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Preface

The aim of the IIASA Modelling Health Care Systems Task is
to build a family of models for the National Health Care System,
and to apply them in collaboration with national research centres
as an aid to Health Service planners. The modelling work is pro-
ceeding along the lines proposed in earlier papers. It involves
the construction of linked submodels dealing with population,
disease prevalence, resource need, resource allocation, and re-
source supply.

This paper studies the problems of estimating the parameters
of the resource allocation submodel. Earlier procedures are fur-
ther developed to give methods which have wider application in
the planning of health services, and which make direct use of his-
torical allocation data. These procedures are available as com-
puter programs, and three illustrative examples of their use are
presented.

Recent related publications of the IIASA Modelling Health

Care Systems Task are listed on the back pages of this Memorandum.

Evgenii N. Shigan
Leader

Health Care Systems
Task

November 1978
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Abstract

The function of the resource allocation submodel within the
IIASA Health Care System model is to simulate how the HCS allo-
cates limited supplies of resources between competing demands.

The principal outputs of the submodel are the numbers of patients
treated, in different categories, and the modes and gquotas of
treatment they receive. This paper reviews the data which are
available for estimating the parameters of the model, and develops
methods which made direct use of historical allocation data. Sep-
arate procedures are developed for estimating elasticities, ideal
levels of care, and resource costs. These procedures have been
realized as computer programs, and their use is illustrated by
three examples using hospital data. :

ACKNOWLEGEMENT

I am grateful to many colleagues at IIASA and in London for
their help in this work. Also I thank the officers of the UK
South Western Regional Health Authority for the information used
in Example 3 and Rebecca Crow for the typing and artwork.

—v—







Contents

1. INTRODUCTION

1.1 Model Parameters
1.2 Sources of Data
1.3 Scope of This Paper

2. MODEL STATEMENT
3. ESTIMATION METHODS

3.1 Combined Calibration and Validation
3.2 Estimation of «o,RB

Estimation of X,Y

Estimation of ao,f and X,Y

3.5 Estimation of C
g, ILLUSTRATIVE EXAMPLES

4.1 Example 1
4.2 Example 2
4.3 Example 3

5. CONCLUSION

APPENDICES

1. The Dual Optimisation Problem
2. Admissible Solution in DRAM

3. Progress Towards a Combined Calibration and
Validaton Procedure

4. Unbiassed Regression Estimation

-vii-

12
19
22
22

25

25
26
29

31

34
36

41
uy







The IIASA Health Care Resource Allocation Submodel:
Estimation of Parameters

1. INTRODUCTION

The disaggregated resource allocation model DRAM is one of
the sub-models of the health care system (HCS) model conceived
by Venedictov and Shigan [1], and now being developed by a group
of scientists from different countries working at the International
Institute for Applied Systems Analysis. Like the other submodels
which deal with population, morbidity, resource need and resource
supply, DRAM is designed for application by collaborating research
centres as an aid to health service planning. Mark 1 [2] and
Mark 2 [3] versions of DRAM have already been established, and
a comprehensive Mark 3 model has been formulated [4]. In this
paper, the methods of parameter estimation which were developed
for the earlier versions of DRAM are combined and extended to DRAM
Mark 3.

This first section reviews the problems involved in estimat-
ing the parameters of a resource allocation model, and motivates

the approach developed in the rest of the paper.

1.1 Model Parameters

The purpose of DRAM is to model how the HCS satisfies needs
for health care with limited resources. The parameters of the

model fall into three groups:

a) the ideal levels at which patients would be admitted
and receive resources, if there were no constraints on
resource availability. These parameters indicate the
true "needs" for health care. For example, we might
assume that each patient with varicose veins needs, on

average, 15 days in-patient hospitalization.

b) the elasticities of the actual levels to changes in
resource supply. These parameters indicate how the HCS

balances need with supply. For example, we expect the




elasticity of admission rate to bed availability to be
lower for appendicitis patients than for bronchitis
patients, because the former condition usually requires

faster attention.

¢) the relative cousts of different resources. DRAM uses
the marginal unit cost of a bed-day, a doctor-hour,
etc., or equivalent parameters, in order to choose

between alternative mixes of these resources.

The level of available resources is not regarded as a model param-
eter but as an experimental variable. DRAM shows how the levels

of satisfied demand vary with changes in resource supply.

1.2 Sources of Data

There are more data available to estimate these parameters
than there are for many other problems in HCS modelling. We can

identify four sources:

a) other models

b) special surveys
c) professional opinion
d) routine statistics

At IIA3A, vther mudels have been developed for other components
of the HCS, and particularly for the estimation of true morbidity
from degenerative [5] and infectious [6] diseases. At a later
stage in our work, these outputs may be useful for setting the
ideal rates at which patients in different categories need treat-
ment. Initially, however, we wish to test and use DRAM indepen-
dently of other models. Many researchers have performed important
and useful special surveys. Among many others, Newhouse [7] and
Feldstein [8] have estimated both elasticities in hospital care
and the costs of acute services, and some of these results were
used to calibrate a version of DRAM Mark 1 [2]. Unfortunately,
these results may not be relevant in other regions or countries,
or at other times. Especially in an international setting it 1is
necessary to avoid reliance on work specific to a specific health

system.



The professional opintons of doctors and health planners
can be useful for setting ideal levels of care. Countries where
there is a strong degree of central planning often set normative
figures for ideal hospitalization rates and necessary standards
of care [9] and these can be used in DRAM. However, these are
not available in all countries, and probably no professional should
be asked to estimate elasticities, in case he supplies his own
rather than those of the HCS. We turn then to routine statistics.
Most HCSs keep regular records on the use and costs of their
services, and on how they have allocated resources in the past.
If DRAM is a valid model of this process, then these figures are
typical outputs of the model, which we should be able to use for
model calibration. This is not to imply that the other sources
will never be useful: only that we need to have examined methods

for parameters estimation which do not rely on other sources.

The aim of DRAM is to model how the HCS reacts to change.
Generally, therefore, DRAM's model parameters must be estimated
from data which themselves record change, either in space or
time. Cross-sectional data from subregions of the region of
interest may show the HCS operating at different resource levels.
So also may longitudinal data collected at different times. 1In
both cases, however, the underlying system may be different for
the different data. Subregions are often deliberately defined
so as to be predominately urban or predominately rural, and we must
consider ways of averaging the results across the region. Data
collected at different times are highly likely to be affected by
historic trends in medicine or management. Ideally, we should
model these trends and incorporate the time-varying parameters
in a time-dependent model. More probably, we shall use data
from a period during which we can assume time variations to be
small. The resulting model will still be good for representing
those aspects of resource allocation behaviour which are indepen-
dent of time trends. A final and obvious problem is that the
available data may be incomplete, either because of recording

failures or because the data is insufficiently disaggregated.




1.3 Scope of This Paper

Not all of these problems can be overcome simultaneously.
However, after the brief model statement given in Section 2,

Section 3 concentrates on estimation methods which

a) are based on routine statistics about current or past

allocation behaviour, and

b) recognise that cross-sectional and longitudinal data

may reflect inherent parameter variations.

In addition, one of the procedures can be used with incomplete
data. Section 4 illustrates the use of these methods on data

from England and Czechoslovakia, and Section 5 concludes.

2. MODEL STATEMENT

This section briefly summarises (from [4]) the version of
DRAM Mark 3 for which we desire parameter estimation procedures.

There are two model variables:

X numbers of individuals in the j-th patient category

Jjk
who receive the k-th mode of treatment (per head
of population, per year)
yjkl = amounts or guotas of resource type ¢ received by

each individual in the j-th patient category treated
in the k-th mode.

The model chooses x and y* so as to maximise a utility function

U(x,y) = g (X )+ ) ) . h, . 1
(¥ %}Zg]k *3x) %%{%Xjk ke Yyka) (h

where

*

In the sequel, we use X,y to denote {xjk,j=1,2,...J,k=1,2,...K},
{yjki’j:1'2""J'k=1'2'"'K’1=1'2""L} respectively, with a like
notation for similarly subscripted variables.
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The availabilities R2 of resource type % are assumed to be given
exogenously. The unit costs Cg, the model elasticities aj, Bjkz'
and the ideal levels Xjk’ijQ’ which are upper bounds on the model
variables, are parameters which have to be estimated. Figure 1

shows how the model is used in solution mode.

In the normal way we adjoin the L constraint equations (4)

to the utility function which is to be maximised (1) by means of

Parameters a, B
X,Y,C
Input Output
- DRAM -
R Xey
Figure 1. DRAM solves x,y for different values

of R.




L arbitrary multipliers Az. For convenience we scale these by
the cost of each resource type Cy

Hix,y,\) =3 Jg.. (x..) + ¥ ¥ ) x.. h. (y. .)
3k jk ' jk ) ]k jk2 " *jkge

+ Y C,A, (R, - Y .
!Z’ [T RR] % ]2( ‘xjkyjkl) (5)

In order to find the values of x and y which maximise H, we must
solve the JK(L + 1) + L equations

el Tl ¥ 3.k8 (6,7,8)
ik Yike )

for the JK(L + 1) + L unknowns: x,y, and A. First,

9H . _
Wik *5kPke (Yike) 7 Colg*g = 0
leads to
-1
Bigt]
Yirg = Yyq(g) . (9)
Secondly
SH .
B%.y 95 (X5 ) Byrg (Yypp) = % Cole¥spg = 0
leads to

- 3

where “jk is a weighted sum
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of the terms
B'kl
B, ,+1 '
- k&
AV = (Bjkl + 1)AQ 1 /Bjkﬁ . (12)

jkg

Substituting the results of equations (9) and (10) into the con-

straint equation (4) gives

fQ(A1,A2,...AL) = f,(3) =0 ¥ 4 (13)

where

= - J
£,0) R, + § g Xjijkl(Al) ) (14)

which must be solved for A by a numerical technique such as the
multi-dimensional extension of the Newton-Raphson method. 1In this
method, an approximate solution A yields an improved solution A

according to

Ag =g - ) D, £ (0 ¥ % (15)
m
where D is the m-th element of the matrix

m

-1

o

=D

_ 3f, ()
1 _ % 2 ; (16)

A
m

which is the inverse of the matrix D of partial derivatives of

f(A). These partial derivatives are
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o 18 equivalent to solving the dual of the original

sprimlsazion problem. Appendix 1 explains the relation.

27101 METHODS

gaction describes various methods for estimating the

D R L

arvameters o,R,¥X,Y,C of DRAM. We give three groups of

estimating «,B,X,Y when the unit costs C are known.

A combined calibration and validation approach which
~hocses all the model parameters so as to minimise the
toral discrepancy between the model and all the avail-
able data. This method, although comprehensive, is

pruoably too complicated for practical use.

Methods for estimating o,B when X,Y are known or given
crogenously. We can choose o,8 simply so that the model



reproduces the current allocation of resources, or on
the basis of information about the elasticities of out-

put to supply.

c) Methods for estimating X,Y when o,B are known or given
exogenously. Again we can use just the current alloca-
tion of resources, or more detailed cross-sectional or
longitudinal data. In the latter case, however, we
must consider that the model parameters may change in

space or time.

Given sufficient data, the latter two methods may be combined in
an iterative approach. Finally in this section, we look sepa-
rately at methods for estimating the resource costs C. The prob-

lems here are mainly definitional.

3.1 Combined Calibration and Validation

First we describe what might be the ideal method for estimat-
ing model parameters, if it could be implemented. This would be
a procedure which takes a large amount of data on comparable his-
toric resource allocations and which derives the best parameter
estimates, together with measures of the goodness of fit between
the data and the model hypotheses. The structure of DRAM is such
that there is a natural way to formulate this task in mathematical

terms, although it is less easy to see how to implement it.

To illustrate the approach, consider a DRAM with one cate-
gory, one mode, and one resource (J = K =L = 1). Figure 2 shows
the locus OA of possible model solution on the xy plane, for three
different parameter sets. The solution for a given resource level
R is given by the intersection of the locus with the constant re-
source hyperbola Xy = R. On each line we have the model outputs
(circles) for some resource levels, and nearby on the same hyper-

bolae arz the observed outputs (crosses). We see that

a) along O1A an appropriate choice of the model parameters

¢,8,X,Y has aligned the circles and the crosses,
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Figure 2. Model outputs (o) and observed outputs (x) for
three different parameter sets.

b) along 02A, the circles and the crosses do not coincide,
because the two observed outputs are such that they can-
not be reproduced by any choice of model parameters
(Appendix 2 summarizes some results on admissible solu-
tions for DRAM),

9]

along 03A, the circles and the crosses do not coincide,
because DRAM has insufficient parameters to fit the solu-
tion line to three arbitrary points. With any number of
data points more than two, the estimation problem is gen-

erally overspecified.

The common feature of b) and c¢) is that, for any choice of param-
eters, the utility achieved by the model for a particular value
of R will always exceed the utility of the observed values of x,y.
This difference in utility is a measure of the disagreement be-
tween the data and the hypothesis that the data maximises a util-
ity function like equation (1). If the model parameters o,B3, X,Y
can be chosen so that this difference is acceptably small, then

the model can be calibrated and validated simultaneously.
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By defining the N observation pairs x(i),y(i), i = 1,2,...N,

we can write the utility of each output pair (x(i),y(i)) as

A\ . v\ —B
oo_oexy (x()VY, oxy [x(i) _ (i)
v (1) = & ( ( ) + CXY (__X )(1 (Y__Y ) ) .

The utility of the corresponding model outputs is given by sub-
stituting equations (9),(10) into (1)

o -1 _E_
aFT aF T B+1
u (i) = %‘1<u(i)> + CXTY(u(i)> 1 - (x(i))

where u(i) is related to A (i) by equations (11), (12) and X (i)
satisfies

-1 -1
B+T at+1
f<XUJ) = - x(i)y(i) + XY(AtU) Gﬂi)) =0 . (19)

The utility difference associated with a single observation is
therefore

= CXY ¢ a+i BT\| (20)
b(i) 1 = [ A(d)
+

Because the model outputs are those which maximise Um(i), we
always have AU(i) > 0, and the disagreement between N observed

data points and a particular set of parameters is measured by




-12-

N
AUy = 1 AU(L) > 0 . (21)
i=1
We can now define the task. It is to choose a,B8,X,Y so as
{ov Minimise AUN. A minimised value of AUN which is small will

indicate a good fit between data and mcdel, and vice versa. Al-
Lhough we have restricted ourselves to the case when J = K =L = 1,
the extension to many categories, modes, and resources is straight-
fecrward. The problem lies in the fact that this unconstrained
minimisation problem is not suitably convex. No amount of data
gives information about the Lagrange multipliers for a given re-
source level, or about the relative sizes of the multipliers for
different resource levels. Just as in the estimation procedure
used for DRAM Mark 2 [3], constraints must be applied upon the
scale and shape of admissable solutions in order to avoid obtain-
ing pathological results such as a = B = 0. The resulting con-
stratned minimisation problem is rather intractable although per-
haps not impossible for small models. Appendix 3 summarizes some
proved results and some of the outstanding difficulties in this

approach.

Because what might be the ideal estimation method is generally
mipractical, we must consider other approaches. To simplify the
exposition, we assume first that the ideal admission rates X are
available from morbidity prediction models, analyses of hospital-
ization trends, or are otherwise known exogenously. We similarly
assume that the ideal resource guotas Y can be specified exog-
enously by medical professionals. This leaves only the elastic-

ities o,B to be estimated.

Sufficient information to estimate o,8 is given by the cur-
rent allocation of resources in the region under study. If the
current allocation pattern is described by x and y, equations (9)

and (10) may be rearranged as
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X.

k
a. = [en(u..)/en{ =3=)) - 1 (22)

3 jk X5y

Y.

_ k211 _ 23
sij = [4n(hy)/2n Vi 1 (23)

2

which are expressions for a and 8. Two small problems must be
overcome. First, we know from [3] that ) must be determined ex-
ternally. We know also, however, that o and B are always positive.

This implies then that

- X.k Y'kQ
A, > A, = max EBL. R LS ¥ 2 (24)
i,k {\¥3k Y3ika

and we can conveniently define Xl as some (small) multiple ¢l > 1

of the minimum value A
A= ¢2X ¥ L. . (25)

The second problem is that equation (22) gives K values for each
aj. Generally these will be different values, but we can overcome

this by aggregating the data across modes, and by using equations
(22), (23) with k = 1.

By these means, we may estimate values for the parameters
o,R. The model so calibrated will not exactly reproduce the cur-
rent allocation of resources unless the latter is one of the ad-
missible solutions of DRAM defined in Appendix 2. However, it
will reproduce the actual quotas yjkl’ and the actual numbers of
patients treated in each category (xj1 + sz + ...+ ij).
Whether the estimated elasticities are useful for forward pre-
diction will depend upon whether the current allocation pattern
is representative of the HCS's usual behaviour. The procedure
described above only finds values for a,R which are consistent

with this assumption and with the values assumed for X,Y.
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A more sophisticated approach is to make use of more data
by estimating empirical elasticities. These can then be used to
derive the model elasticities a,B. Appropriate empirical elas-
ticities for DRAM Mark 3 are

i

ijl = the elasticity of the admission rate xjk to changes
in the resource level Ry,
”jkml = the elasticity of the resource quota yjkm to changes
in the resource level Rz.

These guantities are readily expressed in terms of o,8. For ex-

ample, ij2 is
a&n Xx. a&n x. ou,
Y. = *lE = xJk . qu e .R 1
jka ain Ry aujk BRE 2

and using (10) to give an expression for 3tn xjk/aujk yields

Y = -Rl * aujk (26)
jkL (aj + 1)ujk aR2 ' o
Similarly
Nixme = -Rf . z;m (27)
where
Mk _ ) ik, mo (28)
BRQ o axm BRQ

As in [3], we may show that the derivatives

BRR sz(k)

dax_ —  3A
m m
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are related to those of equation (17). However, although it is
straightforward to express Y,n in terms of «,B, it is impossible
to express o,B explicitly in terms of Y,n. This is because the
various partial derivatives in these formulae depend upon ao,B in
such a way that they cannot be inverted. Instead, we write equa-
tions (26), {(27) as

A,
. = gk _ 1 (29)
B
_ mg
1 (30)
where
-R oU .
2 jk Y =
A, = 2( )D (31)
B - ﬂ D )
me - X Cm2 (32)

which, if Y,n have been determined in some other study (such as
(8]), and if X is set by an equation like (25), may be solved

iteratively for a,B.

There are nevertheless some problems in this approach. First,
it is necessary to ensure that the empirical elasticities are con-
sistent with the choice of A, otherwise the procedure may not con-
verge. Secondly, there are more empirical elasticities y,n than
there are model elasticities a,B8. Therefore, unless some of the
empirical elasticities are ignored, the model parameters will be
overspecified. Thirdly, the empirical elasticities Y,n are not
directly measurable and are usually the result of some prior data

analysis. For example, estimates ¥,A can be found by assuming
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~~.¢. some N known data points xjk(i), ijz‘i)' Rz(i), i=1,...N,

savisfy the linear models

X . b .
., (1 = a. + . Qn(R 1)\ + el (1) (33)
Ln Xjk(l) Sk z Yike | o ) S (
[T 1 = Y 1 + y 1 4
o ‘jkm(l) ajkm * % njkm22n<R2(l)> E]km(l) (34)
3 , . b4
1nn which a‘<,ay are unknown constants, and in which ¢ ,ey are ran-
doq, uncorrelated, error terms with zero means. Equations (33),

(34) are only approximately true, because they imply that y,n do
nct change as the resource level changes, and equations (26), (27)
contradict this. Nevertheless, if we eliminate y,n by combining
equations (29),(30),(33),(34) to give

. R 1 . X .
Qn<xjk(lg = ajk + (&;—1_7) % AijZn(RQ(lo + Ejk(l)

for each j, for all k,i, (35)

and

; . _ .y 1 . Y .
¢ v ( = . + |7 B LniR .
n(*ka l)) 29k (Bjkm n 1) % me n( z(l)> TR

for each j,k,m, for all i, (36)

wliich are linear equation of the form

PN

£{i) = a + by (i) + (i) (37)

we can use the following iterative scheme in order to estimate
o oand B.

a) Fix » arbitrarily for some resource level R, perhaps by

using equation (25) on one of the data points.

b) Assume some initial estimates of «,B (e.g., unity).
of
c) Derive p from equations (11), (12), YW from equation
m
(17), and A,B from equations (31),(32).
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~1
d) Find the best least-squares estimators of (aj + 1) ,

(Bjkm + 1" n equations (35),(36).

e) Hence, estimate a,B and repeat from c) until convergence.

This procedure (also depicted in Figure 3) is likely to be
more lengthy than the procedures used in earlier versions of DRAM,
because it incorporates the regression estimation of empirical
elasticities, which was previously performed separately. On the
other hand, it has the advantage that more of the original data

can be used directly. If a full data set

i

(i)'Rz(i); i=1,...N, §J =1,..3
k=1,...K, 2 =1,...L}

is available, KN equations are available to estimate each aj, and

probably not all of the xjk

(just N) are available to estimate each Bj

(1) need be known. Fewer equations
K’ and it may be neces-
sary to introduce some further simplifying assumptions such as

Bj1k2 N szkz ¥ jq03, € 101,...3) (38)

in order to obtain reliable estimates. A second advantage of this
procedure is that it is not necessary to modify any of the input
data to make them consistent with the model. A third advantage

is that the parameter estimated in each regression has an esti-

mated standard error associated with it. These errors provide a
measure of the reliability of «,B.

Perhaps the main assumption in the above analysis is that
the underlying elasticities are constant across the set of data
points. Because there is little information about how elasticities
are likely to vary in time or space, we have not attempted to model
this variation here. But Appendix 4 shows that in a certain sense,
the procedure described above gives unbiassed estimates of the

underlying "mean" parameters. This is a reassuring result, and
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Figure 3. Estimation of elasticities.
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the estimates can be further tested to see if the model so cali-
brated can reproduce the current allocation of resources; data

which is not explicitly used for estimation.

3.3 Estimation of X,Y

We turn now to the estimation of the ideal admission rates
X and the ideal resource guotas Y, assuming for the moment that

the model elasticities «,R are known.

Sufficient information to estimate X,Y is given by the cur-
rent allocation of resources in the region under study. If the
current allocation pattern is described by x and y, equations

(9) and (10) may be rearranged as
) 7 (39)

B.,  +1
() jk2

) (40)

sk2 - Yike ik
which are expressions for X and Y. We have a single equation

for each unknown parameter, but we must still determine X by some
external criterion. If we assume that we can define the rescurces

needed to satisfy the ideal levels Xjk’Y'

Sk as some multiple 82

of the resources used currently

% L X5Y5p = O § E *3k¥9ke M (41)

then (9),(10) can be substituted into (4#1) to give

£,00 =0 v 2 (42)
where
1 1
. R. +1 a.+1
f v = -0 . . Jk J
p M " g L %Yy * § L X35 () (! (43)
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and where equation (42) must be solved for A. The equations in
f are very similar to equations (13) in f, and provided that 92
> 1% 2, and that all the terms except X are known, they may be
solved in the same way to give A. Unfortunately, not all the terms

are known. In particular, is a weighted average involving the

Ujk

terms Y which are as yet unknown. It is therefore necessary

ik’
to iterate between solving equation (42) for A, and equations (39),

{40y for X,Y.

This approach, like the similar approach described for o,B,
suffers from the disadvantage that it only finds values of X,Y
which are consistent with the current allocation pattern and the
assumed values for a,f. More useful is to estimate X,Y from other
data and then to use the current allocation as a test of the model's
validity. Other suitable data include cross-sectional and longi-
tudinal data, and given N data points from such sources, we can
use equations (39,40) to find N estimates of X,Y. The problem

remains of how to combine these estimates.

Estimates Xjk(i)’ijR(i) derived for subregions i = 1,...N
may be combined rather easily.' If the population of the ith sub-

region is P (i), then

Xjk(i)P(i) is the number of individuals in the j—-th
category in the k-th mode of treatment
who need treatment in subregion i (per

year) and

Xjk(i)ijl(i)P(i) is the number of resources & needed to

treat these individuals {(per year).
These guantities may be summed across the region, and the corre-
sponding regional estimates of X and Y are

% = z Xjk(i)P(i)/g P (i) ¥ 3,k (44)

. _ o o -
Yoo z xjk(l)yjm(l)p(l)/zl Xy (P (1) ¥ 5,k (45)
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This approach (also depicted in Figure #4) is interesting because
we do not need to assume that X and Y are constant across the
region. The subregional variations are averaged by summing the

ideal demands across the region.

Estimates Xjk(i)’ijl(i) derived at different times i = 1,...N

are more difficult to combine. Ideal resource quotas Y are

jke
probably decreasing with time, and an exponential curve could be
fitted to a long sequence of points. The ideal numbers of pa-

tients needing treatment per head of population, Zj =) Xjk’ ¥ j;
k

will change because of changes in the age structure and in the
morbidity rates. The former can be corrected for, and the latter
can probably be assumed to be constant. Most difficult to model
are the changes in doctors' preferences between modes. These are

reflected in the individual values of X which could if neces-

ik’
sary be regarded as experimental variables.

Assume Fix ©, an
knowledge arbitrary con-
of ao,B,C straint upon A

Calculate X,Y
for each data

point:
Population Combine
for each N to find STOP
data _ »
point average X,Y

Figure 4. Estimation of ideal levels.
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3.4 Estimation of «,B and X,Y

In the most general case, neither of the parameter pairs
2,8 or X,Y is known, and we require estimates of both. In this
circumstance, the two procedures described above may be used to-

gether in the following iterative scheme.

a) With some arbitrary initial estimates of X,Y, use the

methods of Section 3.2 to estimate a,R.

b) With these estimates of n,B, use the methods of Section
3.3 to estimate X,Y.

c) Repeat from a) until convergence.

The limit to such analysis is set by the amount of data avail-
able. The danger of attempting to estimate too many dependencies
in time and space is obvious. Less obvious is the danger of using
the same data twice to estimate «,R and then X,Y¥. When neither

of these pairs is given exogenously, the same data cannot be used

to estimate both pairs of parameters.

All the parameter estimation procedures so far described in-
volve additional constraint variables such as ¢ and O which must
he fived arkitrarily. furthermore the estimates of o,8,X,Y depend
strongly upon the choice of ¢ and 6. Fortunately, however, this
is not a problem. Although different values of ¢,0 lead to dif-
ferent values for o,8,X,Y, each set of parameter values will re-
produce with similar accuracy the data points used for estimation.
Provided that predictive runs of the model do not involve resource
levels very dfferent from those used in estimation, the results

will be relatively insensitive to »,0.

3.5 Estimation of C

Finally in this section, we discuss how to estimate the unit
resource costs C needed in the model. These parameters are defined

rather carefully. Specifically,

C2 = the marginal cost of using one more resource of type £,

when all needs for health care are met.
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Furthermore, these costs are not money costs but opportunity costs
which reflect the benefit in some alternative foregone by buying
the extra resource. How then can they be estimated? Often, we
have financial data which we can use directly, but when these

are unavailable or inappropriate, equivalent model parameters can

be inferred from other information.

Two assumptions will enable us to estimate the costs C from
financial data, when these are available. The first assumption
is that in long-term planning, opportunity costs are approximately
measured by money costs. Given sufficient time, every option is
an alternative, and all resources are convertible. The second
assumption is that marginal costs are approximately measured by
average costs. The cost function of an individual hospital or
medical school is certainly non-linear, with marginal costs being
generally less than average costs. But when many such hospitals
or medical schools are operating in a single region, the aggre-
gate cost function may be approximately linear as shown in Figure
5. In these circumstances, the average costs recorded in his-
toric accounts will approximate to the marginal costs at some

hypothetical resource level.

However, not all countries compare alternative plans in terms
of financial affordability. In the USSR, for example, planning
seeks mainly to reconcile the real outputs between producers while
satisfying certain aims such as full employment, constant growth,
etc. For application of the model in these countries, it is not
necessary to estimate resource costs, but only some parameters
which have an equivalent function in the model. The purpose of
the C parameters is to reflect the relative value of different
resources; or conversely their relative scarcity or the relative
difficulty of providing different resources. In a society with
uniform and constant growths different resources are equivalently
difficult to provide in the ratio of their current provision, and
these ratios may be adequate first estimates of the C parameters.
When different growths are expected of different parts of the HCS
the ratios may be adjusted accordingly, or a more detailed analy-

sis may reveal the "shadow prices" or each constrained resource.
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Costs T

Individual hospital,
medical school, etc.

fo————Regional

average
—>
Resources
Figure 5. A linear regional cost function.

The principal outstanding problem is that of resource defini-
tion. The cost of a hospital bed could be the capbital cost of
creating it, or the revenue cost of maintaining it with food, heat
and laundry. The cost of a docfor could include his training, his
accommodation, or just his salary. The choices made at this stage
actually define the resources for the purposes of the model, and
they depend mainly upon which alternatives are interesting to the
users of the model. Finally, of course, we really desire to esti-
mate C at some future time instead of currently. A full treatment
of this issue would need and could use more sophisticated predic-

tive models.
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4., ILLUSTRATIVE EXAMPLES

The procedures for model solution and parameter estimation
described above have been implemented as computer programs. They
are fairly compact, use no special software, and can be easily
transferred to other computers. To illustrate their use and the
use of the model, we present three illustrative examples of HCS
resource allocation problems. The examples are extensions of

those discussed previously in [3].

4.1 Example 1

The first example is designed to test the procedures for
estimating o,B8,X,Y. Consider the allocation of acute hospital
bed-days in England between patients suffering from six diseases:
varicose veins, haemorrhoids, ischaemic heart disease (excluding
acute myocardial infarction), pneumonia, bronchitis, and appen-
dicitis. Table 1 gives the numbers of patients admitted to hos-
pital in 1973 with these diseases, and their average length of
stay [9]. Gibbs used the empirical elasticities of Feldstein (8]
and exogenous estimates of the ideal levels X and Y, to calibrate
a predictive resource allocation model for these categories [2,
117.

Table 1. Example 1--actual allocations
and model predictions.

Allocation of hospital bed daysl) in 1973 in England
Actual Predicted by Model

Admissions Average Admissions Average

per 10 000 Stay per 10 000 Stay
Disease Population (Days) Population (Days)
Varicose veins 7.6 10.1 7.6 10.4
Haemorrhoids 4.7 7.8 4.7 7.9
Ischaemic Heart 8.5 24.9 8.5 24.4
Pneumonia 14.0 18.0 14.1 18.0
Bronchitis 10.8 23.1 10.9 22,7
Appendicitis 17.5 7.9 17.5 7.9

1) 964.8 bed-days available per 10 000 population in 1973.
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Here we repeat this exercise. However, we estimate the
model parameters, not using Feldstein's figures, but by using
the actual admissions and lengths of stay in the 16 health regions
of England, in 1968 and 1973 [9,10]. Table 2 gives the parameters
estimated by using the 1968 figures to estimate o,8, and the 1973
figures to estimate X,Y, recursively as described in Section 3.4.
For this example, we have assumed that the parameters are constant

over time, but this assumption could easily be relaxed.

The model parameters so estimated are different from those
used by Gibbs [11] and also shown on Table 2, because of differ-
ent data and because of the different values used for the arbi-
trary constraints. Nevertheless, they show very similar varia-
tions across diseases. Appendicitis is clearly represented as a
disease where most patients must be hospitalised (high o), whilst
bronchitis appears as a disease afflicting many patients (high X)
but where hospitalisation is not essential (low o). The estima-
tion procedure did not yield elasticities that were all positive,
but those that were negative had so small an associated confi-
dence that they could reasonably be changed to small positive
numbers. The successful calibration of the model is confirmed
by Table 1, which compares the model's prediction with the actual
allocation of hospital bed-days in 1973 in England. The agree-

ment is very close.

4.2 Examnle 2

The second example is the simplest possible example of a model
with more than one resource. Table 3 shows the admission rates,
lengths of stay, and doctoring received by patients in the 12 hos-
pital regions of Czechoslovakia in 1975. The data is highly ag-
gregated, including all hospital specialties, but it is potentially
suitable for estimating model parameters for DRAM. Table 4 gives
the results and shows that two of the three model elasticities can
be adequately estimated but that the confidence associated with
the third estimate is very small. Although these estimates might
still be adequate for a predictive model, it would be better to
try to improve them. Perhaps the data might be further disaggre-

gated by category or by region. Alternatively, other vyears' data
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Example 2--input data.

Figures for Czechoslovakia in 1975

All hospital specialties

Admissions Average Doctor days
Region Population per thousand length per
of CSSR (thousands; population of stay admission

(days) (1) (2)

H1l. m. Praha 1170 154.9 15.6 10.3
Stré&docesky 1136 188.1 13.4 4.6
Jihodesky 670 183.6 13.9 4.4
Zapado&esky 875 170.7 13.5 5.8
Severocesky 1140 179.7 13.7 4.3
vychododesky 1227 192.7 13.4 4.2
Jihomoravsky 1992 169.6 13.9 5.1
Severomoravsky 1883 185.7 14.2 4.7
Hl. m. SSR Bratislava 341 105.6 13.0 24.0
Zapadoslovensky 1636 147.1 13.9 4.5
Stredoslovensky 1462 149.7 12.9 5.4
vychodoslovensky 1324 156.2 13.0 5.8
All CSSR 14857 168.4 13.8 5.5

(1) 2318.9 bed-days available per thousand population in 1975

(2) 931.3 doctor days available per thousand population in 1975
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Table 4. Example 2--estimated parameters.

Costs: doctor:bed = 2.49:1.00 estimated from current availabilities
assuming constant growth (see Section
3.5)

Ideal levels: X

Ybeds

400

30, Ydoctors =20

arbitrary values, assumed to be known exogenously

Model Estimated .
2
Elasticities value (1) Confidence (2)
a 0.69 0.9
B beds 1617. -1.7
B doctors 12.5 0.9

estimated value-standard error
estimated value

(1) assuming ¢ = 50 (2) Confidence =

could be used to examine possible historical trends. We know now
which of the parameters we need to investigate more thoroughly,
and following such work, a health planner could use the model to
investigate alternative policies for changing beds and staffing
levels,

4.3 Example 3

The last example also considers the allocation of beds and
doctors, but across two modes of care (inpatient and outpatient)
and using data from the South Western Region of England. Table 5
presents historic allocation data from 1977 for the seven largest
acute hospital specialties: general surgery, general medicine,
obstetrics and gynaecology, trauma and othopaedic surgery, ENT,
paediatrics, and ophthalmology [12,13]. 1In this example, the seven
specialties are the patient categories, inpatient and outpatient
are the two modes of care, and beds and doctors are the two re-
sources. Therefore, this example uses all the structure available
in the Mark 3 version of DRAM, although it has the simplifying
feature that one of the resources (beds) is used in only one mode
of care (inpatient).
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Table 6 shows the model parameters which were estimated from
similar data disaggregated for the five hospital areas of South
Western, and available for 1976 and 1977. With only ten data
points we would not expect to estimate a complete parameter set
with great confidence, and some of the figures in Table 6 are very
uncertain. Nevertheless, the variations between parameters are
as expected. In obstetrics and gynaecology most of the demand
is met (high aj) but the need for outpatient treatment is very
elastic (low Bj22)' In general medicine the reverse is true.

Many patients do not receive hospital treatment, but the supply

o resources to those who do is rather inelastic.

Table 7 shows the predictions made by the model using these
parameters for the resource levels actually used in 1977 and in
Table 5. The agreement is not quite as good as for Example 1,
because fewer data were available for calibration. Nevertheless,
it demonstrates that sensible parameters can be estimated for the
most sophisticated version of DRAM, even from relatively scanty
data.

5. CONCLUSION

The user of DRAM Mark 3 is able to explore a wide range of
pianniing issues. Not only may he study the consequences of chang-
ing the availability of different resources for patients in dif-
ferent categories, but also he may investigate how different modes
of treatment compete for these resources in treating patients with
different needs. The examples given above illustrate possible
applications in acute inpatient treatment, but the model should
be equally applicable in other care sectors, and perhaps even in

other applications outside health care.

The next step in this work is to test and use the resource
allocation submodel DRAM for applications in different countries.
As our illustrative examples show, not all the structures modelled
in DRAM need be used in every circumstance. Indeed, it is prob-
ably best to use the simplest possible formulation. Nevertheless,
we have shown that a fully disaggregated DRAM can be both cali-

brated and implemented with only modest computing requirements.
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APPENDIX 1

The Dual Optimisation Problem

Section 2 described a constrained optimisation problem. This
appendix shows how the method used to solve this problem is equi-

valent to solving the dual optimisation problem by hill climbing.

We seek to maximise a function U(x,y) subject to the con-

straints

F,(x,y) = g E Xix¥igg ~ R = 0 ) (4)

by using the Lagrangian

H(x,y,A) = U(x,y) + § M Fp (x,y) (5)
)

This primal problem is solved by finding

max min H(x,y,A)
X,y A

The same values of x,y,), however, also soive the dual problem

of finding

min max H(x,y,\)
A X,y

in which equations (9), (10) are used to substitute for x,y, and

an extremum is sought of H(x(X),y(A),A).
We now observe that

o1 _ f

3A

oH
2 3

and
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in terms of the expressions in equations (14),(16),(17). Eqgqua-

tion (15)

A, =X, = ¥ D,_£ (\) v 2 (15)
m

is then revealed as a steepest descent algorithm for finding the

minimum of H. The matrix

5 - Bf2
= )X
m

must be negative definite for convergence.
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APPENDIX 2

Admissible Solutions of DRAM

Not all resource allocation patterns are admissible solu-
tions of DRAM. This appendix describes the admissible solutions
for the simplest possible DRAM with one patient category, one

treatment mode and one resource.

As the resource level R (which is input to the model) increases,
so also does the number of individuals treated, x, and the resource
guota, y, allocated to each individual (which are outputs). For

the simplest possible DRAM with J = K = L = 1, these two rela-

tions can be derived from equations (9) - (11) as
x\ - (a+1) .
—-a A
R _(x B(Y) i :
<y 3 5T (A1)

- a+1
] (A2)

iz casy tc show that they have the shapes shown in Figures

4
o

-
-

A1 and A2. Both curves are convex and monotonically increasing.

Alternatively, we may find an equation which relates x and

y directly. The result

-(a+1) -B
X - Y -
B(X) = (B + 1) (Y) 1 (A3)

can have the three possible shapes shown in Figure A3. This figure
gives the locus of solutions of DRAM on the xy plane. The partic-
ular solution for a given resource level is found at the inter-

section of the locus and the resource hyperbolae

{0 -

and it is the point on the hyperbolae which maximises the utility

function of equation (1). Figure Al depicts the shape of this

utility surface above the xy plane.
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Figure A3. (%) as a function of (%).

Finally, we consider what conditions two solution points

x(1) y(1)) _

("x‘ r Ty ) = (pyray) (AH)
and

x(2) y(2)) _

must satisfy if they are to lie on the same locus in Figure A3,
and hence both to be admissible solutions of the same model.
Substituting (Ad4), (A5) into equation (A3) and elimanating o gives

—Blog ,)q1 P.]

(8 + 1) RERR ( 1yqoP -
q, B+ Naq, 1

B B

lo
gp2
(A6)
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N

This point has
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along this
hyperbola

1

Figure A4. The shape of the utility surface above
the xy plane.

which must be satisfied of all B > 0. Necessary conditions for

this include:

by 1if Py > Pqv lngzp1 < logq2q1.

Condition a) implies simply that an increase in the number cf
individuals treated, x, must be associated with an increase in the
resource quota, y, allocated to them. It is not possible for one
to increase and the other to decrease. Condition b) implies that
the geometrical increase in % must always be greater than the
geometrical increase in % . quivalently, the diagonal in Figure

A3 can be crossed only in an upward direction.

In versions of DRAM with more categories, modes, and resources,
the conditions derived above will apply, together with other as
yet unspecified conditions relating the different components of
x and y. An interesting and unsolved gquestion is the character

of admissible solutions when the level of one resource increases

and another decreases.
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APPENDIX 3

Progress Towards a Combined Calibration and Validation
Procedure

Section 3.1 outlined a procedure to estimate model parameters
by minimising the difference in utility between the observed data
and the corresponding model predictions. This procedure would be
a comprehensive approach, but it would also be rather complicated
and has therefore not yet been implemented. However, this appen-

dix presents some further analysis.

Initially, we restrict ourselves to the simplest possible
version of DRAM in which J = K = L = 1. The problem then is to
choose a,B8,X,Y so as to minimise AUN of equation (21). Unfortu-
nately, this problem is not convex, and additional constraints
must be placed on the scale and shape of admissible solutions.

A useful scale constraint is given by the ratio

. XY
= XMy (A7)

By reparameterising the problem in terms of Y and 6 we can show
that

oA (1)

7 = 0 ¥ i. In other words, constant 6

a)
6 constant
implies constant A(1i),

b) when 6 1is held constant, AU(i) and hence AUN are strictly

convex functions of Y. 1In other words, Y may be chosen

so as to minimise AUN.

There is no obvious shape constraint which has the same

properties as these, but a possible candidate is the ratio

o {a+ B+ 1
L R DN RN (A8)

This function is interesting because when B > 0, X >» 1, equation

(19) reduces to

¢
. XYy
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Under these conditions, therefore, we have a result similar to
that obtained for 6. Namely, that

oA (1)

B ¢ constant
In other words, constant ¢ implies constant A(i). It seems

likely that a corresponding convexity result also holds.

These results suggest the following approach to minimising
AU

a) Set values for 6 and ¢, and using equations (A7), (A8)

eliminate x and a from the expression (21) for AUN.

b) Find by differentiation the gradients
BAUN BAUN
oY 3B

0,¢ constant, 6,¢ constant,

c) Use improved hill-climbing methods to find the minimum

of AUN with respect to Y and B.

Whether this approach is useful depends upon whether it can
be generalised to versions of DRAM which have many categories,

modes, and resources. There is an obvious extended definition
of 6,

= X, Y. L (My., (1
&) § E jk jkz//§ E %3 (DY, D

with the property that

BAQ(i)

LR

82 constant 0 ¥i o,

but an equivalent ¢2 is not easy to formulate. Even if this prob-
lem can be overcome, improved hill-climbing methods will be in-
convenient unless some decomposition between categories, modes,
Or resources is possible. AUN is additive across these groupings,

but the individual problems are still strongly coupled and pos-
sibly not individually stable.
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APPENDIX 4

Unbiassed Regression Estimators

In the estimation of elasticities in Section 3.2, we assumed
that elasticities are ccgnstant across the areas of a region, and
then we performed regression analysis on the cross-sectional data.
However, even if this assumption is incorrect and elasticities are
different in different areas, we can show that this procedure

still yields an estimate which reflects the regional "elasticity".
Define the indices:

area or subregion, j = 1,2,...J

]
i = observation in each area, i = 1,2,...N

and suppose that the data x%(i),yj(i) satisfy the linear model
4
y. (i) = bjx-(i) + oge. (1) (A9)

in which ej(i) are uncourrelated random disturbances with zero
mean. The unknown parametzr bJ is different for different areas.
Nevertheless, we assume that it is constant and form the usual
least sguares estimate

b= (] x?x.) ] x?y. (A10)

in which XJ = {x (1),...,X (N)}T and Yj = {y (1),...,y (N) }T We
now investigate the propertles of B when the unknown parameters
b. are assumed to be random samples from a Normal or Gaussian
probability density function with mean m and variance v2

2

bj ~ N(m,v™) . (A11)

Combining equations (A9) and (A10) gives
Z X Xj(b - m)
J
T
E.o
J J >

/
(b - m) =([xx
J
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whence the results
Eb-m =0

that the estimator b is an unbiassed estimator of the mean regional

parameter m. Additionally, we may show that
2
E(b-m)2~9—+vT

The first term on the right hand side is the usual residual vari-

ance term, while the second arises from the uncertainty about bj'
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