifference, > (strict) preference,

and <= weak preference (preference-indifference). Numerical
relations are denoted by > or 2, as usual. "Iff" is used here to

denote "if and only if".



(Keeney and Raiffa, 1976, p. 149). The DM is risk prone if he
prefers any nondegenerate lottery to the expected consequence
of that lottery. The utility function of such a DM is convex.

Figure 1 provides an example of a utility function of a

risk averse decision maker. The certainty equivalent Q is
smaller than the expected consequence x of L; this is generally
true for all risk averse DMs who have increasing utility
functions over nondegenerate lotteries. Obviously, the DM is
cautious in the sense that he is willing to give up some

amount as compared with the expected consequence in order to

get a smaller amount Q for sure. The difference between x and

2/

Q is called risk premium (RP)~,

“>

RP(X) = x - ' (5)
the risk premium equals the difference between the expected
consequence and certainty equivalent. The RP is positive for
a risk averse DM, given the utility function is increasing.

Until now it was implicitly assumed that the X; were

positive, i.e., potential gains. Now the DM could be faced
with the frustrating situation that all the xi's were negative,

the lottery L~ is a probability distribution over losses (nega-
tive consequences). In such a situation a DM who is risk
averse would try to get rid of that lottery, he would be
willing to pay a certain amount for achieving that goal. The
amount he would be willing to pay to get rid of the lottery is
called insurance premium (IP),

Ir = % , | (6)

that is, the insurance premium is the negative of the certainty
equivalent. The DM would be willing to pay an "insurance_
premium” of $ K if his certainty equivalent for lottery L is

-K. Grayson (1960), for example, analyzing the utility functions
(for money) for oil wildcatters found several persons exhibiting
convex utility functions.

2/

— This definition of "risk premium" deviates from that of
insurance mathematics, which uses the term for the whole premium
to be paid for getting the insurance contract.
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FIGURE 1

Example of a utility function of a risk averse DM

"t
UO%) ——————————————————————
i
X |
S I —— i
g :
______ | risk I
u(x1) g : : premium :
]
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[ ! I |
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] l ] 1 —>
Xq X X Xo X

The risk premium of a lottery ﬂ(xl, P x2) equals the

the expected value x of that lottery, minus the certainty
equivalent 2. The risk premium is equal to the amount
the decision maker is willing to give up from the
expected value to avoid the risk inherent in the lottery.
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Let me pause for a moment to point out some differences
between the classical economist's "utility" function and the
one derived above. The "utility" function with decreasing
marginal utility (e.g., with a concave shape) has no measure-
ment-theoretic defined units. As Keeney and Raiffa point out
correctly (1976, p. 150), such "utility" functions have no
valid interpretation in terms of expected utilities--any such
assertions are meaningless. Furthermore, in my opinion, it
has to be pointed out that the interpretation of a concave
increasing utility function as representing a risk averse DM
is valid if and only if the utility function was established
by a procedure involving the establishment of certainty
equivalents for lotteries (or similar procedures), i.e., for
"risky" utility measurement procedures (see, e.g., Fischer,
1977). Or, in other words, the characterization of utility
functions representing risk averse or risk prone DMs is valid
only for von Neumann-Morgernstern utility functions, but not
for the classical econonist's "utility" function. The next
few sections deal with measures of risk aversion.

Measures of Risk Aversion. As we just saw, von Neumann-
Morgenstern utility functions with a concave shape indicate
risk aversion. Now it would be nice to be able to express the
degree of risk aversion. Is the degree of concaveness, i.e.,
the bend of the curve, a valid indicator of risk aversion? If
this were true, the second derivative u" of u with respect to
X should give us the information needed. But, as shown by an
example in Keeney and Raiffa (1976, p. 159), this is not the
case. Two utility functions may have different second deriva-
tions, but do have the same RP associated with them. But the
sign of u" gives some information, if u" is negative, the slope
of the curve is concave and the DM exhibits risk aversion, if
u" is positive, the slope is convex and we conclude that the
DM holds a risk prone attitude toward choices between lotteries
(it will be assumed throughout that u is twice continuously
differentiable).

Now, following Pratt (1964), local risk aversion at x is
defined by

r(x) = u"(x)/u'(x) i (7)

i.e., the curvature of the utility curve at a point x is set
into perspective to the slope.

Multivariate risk aversion will not be treated here, see,
e.g., Stiglitz (1969) or Keeney (1973).

3.3. Risk in Early Social Science Experimentation

It is but recently that "risk" is a research topic in the
social sciences. Some of the early experimental work will be
briefly reported now. The findings of some of the experiments
led to the development of formal theories of risk, to be
reported in the next chapter.
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Most of the more recent empirical work that has any rela-
tion to "risk" was done in the framework of behavioral decision
theory (Edwards, 1954a, b, c, 1961; Becker and McClintock, 1967;
Rapoport and Wallsten, 1972; Slovic, Fischhoff and Lichtenstein,
1977). All of these studies use very simple lotteries, to be
called "gambles" in the sequel. The "riskiness" was always
derived from preferential choice data, direct estimates of per-
ceived riskiness were never given directly (as, for example,
in Huang's (1971) experiments). Results from the two different
response modes need not be identical, of course. This
whole issue refers to the old debate of "revealed" vs. directly
assessed quantities, see, e.g., Fischhoff, et al. (1977) dis-
cussion of Starr (1969). As long as the expected value of a
lottery is fixed and there is no skewness involved, variance
remains the main candidate for preferences. Then, variance is
identified with risk, so preferences are based on risk only.

If more than this one parameter varies, results are not so
easy to interpret.

The most elementary gamble g is of the following kind:
g = {rys pgr Tl

to be read as : Win amount rW

lose Iy (with probability Py, = 1l - pw). Often Py = P = k.

But sometimes the lotteries have a more complicated form.

with probability Py otherwise

When people have to choose among such lotteries, to what
aspect of the situation do they react?

(1) People exhibit preferences for certain probabilities,
e.g., Edwards (1953, 1954a, b, c);

(2) People exhibit preferences for certain levels of
variance, e.g., Coombs and Pruitt (1960).

Which is more important? According to Edwards (1954c), probabil-
ity preferences are the more important of the two. But in this
experiment probability and variance preferences were totally
confounded. Results of Davidson and Marschak (1959) and
Lichtenstein (1965) indicate that variance preferences are very
important in determining choices between gambles. For their
preferred level of variance Ss give up a considerable amount

of expected value. -

(3) People exhibit preferences for skewness levels,
e.g., Coombs and Pruitt (1960) and Lichtenstein
(1965), while

(4) KRurtosis preferences could not be established
(Lichtenstein, 1965).
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Problems arise in the interpretation of the results of
some of the studies mentioned since various factors do not
vary independently of each other--depending on the design of
the experiment.

Furthermore, it must be stressed that there is (almost) no
theoretical background behind these studies, a fact that has
been critized by Coombs (1972), for example. All of them have
rather a kind of explanatory character.

Points (2) to (4) above were formulated in terms of
moments of a probability distribution. There are also some
experiments which were conducted on the components of the
lotteries, i.e., the probabilities to win and lose (pW and pL)

and the amounts to win and lose (rW and rL).

According to results of Slovic (1967), Slovic and Lichten-
stein (1968) and Andriessen (1971), people seem to place more

weight on the lose components P, and ry, than on the win

components. These results were obtained by simple regression
techniques, where the worth of a gamble is described as a
linear combination of the components

W =

+ 8 + B8

Bg * ByPp *+ Borp * B3Py * BTy -

The B's are just parameters fitted by least squares, and the
model is assumed, or superimposed. It is not shown that Ss
actually use this information aggregation rule which obviously

does not follow SEU theory.

Anderson and Shanteau (1970) took a perhaps more promising
approach to the same problem. Instead of a regression paradigm,
these authors used a ANOVA design with a functional measurement
analysis (see Anderson, 1974). This makes it possible to test
more general composition principles. The components were taken
as subjective representations of the probabilities and values
involved.

Anderson and Shanteau found that a multiplying model did
quite a good job across different experimental situations,
while the adding model exhibited some more serious inadequacies,
thus casting some doubts as to the approoriateness of a
regression formulation of the problem.

In social psychology, the so-called "risky shift" phenomenon
has gained great attention--several hundred papers were published
on it. Risky shift refers to the observation first reported by
Stoner (1961) that groups have the tendency to prefer to accept
riskier options than the average of the group members. A
detailed analysis of that literature from a decision-theoretic
viewpoint is given in Schaefer (1978). The main conclusion is




_14_

‘that risk is not inherent in the tasks subjects have to do.
There may be shifts, but not on a dimension to be called "risk".

Some very insightful experiments on risk in relation to
insurance buying behavior in a laboratory setting were per-
formed by Slovic (1976). He offered subjects "fair" insurance
premiums (premium equal to the expected loss) for various
(pL, rL) combinations, ranging from (.001; 1,000) to (.5; 2):
ry in dollars. Typically, subjects bought much more insurance
for the high probability-low loss event, the maximum being
about 70% for all offers for (.25; 4). Slovic then tested
several parameters. So, for example, if the premium is sub-
sidized, people buy a little more insurance, while for
commercial insurances they buy less. But the general pattern
is left unchanged. When the situation was transformed into a
more realistic setting of a "farm game", the same pattern
emerged again, although generally more insurance was bought.

These findings are highly interesting and contrary to what
one might have predicted. While in the public discussion "low
probability-high consequence" events play a dominant role to-
day--people organize into committees, protest on the streets
against options with such characteristics, e.g., nuclear fueled
power stations, etc., the same (?) people are obviously not
willing to insure themselves against events which effect them
perhaps even more directly, such as floods or earthquakes.

Slovic proposes two possible explanations for his findings.
First, the utility function may be convex over losses, in-
stead of concave as is normally assumed. Such a functional
form would indicate diminishing marginal disutility over
losses. Convex utility curves were actually found in some
studies, e.g., by Galanter (1975, Galanter and Pliner (1974),
Swalm (1966), and Tversky and Kahnemann (1975), and the above
mentioned work by Grayson. A convex utility function would
imply, taking SEU theory for granted, that nobody buys insurance.

The second explanation is a threshold model for the probabil-
ities involved: If they are too small, i.e., below a certain
threshold, they are ignored. People just act as if "that could
not happen" to them. Anyway, both of Slovic's explanations are
in contrast to SEU theory.

Slovic also thought about ways of how to sell insurances,
especially to people in areas menaced by natural hazards, such
as floods and earthquakes. One possibility would be to sell
insurances in form of a "package", insuring against the pre-
ferred high probability-low consequence events, but also to
some extent against the ruin combination of low probability-
high consequence events. This could be coupled with other
measures, such as reimbursement of a part of the premium if
"nothing happened". Furthermore, the time horizon for the
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insurance plan might be important: If the ruin probability is
computed for, say, a time period of 20 years in some residential
area, the probability is significantly higher as compared to a
reference time of a year. With this little trick, the threshold
may be overcome.

4. FORMAL THEORIES OF RISK AND RISK PREFERENCE

4.1. why Formal Theories? What Are Formal Theories?

Formal theories offer some advantages over purely verbally
formulated theories. One obvious advantage is precision: Formal
theories are based on a set of assumptions (axioms) from which
consequences are deduced in a mathematical way. If the real
data fulfill the axioms, often rather strong statements can be
made. The axioms should be stated such that they make sense
and are testable, though it will not always be possible to test
all of them (Adams, Fagot, and Robinson, 1970). Since certain
structural relations are involved in most of the axioms, the
failure to fulfill them will cast light on what may be wrong.
It might then be possible to weaken the axioms (at the expense
of less informative conclusions) or to re-formulate them.

The theories we will have to consider belong to the domain
of the axiomatic theory of measurement (Krantz, Luce, Suppes
and Tversky, 1971). Very generally, axiomatic theories pro-
cede as follows. A person has to make a set of judgments or
decisions. Usually the judgments are ordinal ones, e.g., the
judgment "rod a is longer than rod b". The goal of measure-
ment consists in mapping some of the features that hold true in
the empirical world into numbers, such that the relationships
which govern the empirical world (the length of a set of rods,
for example) are faithfully mapped into numbers.

More formally, a measurement procedure consists of the
following two steps:

(1) Representation theorem: A mapping from an empirical
relational system into a numerical one is constructed which is
at least a homomorphism. A relational system is a set together
with one or more relations defined on the elements of the set.
Let A be a set of elements of value and a binary relation "en
interpreted as "is not preferred to", the relational system is
then given by <@, 4> . Thus a £ b, b € A, means that a is
not preferred to b. The corresponding numerical relational
system might be IR, the reals, together with the relation "<",
"not greater than". Again, very loosely, the homomorphism
states that if a € b in the empirical relational system holds
true, then also a < b in the reals. A homomorphism is a mapping
which preserves the structure.
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(2) Uniqueness theorem. The uniqueness theorem defines
what other homomorphisms are also permitted, by which the scale
quality of the measurement is defined, e.g., semiorder, inter-
val scale, ratio scale.

The whole system has the advantage that the responses of
a person are not given on a scale the quality of which is
stated by the experimenter (e.g., interval scale for ratings),
rather, the scale quality is derived and can be taken for
granted, once the conditions are met. Furthermore, it is
important to note that in many such procedures that have a
measurement-theoretic foundation, only responses on an ordinal
scale are required, such as "apple a is not heavier than
apple b". This task should be very easy for judges. Only
procedures with a measurement-theoretic foundation can guarantee
that one really knows the scale quality, which is one of the
essentials of measurement. A short glance in the above-
mentioned book by Krantz, et al., will convince that the
actual construction of theories with an axiomatic measurement-
theoretic foundation is by no means a triviality.

Perhaps one should add some sceptical remarks on the value
of axiomatic theories of measurement. First, not all assump-
tions (axioms) are really testable. This is generally true for
structural assumptions, like the Archimedean, but also, though
to a lesser extent, for independence assumptions (see, e.qg.,
von Winterfeldt, 1976). Second, if there is only a single
violation, there exists, strictly speaking, no representation.
Or, in other words, there is no developed theory of measure-
ment errors. Elements of such a theory are promised for the
second volume of the Krantz, et al., book. Alternatively, one
could consider to construct probabilistic axiomatic theories
of measurement, as proposed by Domoter (1969). But the

development of such theories is not too satisfactory yet.
Third, a practical disadvantage is the fact that often very

many judgments are required, some of which may be rather
artificial or hypothetical. Nevertheless, the development of
axiomatic theories for the social sciences is a very important
contribution, because of the theoretical status of a science
can be best assessed from the status of the development of its
measurement theory, or theories (and techniques, of course).

4.2. Risk Perception, Risk Preference, and Risk Management

The distinction mentioned in the heading is obvious,
though often overlooked or at least surrounded with some
"fuzziness". Credit must be given to Clyde Coombs who, in all
his writings, was always very clear on that issue. Risk refers
to the riskiness of an option. It is a matter of perception,
or estimation. The measurement of risk, therefore, induces an
order relation on risk estimates. These dimensions are in-
dependent of each other. Risk preference, on the other hand,
simply refers to the amount of risk you like; do you prefer to
gamble or to be on the safe side? More specifically: What
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amount of risk do you like best? This is a question of risk
evaluation; risk preference induces an order relation on risk
evaluation. Two persons may very well agree on the riskiness
of a set of gambles, but may nevertheless prefer different
gambles, rank-order them differently according to their pers-
onal preference. This is not to say that people should agree
on riskiness of options. After this distinction was made, it
seems evident that there are different theories for both aspects,
risk preference and risk (estimation). Otway (1977) intro-
duces a third aspect, risk management, which refers to the
organizational and political handling of risky options. This
latter aspect is especially relevant for risks that affect
society, such as the risks of various transportation models,
of energy systems, and large-scale technology in general.

4.3. Theories of Risk

4.3.1. Polynomial Psychophysics of Risk (Coombs and Huang)

The first formal theory of a structure of perceived risk
was proposed and tested by Coombs and Huang (1970). The
theory deals with three transformations of simple gambles of
the kind (W, p, L) with p =% and W > L, that is, gambles with
positive expected values.

The transformations used were of the following kind:

(a) a(g) = (W+a, p, L - a) E [a(g):!= E [g]- (8)

This transformation has the property that all possible determ-
inants of "risk", such as variance, maximal loss, expected loss,
expected regret, increase with a. One could expect, therefore,
that perceived risk of a(g) is a monotonically increasing
function of a.

(b) b(g) = (W+ Db, p, L + b) ; E [b(g)]= E [g] + b. (9)

Transformation b(g) has no effect on the variance or on ex-
pected regret, but changes the maximal loss and the expected
loss, which covary inversely with b. The expected value
increases by amount b.

(c) c(g) = (W, p, L)c , i.e., g is played c times independently
E [c(gﬂ = ¢ - E [g] . (10)
This transformation c(g) is a convolution of g with itself.

It was postulated that perceived risk R would follow a
distributive conjoint measurement model,
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R(g) = [u(g) + B(g)] v (g) ’ (11)

where o, B8 and y are the subjective correspondants to a, b and
c. The model was tested by a conjoint measurement analysis.

4.3.2. Pollatsek and Tversky's Risk Systems

Let us next consider the Pollatsek and Tversky (1970)
risk theory in some more detail. On the basis of some assump-
tion on the orderings of perceived risk a ratio scale of risk
is derived. First, a formal statement of the theory will be
given, to be followed by some interpretation and cross ref-
erences.

Definitions

s= {7 B, C, ...} probability distribution over R

A OoB convolution of probability distributions,
i.e., if two lotteries are given by
A = (al, pl; ayy p2) and
B = (b;, 9q; by, g,) , then
A ©9B= (al+bl, P19y; al+b2, P1d,; a2+bl,
Ppdyi aytbys P,d,)

4

binary relation of comparative risk
"A X B", is to be read as "A is at least
as risky as B"

'} the null gamble: a value of zero is
obtained with probability one ‘

The relational system <<;, o, ) is a risk system if the
axioms of extensive measUrement” (weak order, cancellation
(monotonicity), solvability, Archimedean) are fulfilled. The
convolution operation as defined above is rather similar to
the convolution operation in length measurement.

What do the axioms impose on the judgments? The first
axiom states the comparability of all lotteries, and their
transitive order; the second the compatability with the
convolution operation. The third and fourth are technical
axioms as they are typically used in the axiomatic theory of
measurement; they are not testable, whereas the first two are
testable.

As stated in 4.1., the representation theorem is the core
of any measurement theory. It reads as follows: If Al - A4
are fulfilled, then it is possible to construct an additive
ratio scale which preserves the risk order. If <3, o, >
is a risk system, then there exists a real-valued function R,
defined on S, such that for arbitrary A, B, € S:
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i) A X B iff R(A) = R(B)
ii) R(A © B) = R(A) + R(B)
iii) If R' is another function fulfilling i) and ii), then
R'(A) = aR(A) for certain o > 0; (iii) gives the

uniqueness condition.

The approach taken by Pollatsek and Tversky is essentially
an extensive measurement structure. But in contrast to other
such structures, the risk scale can take on negative values.
This is not as unreasonable as one might first think, since a
convolution of two lotteries A and B may be perceived to be
less risky than A and B taken alone. Intuitively, however, a
negative risk is not a very appealing notion.

A further consequence of the assumption is the fact that
a sure-thing need not have a risk value of zero associated
with it. A sure-thing of amount zero has a risk of zero, a
positive amount has a negative risk, and vice versa. This may
not be a very appealing property of a risk measure, too. It
might be instructive to go through a little example: Lottery
A = (200, %, -200) is judged to be riskier than B = (300, %,
~100) by most people. But B was generated by the addition of
a sure-thing of 100 to A. Therefore, there must be a negative
risk associated with the option to get $100 for sure. This
consideration motivates the following axiom:

A5: Positivity, if K is a degenerated lottery with k > 0,
k€ X, then: A= A o k for all A in S.

To come to even stronger consequences, some more axioms have
to be introduced:

A6: Monotonicity, for all A, B€ S with E [A] =E[B] =0
and for arbitrary t € Ill, t > 1,
i) tA S A '

ii) A S B iff tA S tB .

Axiom 6 tells us that risk increases for lotteries with zero
expected value, if they are multiplied by a positive constant,
and that the risk order is preserved under multiplication with
a positive constant. (i) is similar to an ad hoc assumption
on risk used by Coombs: The throw of a coin with a higher
denomination is more risky than the throw of a coin with lower
denomination (Coombs used only a weak relationship), and (ii)
says that the risk order is independent of the denomination of
the coin. A6 imposes a quite strong behavioral assumption,
which can be tested, of course.

A7: Continuity, a purely technical axiom which is not
behaviorally relevant.
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A relational system fulfilling the axioms of extensive
measurement and in addition axioms A5 to A7 is called a
regular risk system. The analysis of such a system leads
to an important theorem: If <(S, o, é;> is a regular
risk system, then there is one and only one 6, 0 < 8 < 1,
such that for all A, B in S (with finite expected value
and variance):

ANB iff R(A) 2 R(B) , with R(A) = e V[a] - (1-e) E [a].

This very astonishing result tells us that in a regular
risk system a risk ordering is generated by a linear combination
of expected value and variance, i.e., the perceived riskiness
of a lottery depends only on the expected value and the variance
and on a single parameter, 6, which is person specific, of
course. The value of 6 can easily be derived from some judg-
ments on risk-equivalence between lotteries. The value of 6
defines the relative contribution of the expected value and of
the variance to the perceived riskiness of a lottery, i.e., it
captures a variance-expected value trade-off ("VE-theory").

From the early definitions (see 2.) it was evident that many
authors viewed the variance as the single most important factor
in determining the risk of an option. But it is also evident
that the expected value has to play a role. Now, both of these
contributing factors are captured in a very simple formula.

As will be noted, a further possible candidate, skewness, is
not incorporated into the theory.

From a set of axioms, none of which seems to be really
counter-intuitive, some very strong consequences have been
deduced. The most important is theorem 2, giving risk as
being generated by a linear combination of expected value and
~variance. Some other aspects are also worth being restated,
such as the possibility for a negative risk and a non-zero
risk associated with a sure-thing. These aspects might prove
very difficult to empirically fulfill the theory.

A further property related to this risk theory can be
stated as follows: Define a preference order that depends only
on expectation and variance as VE-dependent, if for any two
lotteries £ and g

V(L) = V{(qg) and E(L) = E(q9) > L ~g .

A preference order is dependent on a (Pollatsek-Tversky) risk
measure, or R-dependent, whenever

R(ZL)

i

R(qg) ) L ~gqg .

and

IA
|_I

]

R(Z) ev(L) - (1l-8)E(L) ’ 0 <6
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Any preference order that is R-dependent is also VE-dependent,
but not conversely. If utility can be expressed as a power
series in money, then there is no utility function which is
compatible with a preference order that depends only on the
risk measure, and only the quadratic utility function is
compatible with a VE-dependent preference order. As Krantz,
et al. (1971) point out further, this negative result can be
taken as evidence against Pollatsek and Tversky's risk system
or against expected utility theory. As a consequence, as it
appears to me a theory of risk must be defined such that more
satisfactory preference orders are compatible with it.

4.3.3. Huang's Theory of Expected Risk

Huang (1971a) proposed a theory of risk in which "risk" is
defined as expected risk (ER):

ER = Y P(x) f(x) ’
%X
in which

£ denotes a real valued function on X, the risk

function,
XX is an outcome, or consequence,
P is a probability measure on X,
X is the set of all possible outcomes.

A lottery or gamble 9, is subjectively not more risky
than 9yr 9 < g,r if the following conditions are fulfilled:

= < g, Aiff r(gy) < r(g,) iff Z Py f(xy5) = Z P, £(x,:)
i i

Lottery g, is no more risky than 9 iff the risk value of 95
is less or equal to that of gy which is the case iff the
weighted sum of the risk values of the outcomes, i.e., f(xi)
of 9, is not greater than that of g,- The weights are the
probabilities of occurrance, therefore, the risk function is
called expected risk (function).

The axioms used to establish this result are essentially
those of Fishburn (1970, Ch. 8.4.) for an expected utility
representation, which are based on mixture sets. Huang's
uniqueness theorem states that the expected risk function is
an interval scale.

Expected risk theory is very similar to (S)EU theory;
the probability component is the same, but u(xi) is replaced
by f(xi). Expected utility for discrete probability distribu-

tions can be written as:




-22-

EU = } P(x) u(x) 2y (u(x) - x) P(x) + L =xP(x)
x€X x€X X€EX

EV + ¥ (u(x) - x) P(x)
X€X '

= EV + R ,

where R denotes the influence of a "risk" factor which relates
the EV to the EU. '

As was shown later by Huang (1974), EU theory is a
special case of the expected risk theory. Furthermore, as one
might have expected, EU theory is a special case of the
Portfolio theory of Coombs (1967), where the DM prefers either
minimal or maximal levels of risk, but nothing in between.

Expected utility theory is usually considered to be "the"
normative theory of decision making under uncertainty. Coombs
(1972, p. 2) writes in this context: "Indeed the notion of
maximizing expected utility made the notion of risk super-
fluous. The axiomatization of utility, first by von Neumann
and Morgenstern (1947), only strengthened this view". 1In
modern and sophisticated texts on utility theory, such as
Fishburn (1964, 1970), the term risk is not even mentioned in
the index though the books are well indexed. Coombs concludes:
"Such theories simply avoid the psychological reality" (loc.
cit ). Thcories of risk are designed to be alternative, and
maybe psychologically more adegquate, formalizations of decision
making under uncertainty. '

4.3.4. Some Empirical Results

Coombs and Huang (1970b) tested their own polynomial
risk theory. Some of the results can be summarized as
follows:

(a) Perceived risk increased with increase of a in
transformation (1); 20 out of 28 Ss.

(b) Perceived risk decreased with increase of b in
transformation (2); 26 out of 28 §s.

(c) Parameter c acts as an "amplifier", as assumed
by the distributive model.

(d) Most Ss were reasonably consistent, there were
hardly any intransitivities; the conjoint-measurement
analysis strongly favored the distributive and the
dual-distributive model, which could not be
differentiated on the basis of the data. On psycho-
logical grounds the distributive model was favored.
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A further test of the Coombs and Huang theory was under-
taken by Barron (1976). The original design was expanded to
test the model when odd-even effects may be operating. An
odd-even effect refers to the fact that in an odd number of
repetitions of a play there is no non-zero probability asso-
ciated with a zero pay-off. Since people might weigh the lose-
components (rL‘and pL) more strongly that the win-component,

this may, in turn, have an effect on the perceived riskiness
of odd vs. even numbers of repetitions of a gamble.

The design was a complete 3 x 3 x 3 factional design,
where the factors refer to the transformation a(g), b(g)
and c(g) of the Coombs and Huang study. The repetition factor,
c, was set at 3, 4 or 5, whereas Coombs and Huang used c
levels of 1 and 5. Ss task consisted in rank-ordering the 27
stimuli according to perceived risk.

Based on a conjoint measurement analysis, it was clearly
evident that the distributive model was not fulfilled, since
'single factor independence was severely violated by most of
the Ss, especially for the c-factor. One person fulfilled the
requirements of the distributive model, and none any other
conjoint measurement model. When all gambles with zero ex-
pected value were removed, i.e., the design was reduced to
3 x 2 x 3 factorial, five Ss fulfilled the additive model.

The results of this experiment are, of course, negative
for the Coombs and Huang theory, but also other conjoint
measurement models were not adequate which tells us that there
was no conjoint-measurement structure which really described
the data. Interestingly enough, there was a rather high
similarity of the 13 Ss rankings of the 27 stimuli (Kendall's

W= .764, x> > 258, p < 0.001) which indicates that risk is

a construct which is used similarly by various persons (at
least concerning simple gambles). The question is only how
they use it. )

The Pollatsek and Tversky theory could not be rejected on
the basis of Huang's (1971b) data for risk derived by pre- 3/
ferential choice, but was rejected for direct risk orderings='.
Coombs and Bowen (1971) tested VE-theory by a skewness trans-
formation on gambles which did not affect mean and variance.
- The results speak against the theory. But Pollatsek and
Tversky (1970) had already pointed out that skewness is a
problem for their theory and that it might be necessary to
restrict the range of the theory to symmetric lotteries.,

2/A direct risk ordering is an ordering of lotteries
according to their perceived risk.
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Huang tested the various risk theories (expected risk
theory, additive risk theory of Pollatsek and Tversky, and
polynomial risk theory of Coombs and Huang) in two experiments.
Ss had to give a direct ordering of lotteries according to
perceived risk, and to express preferential choices, from which
a risk order was deduced by means of unfolding theory. Due to
the complex design and data manipulation, the results are some-
what difficult to evaluate. But some points can be made:

(1) Direct risk estimates and risk derived from pre-
ferential choices seemed to be equally valid,
though they led to different risk orders in about
a third of the cases.

(2) All risk theories were more or less valid for
describing the results of experiment 1, although
the VE-theory is violated by the b-operation for
direct risk estimates4/.

(3) For gambles with fixed probabilities both the VE
and the expected risk theory were fulfilled. These
theories cannot theoretically co-exist, but they
could not be separated on the basis of Huang's
experimental data.

A further test of Huang's theory was undertaken by
Aschenbrenner (1974, 1978). He varied also the probabilities
in the lolierlies he used. UL his 2VU Ss, lb were consistent
enough in their risk orderings; 13 out of the 16 Ss fulfilled
the conditions of the expected risk theory. -

4.4. Theories of Risk Preference

Three theories of risk preference have been proposed thus
far. From them, only Coombs' theory has drawn some attention,
whereas Krelle's formulations passed almost unnoticed, at
least in the English-speaking world. The three theories will
be described in turn.

4.4.1. Coombs' Portfolio Theory

A theory of risk preference was developed by Clyde Coombs
in 1967. There are some more recent formulations of it (Coombs,
1972, 1975). 1In this paragraph, only a rather informal descrip-
tion of the theory will be given.

4/

—" The b-operation refers to the transformation b on
gamble a used by Coombs and Huang (19270b).
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The central idea of the theory is easily stated: People
have a single-peaked preference function over risky options
with equal expected value, i.e., over lotteries. 1In such a
situation, it is hypothesized that every person has a preferred,
or "ideal" level of risk for a given level of expected value.

As the risk of lotteries departs from this ideal, he likes

them less. Perhaps you like some risk; too much is too fright-
ening, but no risk is dull. Just a little excitement, that's
the optimum. This notion of single-peakedness is, as behavioral
scientists know, the core of Coombs' unfolding idea (1953,
1964).

More specifically, Coombs makes the following assumptions:

A.l.: From two lotteries with equal expected value, you
choose the one with the risk which you like best, i.e., which
is close to your "ideal" risk level (which may be "no risk" or
"maximum risk" or anything in between).

A.2.: The risk-preference function is single-peaked: There
is one and only one ideal value, from which the preference de-
creases on both sidesé/. A third assumption need not concern
us here.

If these assumptions are met, a "portfolio" structure, as
Coombs calls it, can be represented in a perceived risk-expected
value space as shown in Figure 2.

Coombs portfolio theory is a psychological-descriptive
theory, not a normative one. As has been shown earlier, norma-
tive theories postulate that the DM wishes (or "should") to
maximize his expected value (or utility), or minimize the "risk"
(variance) if the expectations are equal, as assumed in Marko-
witz' portfolio theory (which is a theory of optimal composition
of shares and has to be distinguished from Coombs' theory).

Testing the theory. As one will have noticed, "risk" is
left undefined in Coombs' theory. People are supposed to have
an ideal risk for any given level of expectation, but it is not
spelled out what risk is. This should not irritate, since

5/

=/ This assumption may look trivial and self-evident at a
first glance. But it is not. Consider, for example, the tem-
perature of tea as you like it best. Most people prefer hot
tea to luke-warm tea and hot to steaming hot. But they prefer
cold to luke-warm tea. In a recent contribution, Coombs and
Avrunin, 1977a, b) study the conditions to be met for single-
peakedness to arise. Especially in multi-attribute (n > 2)
situations, these conditions are very demanding.
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FIGURE 2

Indifference curves and ideal crest I[E] of
Coombs' portfolio theory

Perceived Risk
A

R//////ﬂ—

E

$» Expected Value

For each level E of expected value there is an “‘ideal’’ risk. The points of
ideal risks are connected by the "ideal crest I[E]. If a gamble departs from
the ideal crest to the north, the increase in risk has to be compensated by
an increase in expected value. If it departs from the ideal to the south,

the decrease in risk has to be compensated by an increase in expected value.
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there is no generally accepted definition of risk. But in
order to test the theory, some "ad hoc" assumptions are ne-
cessary. To illustrate, let us consider the assumptions of
the Coombs and Huang (1970a) study. The lotteries used there-
in had the standard format (ry, %, rL) with IrLI =ry ~ k, for
various values of Ly thus, the expected value was always
positive and holds constant in a set of such lotteries.

Assumptions (see also next section)

A.1. The perceived risk increases monotonically with range
lng - rLl and variance, e.g., the lottery (30, %, -10) is

judged less risky than (70, %, -50); EV = 10 (cents).

A.2. Repeated play of the less risky lottery is perceived to
be less risky than a single play of a lottery with the same
expected value and equally extreme outcomes, i.e., the same

range Irw,— rLI. Example: Playing (30, %, -10) twice should

be less risky than playing (60, %, -20) once. This assumption
seems to be plausible, since the extreme outcomes of the
repeated gamble are also 60 and -20, but they are less likely
(.25 instead of .5), with constant EV. This assumption has
the additional advantage of granting the possibility of
analyzing repeated games.

A.3. In certain instances, it was assumed that adding a small
amount (10¢) to r would not increase the perceived risk, i.e.,

(30, %, -10) is at least as risky as (40, %, -10). This
assumption is less elegant, but it can be replaced by others.

These assumptions seem highly plausible, especially
assumptions A.l. and A.2.; therefore, it is less surprising
that: they are the core of the Coombs and Huang theory of risk
presented earlier. It is not the place here to describe and
evaluate the results of empirical studies in any detail, but
the results seem to indicate that the theory may describe
actual choice behavior very well, at least for simple gambles
as the ones described above.

4.4.2. Krelle's Axiom System A: Risk~-Preference Function

A further theory of risk preference is given by Krelle
(1968) in his axiom system A. 1Its formal development is
similar to standard expected utility theory, but the lotteries
are constructed differently. In all other instances a lottery
or gamble was defined as a pair consisting of an outcome X5

and a probability P £ = (xi, pi). Krelle defines a lottery
as a pair consisting of a utility u; and a probability Py

Zk = (ui, pi). It is assumed that the ui's used as primitives
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in the theory were derived from preference judgments in a
riskless setting.

Krelle then puts forth eight axioms, two equivalence
axioms, two dominance axioms, two continuity axioms and two
substitution axioms. Since they are fairly standard, they
will not be presented here. The critical axiom is axiom 9,
which completes his axiom system A, which gives rise to a
risk preference function. It reads as follows:

Axiom A9 (Independence)

Be L, = (Kl, 22, ceey Kk, fk+l’ ceay fn) and
L2 = (Kl, 22, ooy Kk, Kk+l’ ceey Zm) two lotteries
§ P; = 1, and Ly ~ Ly, with Zi = (ui, pi) which have the first
k elementary gambles £ in common. If the first k gambles are
replaced by other gambles, Kl', Kz', ooy Zk'; L. = (u,', p;:'}),
i i i
i=1, 2, ..., k, and with equal probability sum
n k .
L p; = L pg
i=1 i=1
two new lotteries Ll' = (21', Kz', .o, Kk', £k+l’ ey fn) and
| -
L2 - ('el'l 22'1 LS 'ek'l ‘ek_i_ll e -7 ‘em)

are generated and Ll' ~ L,

This axiom tells that component gambles that are equal in
two lotteries can be replaced by other gambles, provided that
the sums of the probabilities of the components are the same
(which is necessary to keep the overall probability normalized).
If the lotteries were indifferent in the first place, this
transformation should not alter this relation. Independence
axioms are the core of every expected utility representation
(Fishburn, 1970).

The development of the risk preference function now pro-
ceeds as follows. Let u' and u", u' < u", be such that all
utilities involved in the lotteries are in between, i.e.,

u' £ u £ u" for all u.

Due to three axioms (Krelle's axioms A2, A7, and A8) all
lotteries Ll’ L2, L3, ..., can be replaced by equivalent
lotteries which consist of two component gambles only and are
based on u' and u" as follows (solvability condition):

Ly ~ {u', p") ; (", p")]
L, ~ {(', q") ; (u", g} .
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Now, from the probability dominance axiom (A4), it follows
that

L1§L2< >p|| an ,

which is immediately clear, since Ll and L2 have the same

utility elements, so L, can only be weakly preferred to L2

1
if the probability for the "good" outcome is at least the same.
Now, a utility index U is attached to each lottery Ll’

U(Ll), and a componentwise evaluation of the pairs (u, p) is

introduced, such that the following two conditions hold:

i) L; =2 L& U(Ly) 2 U(L,)

ii) Ly = (El, £

2'
The function F is called evaluation function for gambles
(Chancen-Bewertungsfunktion). F is now defined as follows:
According to the substitution principle (A8) each individual
gamble £ = (u, p) in a lottery can be replaced by an equiv-
alent pair £' = (u', p') and £" = (u", p"). Now Krelle
(1968, p. 140) defines

F (ﬂ) = P" ’

without further comment. He then proceeds to show that the
value of F(£) = p" depends only on £ and not on the other
gamble in the lottery. Then Krelle proves that proposition i
and ii hold. Now the central concept is defined, the risk-
preference function (Risikoprdferenzfunktion).

According to axiom 2 (this says that the probabilities of
identical outcomes can be added without changing the overall
utility of the lottery), for 0 < p + q <1,

F(u, p+g) = F(u, p) + F(u, q) ’

and, therefore, for each t 2 0 with 0 < tp £ 1 we have
F(u, tp) = t -« F(u, p) .

Next, F(u, 1) is defined as p(u), F(u, 1) = p ().

The risk-preference function p has the following
properties:

- is strictly monotonically increasing

- can assume all intermediate values

- is continuous over the entire range

- (uniqueness) With p being a risk-preference function,
p =a+ bwith b > 0 is also a risk-preference
function, i.e., p is an interval scale.

ooy £n) = U(Li) = F(Kl) + F(Kz) + ... + F(Kn).
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but this range can be enlarged by a suitable transformation

such that the risk-preference functions agree with each other
in u' £ u < u".

p was originally obtained for the interval u' £ u < u",

A risk-preference function is defined by propositions i
and ii and by two values. These supporting values u' and u"
are no longer necessary now. The various risk-preference
functions that can arise can be represented in a p(u) - u
space, as shown in Figure 3.

FIGURE 3

Example of risk preference functions

plu) risk proneness

»

risk neutrality

risk aversion
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A convex risk-preference function indicates risk proneness,
a linear function risk neutrality, a concave function risk
aversiveness. In the case of risk neutrality, the decision
criterion Zi pi(ui)pi is equivalent to the Bernoulli criterion
of "moral expectation" (utility) Zi u; py- This is an
important fact to be kept in mind. It arises from the defini-
tion of lotteries over probabilities and utilities, instead of
outcomes (say, money). In a sense, p(u) is a second-order
utility, a utility function (called risk-preference) over
certain utilities. The choice of a risk-preference function
depends on the attitude toward risk of the DM, there are no
prescriptions for a rational choice of a (convex, neutral,
concave) risk-preference function.

Krelle (1968, p. 146f.) compares his function p to the
traditional utility function of the "anglo-american" literature.
In it, moral expectation is equivalent with expected utility,

cl

= ? uj(xj) . pj .

But this does not seem to be a good guideline for decision
making under uncertainty, since two persons can very well
agree about the evaluation of the utility of two hypothetical
events (once they have happened), but they may differ consid-
erably concerning their willingness to take risks. One may
speculate on the occurrence of the lucky, though highly un-
likely event, while the other concentrates on the possibility
of a catastrophe, although it is not likely to occur at all.

The evaluation of a risk, on the other hand, once one
accepts axiom system A, is represented by an increasing risk-
preference function p (u) such that the index of preference U
can be given as ' -

U = Zop(u.,) * p. .
: P J) P
Since the utility uj is a function over the event to occur Xj’

the above equation can be written as

14

U = Z¢(XJ) ¢ p]

J
where the function V¥, w(xj) =p(uj(xj)), is the Anglo-American

expected utility function. It contains utility and risk-
preference simultaneously, whereas in the Krelle formulation
both aspects are separated which is preferable in his opinion,
since both are very different phenomena.
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Krelle's basic idea, separating utility from attitude
towards risk, seems very reasonable. But there are some
problems with his formulation. First, the measurement-theoretic
status of his theory is somewhat dubious. He uses utility as
a primitive--a quantity that is supposed to be measured in a
fundamental way. This is done in expected utility theory.
Obviously, it would not be reasonable to measure Krelle's u's
by means of expected utility theory, which leaves only one
option, namely to measure it in a riskless-choice setting,
e.g., by indifference curves, conjoint measurement, value
differences, etc.

While in some expected utility representation probabili-
ties enter as extraneous variables, as, for example, in the
theories by Suppes (1956), Anscombe and Aumann (1963), and
Pratt, Raiffa and Schlaifer (1964), in Krelle's theory probabili-
ty as well as utility enter extraneously. "Extraneous" is to
be understood as not measured via the axioms, but entering as
a known figure from outside.

Second, besides these reservations concerning the
theoretical status of axiom system A, the actual application
of the system may not be very practical, since all u's have
to be measured individually in the first place.

Krelle describes a practical way to arrive at a risk-
preference function as follows. Take two reasonable points A
and B on the utility axis of possible outcomes (Ergebnis-
gr&ssen). Assign A the function p (see Figure 4).

Now the DM has to choose whether he prefers to get A or
B with probability one half or C, which lies between A and B,
for sure. It must be possible to determine the utility of C
independently, so that its position on u is defined. C is
raised till the DM is indifferent between C and (A, %, B).
Then C is assigned an index value of .5, which generates the
point P, on the risk-preference function.

In the next step, the DM has to choose between (C, %, B)
and (A, %, D), with D > B. D is raised until the DM is in-
different, and D is assigned the value 1.5, defining PD on p;
etc.

If the abscissa is defined as outcomes Xy instead of in terms

of utilities u, and the ordinate is defined as u({x) instead of
p(u), the procedure is a standard one to generate a utility
function. Since it is now made clear where the u's come from,
one might be suspicious whether Krelle's axiom system A is
really something different from an expected utility theory.
But this is an open question as yet.
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If one takes Krelle's theory for granted, one is faced
with a dilemma: Either one has expected utility, in which
utility proper and risk preference are confounded, or one
has the risk-preference function, which assumes that utility
has been measured independently already. A somewhat similar
procedure was proposed recently by v. Winterfeldt (1978), the
author first constructs a "difference value judgment model",
which is then in a second step transformed into an expected
utility model.

FIGURE 4

Method for assessing p(u)

plu)

ﬁ' p(u)

1.5

1.0

0.5
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Generalization 1 of axiom system A

If persons exhibit probability preferences, axiom system
A can be transferred to account for them. The procedure
(Krelle's axiom system C) is as follows:

Call p* attractiveness of a probability p,

p* = ¢ (p) '

and p* is a monotonic and strictly increasing function.
Since }. pi* is not necessarily equal to one, as required by
i
axiom system A, the following condition must be introduced to
account for that. Let

L, = {(ui, pi*)} and

L2 = {(uil qi*)} ’ i = l, 2, eeey, 1N ’

be two lotteries with the same utilities and modified probabili—
ties pi* and qi* such that

The original axiom 24 has to be modified as fonllows
Ad*; If
L1
L

{(ull pl*)l (.uzl pz*)r ve oy (un‘l pn*)} and
2 - {(.ull ql*)l (.uzl qz*), e o g (.unl qn*)}

are two lotteries and condition (i} is fulfilled, and the
utilities are ordered such that u, < u, £ .. £ Uy and if the

probability pi* are shifted towards the more favorable u's,
i.e., if
k

k
P pi* < Lq.* for all k, k
i=1 i=

1, 2, ..., n '

N
then Ll > L2 .
If there is at least one k, k =1, 2, ..., n-1, such that

k k
* x
Lopg* < Lay and uyp < uy g
i=1 i=1
then Ll}- L2. The other axioms can remain unaltered, with p

replaced by p*.
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The result is the generalized risk-preference function:

n
u*(L) = L e(uy) - p;*
i=1
n
= ) P(.ui) * ‘P(Pi) .
i=1

This generalization was first proposed by Georges Bernard
(1964, 1965).

Generalization 2 of axiom System A

Bernard proposes to define p and y further as follows:
, n
u*B(L) = E u, - p

where
a 1is the elasticity of the overall utility of a lottery
with respect to utilities (a > 0; u > 0)§/,
¢ 1is the elasticity of the overall utility of a lottery
with respect to probabilities.

According to Krelle, the basic idea behind this formula-
tion is to take increasing or decreasing marginal utility (or
attractiveness) of the probabilities into account.

If very small probabilities are (almost) neglected, as it
seems to be the case in taking insurances, then ¢ > 1. If the
reverse is true, if very small probabilities are taken very
seriously, then 0 < ¢ < 1. The latter could refer to the
debate of "risk" in the atomic issue. There, failure probabili-
ties are generally assumed to be very small, but may be taken
to be subjectively larger as they numerically are. The same
line of reasoning may hold true for utilities.

Bernard's formulation contradicts axiom system A unless x
is a linear function of p, which can be seen from A2. Is this
axiom system acceptable for a "rational" DM? The axioms might
seem reasonable as long as the attractiveness of probabilities
pi* refers to singular events, or almost singular events. As

soon as there are many replications, one should assume that
c -1 for zZ - ® '

where z denotes the number of replications, a reasonable
assumption for a Bayesian.

6/

—This remindes somewhat of Stevens (1959) proposal to

measure utility as a power function of money, u = xa, with a

typically being in the neighborhood of .5.
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For any practical application the problem arises how to
measure the pi*. This gquestion is not discussed by Krelle. It

must be noted that the pi* (as the P; in axiom system A) as well
as the us enter into the lotteries as extraneous variables, they
have to be measured in the first place. Therefore, always a
two-step procedure has to ke performed:

(a) Axiom system A: risk-preference function

1. Measure the individual utilities u. ., in a relevant
range in a riskless setting, provide pi's (assumed
to be known) ;

2. deduce risk-preference function from preference

judgments between lotteries L = {(ui, pi)}, if

conditions are fulfilled, i.e., if the DM "accepts"
the axioms.

(b) Axiom system A: modification 1

1. Measure individual utilities (as above); measure
the attractiveness of probabilities pi* by some

adequate procedure;

2. deduce generalized risk-preference function from
preference beatween lotteriec I = {(ui' pi*)}'

(c) Axiom system A: modification 2 (Bernard's rule)

1. Measure the ui's and pi's :
2. determine the coefficients a and c by some adequate
procedure.

As will be seen from the description in the procedures,
some steps are not operationally defined, indicated by phrases
such as "by some adequate procedure". There are, to be sure,
some procedures which may lead to the desired results. But it
must be stressed again that Krelle's "axiomatizations" are not
axiom systems of fundamental measurement. Despite this fact,
they might be applicable in some situations, an answer to this
(implicit) question has to be found empirically. Krelle might
be right when he states that Bernard's criterion may be a
strong simplification, but that it might not be possible to
measure risk-preferences to a finer degree anyway.

4.4.3. Krelle's Axiom System B: Dispersion-Preference
Formulation

Axioms Al to A8 hold also for axiom system B, but axiom 9A
is replaced by
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Axiom 9B (dispersion-preference):

The utility index U of a lottery L = {(uy, Py) -eey (u ., P 3,

U(L), depends only on the expected utility u (the utilities
are again assumed to be given)

_ n
i) u = L u, p

f being a non-negative, strictly monotonous increasing function
with £(0) = 0 and x > 0 = £(x) > 0.

In other words,
U(L) = @ (u, u*)
g is called the dispersion-preference function of a person.

Of course, £ and @ must be defined such that axioms Al A8
still hold true.

All technicalities are omitted here, instead a specific
function will be given fulfilling the assumptions. If one
defines u* as the mean absolute deviation,

n -—
u* = 2 lu., - ul * p. .
j=1 ]

one has an example of a permitted dispersion index. Interest-
ingly enough, the variance is not a permitted measure of dis-
persion in this theory (Krelle, 1968, p. 152). Now the function
# has to be made explicit. Krelle shows that the simplest
function @, together with u* as given above, which fulfills
axiom system B, is the following:

g (u, u*) = u + a - u* ,

with the restriction lal < 1/2. If the DM is_risk averse, a
must be negative, i.e., the expected utility u is reduced by
a times the mean absolute deviation, which functions as a
measure of "risk" in this case.

In this instance, the lottery with smaller expected
utility can be preferred. 1If a = 0, the decision criterion
is simply the expected utility, which is equivalent to risk
neutrality in axiom system A. Finally, if a is greater than Q,
the DM is risk prone, but the definition is somewhat different
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from that of system A (see Krelle, 1968, pp. 159-163, for
some more detail).

It is interesting to compare Krelle's dispersion-preference
function p with Coombs' portfolio theory of risk preference.
Coombs theory states that a person has a risk preference for
each expected value level. Risk is left undefined, but some
assumptions are necessary to empirically test the theory.
Krelle's system B is more general in that it incorporates a
direct expected utility-uncertainty trade-off. Uncertainty
was given an operational definition in terms of mean absolute
deviation. Psychologically, this assumes that expected utility
and "risk" are compensatory, to some extent at least.

What is the relation between axiom systems A and B? B is
simpler and may be intuitively quite appealing. A restriction
is introduced by using a single index for characterizing the
dispersion, thus abstracting from the whole distributional form
of the lottery. According to Krelle, this may be acceptable in
the case of symmetric distributions, but a person is not
necessarily assumed to accept the B axioms if the options are
as in the following example (Krelle, 1968, p. 159):

Ll = {(1, .2), (2, .3), (3, .3), (4, .2)}

L, = {(-2, .1), (2.5, .4), (3, .3), (4, .2)} .

Both lotteries have an expected utility u value of 2.5 and a
mean absolute deviation of .9. If axiom system B is accepted
and u* is defined as mean absolute deviation, then Ll should

be equivalent to L2, i.e., Ll ~ L2. Krelle states that many
risk-averse persons will prefer L2 to Ll, but one could not

call them irrational. Krelle's system B has striking
similarities with the risk theory of Pollatsek and Tversky
(1970), presented earlier.

5. DISCUSSION OF THE RISK DEFINITIONS AND RISK THEORIES

Different aspects of the various risk definitions and
theories arose in the foregoing sections. The distinction
between risk and risk preference is the most fundamental one.
While risk refers to the perception of the riskiness of an
option, risk preference refers to the DM's preference along
the risk dimension. Furthermore, it is evident that risk is
a property of decision making under uncertainty in which
options (or alternatives) are characterized by probability
distributions over outcomes, which were called lotteries or
gambles. Probability distributions, in turn, can be
characterized either by their components or by their moments.
Therefore, it is almost trivial to state that "risk" must be a
function of the components or of the moments. But it is as yet
unclear (1) whether to base the aggregation on the risk
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components or on the moments, and (2) what the functional form
is, or, to put it differently, which aggregation rule delivers
an acceptable definition of risk, which may then lead to an
acceptable theory of risk in a next step. As to the status of
a theory, one has to distinguish between axiomatic and "other™
theories.

There are definitions of risk which rely on one component
only, mostly on Pr,s the probability (or probabilities) to

"lose". Instancies of such definitions are "pure risk", or the
definitions of Norusis (1973) and of Starr, et al. (1976, p.
640). This use is much in line with an everyday use of the

term. Since it is a definition (at best), it is obvious that
it is not axiomatically founded, it is normative (at least for
the author who uses 1it) and no aggregation rule is involved,
since only one component is considered.

In the "low probability-high loss" formulation of the
problem which is often used to characterize a typical "risk"
situation" both kinds of components are used. Since there
are two aspects involved, losses and their respective probabili-
ties, there must be a composition rule to combine the two.
This is accomplished by expectancy theories, above all
mathematical statistics in which risk is defined as expected
loss. The aggregation rule is, of course, the expectation
operator. Mathematical statistics is clearly a normative
theory and, depending on its formulation, it has or has not
a measurement-theoretic background.

It has to be re-emphasized that "loss" has no specific
psychological meaning in mathematical decision theory and
statistics. It is completely equivalent to an expected value
theory (or expected utility, or subjective expected utility).

Finally, a last set of definitions which are only in
terms of the left side of the distribution is the semi-variance
v, or vV, as defined earlier. Here, the variability over losses

is taken as a characteristic of "risk". 1In Markowitz' port-
folio theory, the semi-variance can be used instead of the more
frequently used variance.

Now we come to the situation in which losses as well as
gains are considered. An obvious thing to do is to consider
the win and lose components and to try to find an aggregation
(and weighting) rule for them. This was first done by Slovic
(1967) , who proposed an additive rule and estimated the weights
by least squares. This approach could be criticized since the
aggregation rule is not derived, but simply assumed by the
researcher. Within the functional measurement theory approach
of Norman Anderson, the functional form can be found out more
directly, although this kind of measurement is not really
axiomatic measurement (but comes somewhat close to it; see
Wallsten, 1976, for a critical discussion). This approach was
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taken by Anderson and Shanteau (1970) who found the additive
model to be less satisfactory, compared with the multiplying
model. Further research along these lines, or adapting the

stricter version of conjoint measurement, is clearly needed.

The next class of definitions and theories is based on
representation of lotteries in terms of moments. The most
named moment in relation to risk is clearly the variance, al-
though it was obvious from experiments and theoretical con-
siderations that the first and third moment have some impact,
too. Again, the problem of the aggregation rule comes up.
Markowitz, in his portfolio theory avoided that issue by the
following decision rule:

a. from two lotteries with the same expected value,
take the one with the smaller variance;

b. from two lotteries with the same variance, take
the one with higher expected value.

But with this formulation, the value of "risk" is not determined
and must be added to the model externally.

Two further classes are evident from the literature. First,
a linear combination of moments, expected value and variance as
is most obvious from the regular risk system of Pollatsek and
Tversky (1970), but also inherent in the Coombs and Huang
theory. The second principle used is again the expectation
rule, which underlies EV, EU, SEV, and SEU theory. These
theories have been critisized, especially by Coombs, since
they do not deal with risk in any psychological transparent
and relevant fashion.

Tversky (1975, IV, p. 5) says: "Expected utility theory
deals with the problem of risk through the slope of the
utility function for the respective attribute, e.g., money.
In this respect, utility theory does not permit attitudes
toward risk per se, only attitudes toward money". In his
contribution, Tversky shows that people consistently violate
expected utility theory, since they over-evaluate options
which do not have any uncertainty associated with them.

A generalization of SEU theory has been proposed by Huang
in her expected risk theory. 1In it, expectation is not taken
over utility values, but risk values. That is, instead of a
utility function that assigns a utility to each outcome, there
is a risk function that assigns a risk value to each outcome.
The status of this theory is still a rather open question,
theoretically and empirically. The notion of risk values of
outcomes may not be a very appealing concept, and expectation
theories have been critisized on theoretical grounds, e.g.,
Allais (1953) and Krantz and Tversky (1965).

My impression is that SEU theory is inadequate psycholo-
gically, and most likely even normatively, and even Huang's
theory, though elegant, is too restrictive to cover anything
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beyond symmetric gambles with fixed probabilities.

A last word on risk preference. Coombs' theory is a
descriptive theory, and it has a measurement-theoretic
foundation. It is a generalization of SEU theory, too. It
seems to be very reasonable as long as single-peakedness is
given. But, as has been shown by Coombs and Avrunin (1977a, b},
single-peakedness is not a trivial concept and is not likely
to arise in multi-attribute situations, which restricts the
range of the theory. This remains an empirical question, too.
In contrast to this completely descriptive theory, a "good"
risk theory should have a normative touch so that it can
be used for decision making under "risk". The two axioma-
tions of Krelle have a stronger normative flavor--once one is
willing to accept the axioms. The measurement-theoretic status
of these theories is not quite clear, as had been pointed out.
No experimental results are known which tested Krelle's
system. '

6. TECHNOLOGICAL AND SOCIETAL RISK: A NEW DIMENSION?

Does "risk" in a technological and societal context gain
a new dimension? To be really enabled to answer this question,
we have to know what we mean by "risk" in a more elementary
context, say, in laboratory experiments on lotteries. Since
we really do not know that too well, we cannot answer the
second question. But this statement is too trivial a way out.
We know something in the first case, and we can speculate on
the second. Let's do that.

The risk issue arises primarily with hazards, natural and
man-made. I define hazards as potential loss (which is to be
differentiated from expected loss). Natural hazards are
possible damages done by the elements, like floods, and earth-
quakes. Man-made and technological hazards are due to this
(mis-) functioning of technologies, such as energy plants,
chemical plants, planes and cars, etc. Cigarette smoking,
alcohol and drugs pose a hazard, too. They are man—made,
but not technological. They could be called cultural hazards.
Dangerous initiation rites would be another example, perhaps
not too far from the first. Hazards due to wars fall into
the same category. Let us concentrate on technological hazards.

If we think again in terms of risk components, i.e.,
probabilities for win and lose, and amounts to win and lose,
some very obvious relationships emerge: The more hazardous .
(the results of a technology are), the less likely. Car
accidents are quite likely, followed by plane accidents, and
then major accidents of a nuclear power plant, which are
generally considered to be among the least likely events. Now
to the hazards. Let us assume that the worst thing that can
happen is that you lose your life. This is common to all
events. If one computes the expected loss, say, in terms of
number of deaths per year, the figures differ markedly.
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The more likely events have very high figures, the low probabili-
ty events have very low fiqures//. Or, in other words, deaths
due to car accidents occur every day, but there has not been

any really large nuclear accident. This reasoning can be
translated into a simple model with some probability theory
flavor. The probability of occurrence of a noxious event might
be an exponential function of the expected loss. Taking
logarithms,

logp = k~-ocm '

with
o) probability of occurrence of event,
m magnitude of expected loss,

k, ¢ constants to be determined empirically .

Now one can apply extreme value distributions to that.
Mostly, the assymptotic distribution of maximal values in a
sample is supposed to follow an exponentlal distribution
function of the form

with density
f(x) = k exp -k (X"C) _e_k (X-C) .

See, e.g., Apostolakis (1974).

Varying along the dimension of expected loss, as we just
saw, is the dimension of severity. An accident that is likely
relative to others, such as a car accident, will affect only
very few people, whereas a major power plant accident may
result in a mass catastrophy. This might make a difference
psychologically--the aspect of 'catastrophic' might be more
salient than expected loss. Due to nature Py, and r; seem to

be correlated, so one cannot determine what is the more
influential in actual risk assessments which are done intu-
itively. With lotteries, one could, in principle, vary P
and I independently of each other, although the resulting
lotteries may not look very reasonable, if too extremely
deviating from lotteries modeled after 'nature'.

As you will have noticed, nothing has been said about Py
and r_. thus far. It will have to be analyzed in detail which

W
role the 'positive' components play. Following earlier

7/There is quite an extended literature on such models,
see, e.g., Farmer (1967) or Slesin and Ferreira (1976).
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observations by Slovic one might conclude that the negative
aspects are more important than the positive ones. If this
holds true, the variance or the mean absolute deviation would
not be adequate measures, since they are symmetrical, weight-
ing positives and negatives equally. Something between the
variance and the semi-variance Vo (which takes only the neg-

atives into account) may be appropriate.

From a behavioral decision theory point of view, at least
two guestions must be raised: (1) How can components be es-
timated, and (2) How are the estimated components aggregated
into an overall judgment? Ad l: People may not be very good
in estimating extreme probabilities and ultimate losses. As
it is known from the experimental literature, probabilities
of extreme events are very badly assessed. Even if those
probabilities are assessed by experts, one could have doubts
as to their accuracy as well. For example, when assessing
failure rates of a system, certain failure possibilities may
be overlooked, or failures may be correlated (common mode
failures), resulting in too low estimates if not taken into
account. Some peculiarities of man's reasoning in the situa-
tion of uncertainty and "risk" are discussed in Slovic, Fisch-
hoff and Lichtenstein (1976). One might further speculate
that it is very difficult to assess the impact of a really
serious loss. Ad 2: Some aggregating rules have been dis-
cussed in Ch. 5. There is no single rule which is really
satisfactory, to my judgment.

But there may be other factors besides these rxisk compon-
ents which influence the perceived riskiness of an option.
Various such factors have been proposed and to some extent
empirically established, like voluntary vs. involuntary
(Starr, 1969), immediacy of effect, personal and scientific
knowledge about hazards and their probability of occurrence,
control (car vs. plane), active-passive, newness, chronic-
catastrophic (already discussed above), common-dread, etc.

See Slovic et al. (1977), or Otway and Fishbein (1977).
Furthermore, some people are afraid that there are some new
dimensions (of risk) associated with some of the modern
technologies. Extreme safety measures considered necessary by
the public, might imply extreme control8/. Extreme control,
however, may be beyond the possibilities of a democratic go-
vernment, so that a more authoritarian kind of government
might turn out to be necessary.

Can all these aspects be taken into account to formulate
a single theory of risk? Which are the mutual interconnections?

8/

~/ The important question what the safety requirements of
the public are, is left out here. See, "How Safe is Safe
Enough", by Fischhoff et al. (1977) and Rowe (1977). It is
evident that the issue is closely related to risk and risk
preference.
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distribution over outcomes (may it be defined in terms of
components or moments) has an influence on perceived risk.

This is indicated by arrows in Figure 4 below. But the
"psychological" aspects, i.e., other than those modeled by a
probability distribution over outcomes, may influence per-
ceived risk as well. TIf the influence is direct, arrow two

is appropriate. Then, this influence must be modelled extern-
ally and additionally. But it could also be the case that
these psychological factors influence the perception and
therefore the assessments of the components, as indicated by
arrow three. If this is the route of influence, a decision-
theoretic model, if adequately formulated, is sufficient. It
is further evident that a correspondence must exist between a
measure of risk and perceived risk. This correspondence, how-
ever, need not be a one-to-one correspondence, since a "good"
risk theory must also be a normatively appealing and normatively
valid theory, and perceptions will probably not follow prescrip-
tions completely. On the other hand, there must be a consid-
erable correspondence, since otherwise no one would accept the
risk measure (and the theory it is derived from) as a prescrip-
tive or "normative" theory. Perhaps some kind of path-analyt-
ic modeling, which is suggested by the diagram, might help

to clarify which way the psychological factors affect risk
perception, if they do.

For completeness sake, let's go the remaining path through
our little model. After the aspects of the situations have
been formulated--again component vs. moment-—-the necessary
assessments (estimates) have to be made. Next, the assessed
components must be aggregated to yield a measure of risk. The
aggregation is not independent of the modeling of the
situation, of course.

How to proceed further? My personal feeling would be to
concentrate, in a first step, on aspects of lotteries, to
improve assessments of the components, i.e., estimates for
small probabilities and for large losses, and to improve our
understanding of how they combine into an overall measure of
risk.

But let's come back to what we have to do. We have to
decide. How do we want to decide? The goal is, of course,
to make "good" decisions, to settle for the best option.
Decision theory, based on expectation theory, is a normative
approach for decision making under uncertainty. Is it also
appropriate for decision making under "risk", i.e., a situa-
tion in which negative consequences are really negative,
although not likely to occur at all? My reservations center
around the fact that individual decision making under uncertain-
ty is an expectancy theory, "risk" is integrated out. EU or
SEU theory may (or may not) be perfect for repeatable events
such as investments or insurances, but may be very inapprop-
riate under the conditions described above. So what we really
have to do in the long run is to develop a better normative
theory of decision making under “risk", which must be different
from the existing theory of decision making under uncertainty.
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