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Preface

Standard setting is one of the most commoniy used regulatory
tools to limit detrimental effects of technologies on human health,
safety, and psychological well being. Standards also work as major
constraints on technological development, particularly in the ener-
gy field. The trade-offs to be made between economic, engineering,
environmental, and political objectives, the high uncertainty about
environmental effects, and the conflicting interests of groups in-
volved in standard setting make the regulatory task exceedingly
difficult.

Realizing this difficulty, the Volkswagenwerk Foundation spon-
sored a research subtask in IIASA's Energy Systems Program enti-
tled "Procedures for the Establishment of Standards". The objec-
tives of this research are to analyze existing procedures for
standard setting and to develop new techniques to improve the re-
gulatory decision making process. The research performed under
this project include:

i) policy analyses of the institutional aspects of stan-
dard setting and comparisons with other regulatory
tools;

ii) case studies of ongoing or past standard setting pro-
cesses (e.g. oil discharge standards or noise stan-
dards);

iii) development of formal methods for standard setting
based on decision and game theory;

iv) applications of these methods to real world standard
setting problems.

The present research memorandum is one in a series of papers
dealing with the application of game-theoretic methods to stan-
dard setting. It presents a formal model for the conflict situa-
tion arising from carbon dioxide pollution.
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Abstract

Under the assumption that a continuous increase in atmo-
spheric carbon dioxide beyond a critical value, caused by the
combustion of fossil fuel, will lead to irreversible and large
changes of the climate of the earth, the problem of limiting
CO, emission becomes an urgent concern. The subject of how to
determine and adapt an emission standard for carbon dioxide is
treated as a three-person infinite stage game, the players of
which are the decision units of regulators, producers, and
population. After the description of the model solutions are
derived for several solution concepts and discussed. In special
cases the solutions differ substantially from each other.







Dynamic Standard Setting for Carbon Dioxide

INTRODUCTION

The emission of carbon dioxide into the atmosphere resulting
from fossil fuel use has been increasing at an exponential rate
for more than one century. If this expansion continues, the
concentration of carbon dioxide in the atmosphere may be doubled
in about the next 60 years according to R.M. Rotty, 1977. The
effects on the global climate may well appear suddenly and could
get out of control before remedial actions become effective.

Since easily accessible fossil fuels contain such big amounts
of carbon there is a strong tendency to use them as a source of
energy that could last for nearly two more centuries. This is
much more so since the competing nuclear energy meets increasing
resistance by citizen groups. But it is the vastness of this
carbon reserve that causes deep concern within the climatological
community. The amount of carbon in recoverable fossil reserves
is ten times the amount now contained as carbon dioxide in the
entire global atmosphere.

As these reserves are being used, the concentration of carbon
dioxide in the atmosphere will surely increase; and because carbon
dioxide absorbs a portion of the infrared radiation emitted by
the earth, it is generally believed that a higher atmospheric
temperature will result ("greenhouse effect"). Although it is
uncertain how much warming is produced by a given increase, the
increased atmospheric carbon dioxide could have a considerable
impact on man's environment.

Significant physical effects that may be expected with high
fossil use are the melting of polar sea ice and/or decreasing
precipitation in mid-latitude regions. Major socio-political
impacts could plausibly attend a substantial increase of carbon
dioxide, for example:

- large and persistent fluctuations in global food supply,
due to repeated crop failures in various regions of the
world which are caused by chronic and severe weather
variability;

- increasingly regulated demographic migration between
regions and across national borders, due to a climate-
related collapse of selected webs in regional economies;
shifts in the power balance among nations due to physical
effects stimulating the economic and cultural decline in
some regions and stimulating increased growth and pros-
perity elsewhere.




At the present time the physical processes causing varia-
tions of temperature are poorly understood (see J. Williams,
1978 and T. Augustsson et al., 1977), and changes due to atmo-
spheric carbon dioxide increases are impossible to detect since
there is no accurate knowledge of the natural variability of the
global average temperature. As outlined by O.W. Markley et al.,
1977, and R.M. Rotty, 1977, the other physical and sociopolitical
effects are also highly uncertain.

Although a large part of the climatological community shares
the opinion that mankind needs and can afford a time window
between five and ten years for vigorous research and planning in
order to narrow the uncertainties sufficiently so as to justify
a major change in energy policies, the model analyzed in this
paper excludes an increase of relevant knowledge about the physi-
cal effects. Thus the model deals with the pessimistic view of
the climatic aspects of carbon dioxide. It is global in charac-
ter because the global effects seem to dominate the local or
regional ones.

Given these substantial uncertainties about the development
of climate, the problem of what energy policies governments should
choose, becomes important. This problem is approached as a con-
flict situation among the grouns of governments, producers
emitting carbon dioxide, and population. In order to work out
the global aspects this conflict situation has been formalized
as a multistage three person game, the players of which are
called regulator, producer, and impactee. Thus we neglect con-
flicting interests among governments, producers, and different
groups of populations, such as of developed and developing
countries. The regulator stands for an international agency,
the producer for an organization of all producers, and the
impactee for the community of people possibly affected by the
carbon dioxide problem.

The paper is based on the assumption that a continuous in-
crease of atmospheric carbon dioxide beyond a critical value
will lead to irreversible and large changes of the climate which
are regarded as a catastrophe. All three players have their sub-
jective probability of the level of the critical value. Since,
by assumption, there is no increase of knowledge about the cli-
matological process, the regulator can only be concerned about
the reactions of the producer and especially of the impactee.

After the specification of the model the results for several
solution concepts are derived. These are quite different in
general but can all be interpreted in terms of fair play or power.
Given that the model allows prescriptive answers although it is
primarily descriptive.

Since data are often unknown or scarcely available or arbi-
trary--as in the case of the regulator where the utility function
may be conceived of as reflecting a trade-off between the inter-
ests of producer and impactee--solutions are derived as functions
of the parameters. Hence parameter analysis can reveal the



crucial parameters. For the purpose of illustration a small
numerical example is added.

THE MODEL

The conflict situation is described by a three-person dy-
namic or multistage game in extensive form (see G. Owen, 1968, or
J.C.C. McKinsey, 1952) which resembles stochastic games. At
each stage a component game of perfect information is played
which is completely specified by a state. The players' choices
control not only the payoffs but also the transition probabili-
ties governing the game to be played at the next stage. Each
player has his own subjective estimate of the transition proba-
bility due to his subjective probability of the "true critical
value".

The set of states of the game is

s = {(c,L) | cp =2c=20,L 20} v {k =0}

C being the amount of carbon dioxide in the atmosphere;
C_. the maximal amount of carbon dioxide if all fossil fuel
P is burnt;
L the upper bound of carbon dioxide emission during a
period;

k the critical value for a catastrophe.

Let (C1,L1) denote the first state. Then C1 can be assigned
the present amount of atmospheric carbon dioxide, and L' the
present maximal emission of CO2 or some multiple of it.

The perfect information of the component games is specified
as follows:

For state (C,L) the regulator's set of choices is

N

Mp(C,L) = {20 <& <L<L} ,

where £ denotes the upper bound of the emission of carbon dioxide
by the producer.

Then the producer chooses the amount of carbon dioxide to
be emitted. His set of choices or measures equals

C -C
Mp(C,L:Q)={a|O<a<Q,a<_P_} :

O < B < 1 is defined below. The impactee's set of measures




equals
MI(CILIQIa) = {p | 0] <p < 1} .

Knowing the choices 2 and a he chooses the degree p of the
pressure he wants to exert on the regulator. p can denote the
probability of a vote to suspend the government or of an aggres-
sion against institutions.

The sets of measures in the case of k, i.e. a catastrophe
has occureed at amount k of carbon dioxide in the atmosphere,
equal

Mp (k) = {0} ;
M, (k,0) = {o} ;
MI (klolo) = {O} H

which means that there is no pressure.

Given state (C,L) and the choices (%2,a,p) the following
states are possible at the next stage:

(C + Ba, L), (C + Ba, 3, {k >c}

The first component of the first and second states indicates
that the constant share Ba of emitted carbon dioxide is added to
the amount of carbon dioxide in the atmosphere. This is con-
sistent with results of box models for the CO, cycle of the earth
(see R. Avenhaus, et al., 1978) if a is emitted at a constant
rate during the time period. The estimates for 8 range between
0.01 and 0.5. Amount (1 - B)a is assumed to disappear into the
biosphere, the upper mixed layer of the sea, and the deep sea.
The second components express that the old upper bound either
remains or is reduced by half. It is assumed that there is a

probability pv that L is replaced by %, where O < v < 1 is a

parameter provided that the catastrophe will not occur. k = C
denotes the amoung of carbon dioxide in the atmosphere at which
the catastrophe occurs.

All three players are assumed to have subjective probabili-
ties relating to the critical amount k of carbon dioxide. They
characterize the transition probabilities. For simplification
of the model we assume that the subjective probabilities con-
centrate on points denoted by CR’ CP, and CI for regulator, pro-
ducer, and impactee. We assume CR < CP, CI
the producer to neglect a possible catastrophe.

< CP thus allowing

RrR' Ppr PI for the transition

from (C,L) to the possible new states are

The subjective probabilities P P



New state t PR(t|C,L,2,a,p) PP(tlc,L,Q,a,p) PI(t|C,L,E,a,p)
(C+Ba,L) 0 if C<CR<C+6a 1-pv 0 if C<CI<C+Ba
or CR<C<C+Ba or CI<C<C+Ba
1-pv if C+Ba<CR 1-pv if C+Ba<CI
or CR<C=C+Ba or CI<C+Ba
(C+Ba,) 0 if C<C,<C+8a pv 0 if C<C<C+Ba
or CR<C<C+Ba or CI<C<C+Ba
pv if C+Ba<CR pv if C+6a<CI
or CR<C=C+Ba or CI<C=C+Ba
CR 1 if C<CR<C+Ba 0 1 if C<CR=CI<C+Ba
0 else O else
CI 1 if C<CI=CR<C+Ba 0 1 if CSCI<C+Ba
0O else O else

If the inequality C<Cj<c+8a holds, plaver j thinks that with
probability 1 catastrophe Cj will occur since with the scheduled

emission a the critical threshold is passed. The probability
for Cj<C<C+Ba is only defined so that the scope of the definition

covers all possible states and choices. Nevertheless, the proba-
bility is defined such as to express the idea of player j that
although Cj has turned out as a view too pessimistic, Cj<C and

any further increase C<C+Ba will result in a catastrophe. From
the results below it is obvious that the specific definition of
CQ<C has no conseguence.

State k cannot be changed: Pj(k|k,o,o,o) = 1 (j=R,P,I).

Since no utility functions are known for the three players, we
start with linear ones which are simplest to assess. Let the
transition from state s and measures (l,a,p) to state t have the
utility Uj(s; l,a,p,t) for players j=R,P,I.

L
c1l+cza+c3p , (M_L'i) H

UR(C,L,l,a,p; C+Ba,M)

. k-C .
UR(CI L, l,a;pr k) - C1l+C2‘-B—— + C3p+CR H

UR(kuO,O,O; k) = 0;




UP(CIL; llalp; C+Ba,M) = C“a ’ (M:L'%) ;
. . = o K=C .

UP(C,L,, l,a,p; k) = Cy 8 + cp ;

UP(k; 0,0,0; k) = 0 ;

UI(C'L; lrarp; C+BalM) = C5a+C6p ’ (M:L'%) :

U - - _ k-C .

I(CILI l,a,p, k) = CST + 06p+cI ;

U; (ki o,0,0; k) =0

The parameters are assumed to have the signs ¢,20, ¢,>0,
c3<0, cu>0, c5>0, c6<0. cj(j=R,P,I) is the additional payoff to
player j due to catastrophe and therefore regarded as largely
negative. c120 reflects the requlator's internal difficulties
in setting small standards, c2>O, Cq>0' c5>0 the benefits of
energy production; c3<0 the damage to the regulator due to

pressure exerted on him; and 06<O the burden of organization.

The term —Eg expresses that energy production is only valuable

up to the critical amount. Thus the idea is excluded that in
the case of a slowly developing catastrophe energy production by
combustion of fossil fuel may give additional benefits during
the initial stages of the catastrophe.

A play m of the game is given by an infinite sequence

1,1 .1 1
T = (s ,1 ,a ,p ; sz,lz,az,pz;...)

of states, measures of the regulator, producer, and impactee,
respectively. According to the list of transition probabilities,
there are only sequences where
1_.i i 1oL
C <C <CP and L e{L’, 5 7?""} '
i+1 1 .
and a® = 9__§;Q if 21 - (c , L )

Furthermore if s' = k then st = k for m > i. As a first
approach we define the utility of a play as the undiscounted in-
finite sum of the transition utilities:

Since the summed-up internal utilities Ec1ll can become infinite
' L 1

we omit them by specifying ¢y = 0. Let (s1,l1,a1,p ,+++) denote

a play where st = (¢*,vY) and sl+1 = k.



Then

U, (s

J

In the case of s

1
HR(S r o)

Admitting -« as a pa
i
of C <CP.

The same argume
Up( ) = ¢y
Up () = ¢y
and
U;0) =cq
ur () = cq
respectively.

The game is now
tion of strategies.
strategies where the
last measures of the

(c?,L
= o, E pl +
j=1

yoff then QR(S1,...) is well defined because

j_ 1
lim ¢ BC
j+oo

nt gives
1
k-C
.B +CP ’
j_ 1
lim C BC ;
i+1
k-C .
Sy D pitep
j=1
i >\ .
lim € éc + cg pt

completely described except for the defini-
For simplification we admit only stationary
choices depend only on the last state and
other players.

Definiton: A strategy oRr of the regulator is a map:
GR S > IR
such that
0g(C,L) e Mp(C,L) = {1]o<I<L} ,




oR(k) =0

A strategy o, of the producer is a map

P
oP:{(s,l)lseS,leMR(s)} +IR |,

such that
CP-C}
R ’

op(C,L,1) e M, (C,L,1) = {a]0<asl,
op(k,O) =0

A strategy o_ of the impactee is a map

I
OI:{(s,l,a)|seS,leMP(s),a€MP(s,l)} - [0,1] ,

such that
OI(C,L,l,a) € [011] ’
OI(k,O,O) =0
The sets of strategies are denoted by Ej (j = R,P,I).

Due to the list of transition probabilities defined above
infinitely many plays can occur. The appropriate oc-algebra over
the set T of all possible plays is defined as the minimal o-
algebra containing all cylinders with finite bases (see M. Loéve,
1955, 8.3). Due to the theorem of Tulcea there exist probability
measures Pj(-IoR,GP,GI) on this o-algebra where Pj(-IGR,oP,oI)

stems from the iteration of given subjective probabilities.

The payoff function to player j is defined as his high sub-
jective expected utility

V:I (GRIOPIOI) = fg] (W)dPJ (TT|ORIOPIOI) (j=RIPII)

The formalism allows to derive a sharp upper bound for
Vj(oR,oP,OI). Due to the definition of the transition proba-
bility PR the set of plays with a component state sm=(Cm,Lm),

such that Cm>C has probability P (-lo ,01) = 0.

R R'9p

R
Hence only plays 7 = (s1,l1,a1,p1;...) have to be considered

where a component state sm either equals (Cm,Lm) such that
m
C <CR or CR. Hence

i+1 1

_ m R . i i i
QR(N) = C4 E p +c, 3 + cp if C <CR<C +8a ,
j=1




or
i+1 1
2 Tilim 0, 82C  if cd<c, (5=1,...)
QR(W) = c, p-+lim c, 3 if C R (3=1,...
j=1
CR—C1
In both cases QR(W) < c, 3 is obvious. Hence
CR—C1
<
VR(ORIOPIOI) Cz B
CI—C1
The analogous argument yields VI(OR,OP,OI) Cg g whereas
C —C1
gp(n) < Cy g immediately implicates
CP--C1
<
VP(OR’OP’OI) Cu 8 .

The bounds are sharp in the sense that strategy triples
exist yielding the bounds as payoffs.

Let OR(C,L) =1, OP(C,L,l) = min(l,E—EE), OI(C,L,l,a) = 0.
CP—C1
Then VR(OR,OP,OI) = CU_—§——
We give examples for VR and VP below. If the establishment of

the payoffs as expected payoffs over I were more elaborated (see
e.g. J. Kindler, 1971) it would be obvious that we arrive at the
same payoffs Vj : 20X EP X EI + IR if we replace the component

R
utility Uy by UI,r:

Cga if M=1L ;

Us r(C,L; l,a,p; C+Ba,M) =
' €6 L

c5a+77 if M = 5 ;
UI’r(C,L; 1,a,p; k) = U (C,L; 1,a,p; k)
UI,r(k; 0,0,0; k) = UI(k; 0,0,0,k)

This remark permits to shorten proofs in the next section.
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THE GAME-THEORETIC SOLUTION

Except for two-person zero-sum games Or equivalent games,
there is no unanimous solution concept. Instead there are a
variety. Therefore we shall first give brief definitions of the
solution concepts (for a broader discussion see R. Avenhaus and
E. HOpfinger, 1978), and later on describe strategy three-tuples
satisfying them.

S ' + + +
Definition: A three-tuple (oR,oP,oI)gZRxZszI of strate

gies is called a (weak) equZlibrium point if

+ + o+ + +

VR(OR,OP,OI) > VR(OR,OP,OI) (OREZR) ;
+ + + + +

VP(oR,oP,oI) > VP(OR,OP,OI) (oPeZP) ;
+ + o+ +  +

VI(OR,OP,OI) > VI(oR,oP,OI) (OIEZI)

Definition: The payoff vector (Vj(oR,oP,oI))j = R,P,I is

called Pareto-optimal if there is no other payoff vector
(Vj(TR,TP,TI)) where Tjezj(j = R,P,I), such that

and at least cne inesgquality strictly hoiding.
Definitjon: Let (WR,WP,WI)eR3 denote the point of maximal

possible payoffs which is called bliss point, i.e.
Wj = max(vj(oR,OP,oI)loieZi(i = R,P,I)). The payoff vector

(VR,VP,VI) is called bliss-optimal if

} : 2 . 2
(vj ~ Wj) = mln(g(vj(oR,cP,oI) Wj) I(OR,UP,GI)EZRXZPXZI>
i=R,P,I J |

Definition: Let (dR,dP,dI) be a triple of payoffs the

players obtain in case they cannot reach an unanimous agreement on
the choice of a payoff vector. Then the Nash solution is the point
(WR,WP,WI) which maximizes the term (uR - dR)(uP - dP)(uI - dI)

subject to the requirements u. = V.(oR,oP,OI)(j = R,P,1I) for some

J J
strategy three-~tuple and u. > d. (j = R,P,I).

J J
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Definition: A hierarchic solution is a triple
(TR,TP,TI) consistent of a strategy TReZR, and two maps

TP:ZR g ZP ’
TI:ZRXZP > ZI ’
such that VI<0R,0P,TI(0R,0P9==1nax VI(OR,OP,GI) 7
O €L
I"71
VP(OR,TP(OR) ,TI(OR,T.P(OR))) = max VP(OR,OP,TI(OR,OP)> ;
O,EL /
P P
= ‘ ~U\.
VR\"r’ TP (TR ’TI<TR’TP (TR)>) max VR(OR'TP(OR) 'TI(OR’TP‘( Ra»
oREZR

The game has a huge variety of equilibrium points. In the
following we give three equilibrium points, the first two of
which have Pareto-optimal payoffs, whereas the third is only given
as an indicator of the variety of equilibrium points.

Theorem: The tuples of strategies given below are equilib-
rium points:

Cp-
1) 0; (c,L): = min(L,max(O, I}SC)) :
P cnl): =1 ; |
OP ILI )' - 1 %
1
Op (¢c,L,1l,a): =0 .

The inherent utilities are

1 1 1, _ . CRC
VR{Ogr0prap) = €, . i
1
1 1 1 _ CB—C .
1
. Cr-C ,
1 1 1 s — % if Cpe Cp
V. (c.,0.,0.) =
I''R'°P'"I cr—c’
C + C i .
5 _IE__ I if CR > CI

CI-C
2) oZ(C,L): =1nin(L,max(O, é )) ;

oNn -

o (C,L,1): =1 ;
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Ci-C

) and C < CI ,
(C,u,l a): =

Hl\

O if 1 = min(L,
{ -C
1

. . Ct
if 1 # min(L,

) or C > CI .

B
inherent utilities are
CI—C1
.y < a if CI < CR '
VR(ORr0pr0g) = CI—C1
Cy R -+CR if CI > CR
1
2 2 2. Ci-c
Vplograprar) = ¢y i
B
C —C1
v (52 2, _ I
1'9r"9p’Y1 Cs Tp
3} Keep quiet point
3 — -
R(C L) = O ;
3 ~
P(C L,1) =0 ;
N ‘O if 1=0 and C=C1 p
o_(C,L,1l,a) = |
I |1 if 150 or csc!

o o 3 3 3. .
with utilities Vj(OR,OP,OI) =0 (j=R,P,I)

Proof: 1In order to avoid descriptions that are cumbersome
but. not illustrative we give sketches only.

1) ILet i_ e {1,2,...) be defined by C1+B(i

R R
One can show by iteration on i that
i+ i . . i . .

cl 1=C1+BlL1(1=O,1,...,1R—1), al=L1(1=1,...,1R—1) ,
. i
i _~"R
a Rz C_R.-C_ ’

3
it . i L .
C =CR(1 1R,1R+1,...), a =0 (1=1R+1,1R+2,...) R

due to the regulator's strategy. Hence

1R &=C R Cp=C
R( R R’O )—02 E L +c CZ__E_— ;
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analogously

VP(OR,OP,OI)=C4
1’ (CR,L1) will be the state of the

In the case of Cp <C
+ 2,... also due to the subjective prob-

play for i = i, + 1,1

R R
ability of the impactee. However, if CR > CI’ catastrophe CI
c.-cl
will be the final state resulting in a payoff Co—p — + Cg.

The regulator's condition for an equilibrium is obviously
satisfied since the strategy triple gives him the maximal pos-
sible utility. Just as is obvious, there is no better payoff
for the producer with another strategy, and this is also true for
the impactee in the case of C,p < C;.

Only CR > CI requires more sophistication. Let 0% denote a

different strategy of the impactee. Then a play 7 with lim ct

A

< Cy is only possible if the reduction of L' to its half takes

place an infinite number of times. But then U r(w)=<» <

c,-c I,
I . 1 s
c5——§—— + Cqp- If the reduction of L 1takes place only a finite
Cc.-C
number of times then U (m) < c L + c¢c.. Hence eny other
-I,r = "5 B8 I

strategy cannot yield a better payoff.

2) In the case of CI < CR the regulator can only get a better
payoff if plays m with states (Cl,Ll) where ct > CI occur with a
subjective probability greater than zero. But then oi(cl,Ll,l,a)=

= 1 infinitely often yielding the payoff -« to the regulator.
Thus he cannot get a better payoff with a different strategy.
Obviously the producer cannot get a better payoff, whereas the
impactee gets his maximal payoff.

In the case of Ci =Cp regulator and impactee receive their

maximal payoffs, whereas the producer has no better response.
In the case of CI > CR the regulator may want to escape catastro-

phe by applying a strategy like the one of the first equilibrium
point. But then he is punished an infinite number of times by
pressure from the impactee and gets a smaller payoff. Again it
is obvious that producer and impactee cannot do better.

3) The impactee's ability to exert pressure infinitely often
3 3

again makes the strategy triple (OR,OP,oi) an equilibrium point.
The question arises: Which of these equilibrium points yield
Pareto-optimal payoffs? The answer can immediately be deduced

from the following:
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Theorem: The set of payoffs

)(VR(OR;OP;OI),VP(OR,GP,GI),VI(UR,GP,OI)>|0j€Zj(J=R,P,I)

is a subset of the following domain Dgnfa .

1) Let CR < CI < CP. Then D consists of all (x,y,z)e]R3such
that a pair (pR,pI) of real numbers exists such that o g Pgy

© <prr O < pgpt Py and the following inequalities hold:

8
—c' c,_c’ Co=C|
yse {p CR7C 4+ p SI-F 4 (1-PL-P)TP T Lo
B B ' B
cr-C! c,~c' + (1 -p_) CI—C1 + c)
zchpR_ + cSpI_EE__ ( -PR PI 5 < I

2) Let CR = CI < CP. Then D consists of all (x,y,z)51R3which
are part of a solution (x,y,z,p)eﬂf‘of the following system of

inequalities:

Osp<s i :
CR-C]
X<e,TR T+ (1-p)cR ;
C ¢! Cp-cl
< ﬁ) R_+ 1_ P
y_C4l! 5 (1-p) — ;
cp=C’ cp-c’
25 Sgp * O-p)(Cg—Fg—* cp) -

Then D consists of all (x,y,z)enfgwhich

3) Let C. < CP < Cp- ]
(x,y,z,pIpR)eﬂT)of the following system

I
are part of a solution

of inequalities:
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O<pys O<pPpr OL1-py~Pp i
: 1 1

c.-C c_~C o | .
X<C,Pg IB__-+ C,Pg R8 + (1-p; pg) (o, + cgR) ;
<o cr-cl , _ cg-cl (1=po=p_) cp-c1 ;
YSC4§ Pg Pr—i— P1 PR

cr-cl _
zscg —5— + (1 pI)cI

Sketched proof: Let (oR,oP,oI) denote a strategy triple. In

< CI <_CP l?t PR depote the probability (PP(TR\OR,GPIGI)
that a play with states (C?1,L1), ct < CR will be realized, i.e.

T, is the set of all plays b1,11,a1,p1,...) such that c?t Y CR for

R
all component states (Cc',LY)(i = 1,2,...). Let Py = PP(TI|0R,0P,0I)
denote the probablllty for the set of plays (s ;11 ,a ) ME=1,2,...)

such that ct < C for all i, where st = (¢t , L 1y(i =1,2,...) but

the case of CR

CJ > C for at 1east one j. Obviously

1 1 1
C,-C C+-C c,-C
R 1C , (1-p -0 )°P .
VP(GRIOPIOI):C4{pR 8 + pI 3 (1 pR pI) B }

By definition of the regulator's transition probability,
PR(TRIGR,GP,OI) = Pg/ but with probability 1 - Pr the catastrophe

will occur. Hence

C C
R - i
VR(OR'OP'GI)fcz——E—— + (1-ppleg

The impactee s probabilities for plays with only state com-
ponents below C and between CR and CI are pp and Pr respectively.

Therefore

cn-c! c.-C c —c

R
V1(OsOprop)sCePp—p— + c5 1 —Lr— +(1-pp-py) (c5

The proofs for the two remaining cases follow the same line of
One has only to consider that p is the producer's

argumentat ion.
1
< =
CR CI

subjective probability that a play will occur where C

for all component states ct In the last case Py denotes the
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producer's probability for a play with component states not
greater that CI’pR’ the probability for a play with a component

state greater than CI’ and all component states not greater than
C,.
R

Corollary: The first and the second equilibrium point of
the last but one theorem have Pareto-optimal payoff vectors.
In the case of CR > C1 and CI > C1 the keep-guiet point has no

Pareto-optimal payoff vector.

Proof: Having chosen either Pr = 1 or Pr = 1 and p =1, im-

mediately verifies that the payoff vectors of the first and sec-
ond equilibrium points belong to the boundary plane given on the

right-hand side of the inequalities of the last but one theoremn.

Hence the payoff vectors are Pareto-optimal.

Under the given conditions the keep-quiet point is dominated
by the first or the second equilibrium point. The results are
illustrated by Figures 1 and 2 showing the projection of subset
D of the last theorem.

As can be seen from the figures even the combined solution
concepts of equilibrium point and Pareto-optimality do not yield
an unanimous solution. But what about the remaining solution
concepts? In order to discuss them we give the boundary plane
of the last theorem after elimination of the parameters for the
case of CR < C. < C, by the following equation:

I P
- o N —~ —_m o~
¥y, = %%  x %, % R G ) - constant
% ¢ B cp\ B c B B

Since by assumption c_. and c_, are huge negative numbers the

I R
equation is dominated by the first term EX—. Hence the payoff
c,-c’ cg=C cg-C! I
vector (C2 5 Sy g 1Cg—pg } is either bliss-optimal or very

close to the bliss-optimal payoff vector. Hence we can regard it
as approximately bliss-optimal.

The same holds for Cr = C
c.-c' c,~C'
—B_’ cu_g__—

< Cp, and in the case of CI < CR <
C.-C1

I
5 B

I

< CP for (c2 , C ).

Without proof we state that the two approximate bliss-opti-
mal points are Nash solutions for dj =0 (j = R,P,I) as soon
as the absolute values of C1 and Cp are large enough. This means
that the bliss-point concept as well as the Nash solution favor
a behavior based on the most pessimistic estimate min (CR,CI) of
the critical value.
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Vi
A POINT OF MAXIMAL

EQUILIBRIUM 1 PAYOFFS
//////////////a . ﬁ/
IMPACTEE | V
UTILITY | > Y
| Cp-C CR-C1
| Equilibrium 1 (c2 —Cs—7
REGION OF L cp 1 ]
I Cx-C c;-C
POSSIBLE | Equilibrium 2 (CZ—B—_ + CpiCg—p—
|
PAYOFFS : Point of Maximal Payoffs
1 1
| Cp=C ] c -C
| Co— 8 '°s7 g
REGULATOR EQUILIBRIUM 2

UTILITY

Figure 1. Payoff diagram for regulator and impactee (CR < CI).
VR
POINT OF MAXIMAL
EQUILIBRIUM 1 | PAYOFFS

| 'EQUILIBRIUM 2
IMPACTEE  REGION OF POSSIBLE PAYOFFS , . v
UTILITY &> Vi
cR-c1 cI-c1 REGULATOR
Equilibrium 1 (c2 s —'C5 g + cI> UTILITY

o . CI-C CI-C
Equilibrium 2 (c2 3 ,c5 5 )

Point of Maximal Payoffs

1
CCRCCCI—C
2 B "5 8

Figure 2. Payoff diagram for regulator and impactee (CR > CI).
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The hierarchic solution concept is much more complicated
than the preceding ones since it involves maps from strategy
spaces into strategy spaces. We circumvent the mathematical
optimization problem specifying only the resulting strategies.

Theorem: Let (O;,O;,Ol) be the first equilibrium point of

“le 1ast but one theorem, i.e.,

1 _ . CR-C
oR(C,L) = mln<L,max(O,_Tr_0 .

1. _
OP(L,L,l) 1

~e

li
Q

s (c,L,1,a)
I

et (T;,I;,T}) denote a hierarchic solution. Then (

i

TR,TA,TI)
defined by

'R R
T (6.) = T0(02) (6nefo-{oi}), 1 (o) =0b 3
P'"R P'"R R™“R R’ P'R P !
- {(0,,0.) = T1(O o,) (0.€el -{01}(j=R P) ;
I'"R’"P R'"P 35°5 j '

wloly = o

is also a hierarchic solution.

T 1 1 1T 1 1 1 1 1

Proot: VI(OR,OP,OI) = mg¥ VI(OR,OP,GI) since (GR,GP,GI) is
an equilibrium point. The next step is the verification of

T 1 1, _ 1 1 .
VP(OR,OP,OI) = mgﬁ VP(?R,OP,TI(OR,OP) .  The regulator's strategy

op prevents a larger amount than Cr of carbon dioxide in the

atmosphere, whereas the producer's utility is the larger the m?re

Cc_=C
dicxide is1in the atmosphere. Therefore VP(o;,o;,al) = cu—BE——-=
= max VP(OR,OP,OI), which is even stronger. The last condition

a
O9pr 97

is trivially satisfied since V
c,-c
2B to the regulator.

1 1 1 . .
R(OR,OP,OI) gives the maximal pos

sible utility c
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It shculd be remarked that the theorem is independent of

whether CR < Cjor not. It simply states that the regulator is

strong enough to push through his standpoint.

The following example serves to illustrate the order of mag-

nitude. Let C' = 6 - 1019, c; =18 - 10'8g, ! = 0.2 - 10'%,
B = 0.3, c, = 0.0028/g, c, = 10 *c

4 c. = 0.7 c,. C1 is in the

2 A 2

order of magnitude of_the present amount of carbon dioxide in

the atmosphere, and L1 in the order of magnitude of the present
release of carbon dioxide. $3.6 - 1012 is an estimate of the
gross world product of 1970. Then production is possible for 200

yvears and the payoff vector equals (38 - 1014, 8 « 1010, $5.6 - 1014

).

CONCLUSION

The game has been analyzed for different solution concepts.
It turns out that the Nash solution and the bliss-optimal concept
yield solutions that are basically different from the hierarchic
solution. In the case of CI < CR where the impactee's view is

more pessimistic than that of the regulator, the Nash solution
and the bliss-optimum concept, by their tendency to fair bargains,
favor the second equilibrium point based on the estimate CI.

Contrary to this the hierarchic solution yields the first equi-
librium point which is based on the estimate CR as critical wvalue.

The results heavily depend on the fact that the summed up
component payoffs are not discounted. Thus the impactee can
principally push the regulator's payoff down to minus infinity.
Actually he cannot exert pressure infinitely often since then he
would also receive the payoff minus infinity. Hence this cap-
ability to punish or to exert pressure only yields a vastness of
equilibrium points. It seems that the results may change sub-
stantially if discounting is included. Then the regulator may be
able to resist pressure, and on the other side the impactee may
be able to afford pressure. Another way would be to assume the
game to be stopped as soon as the upper bound L is below a given
limit, e.g., if L is less than ten percent of the carbon dioxide
produced by the biosphere during one year. Again the question
arises whether_ the impactee can enforce a total release that is

CI-C

-
So far the impactee has been represented as a rational
player with a utility function. Another possibility would be to
represent him by a response function based on his perception of
the regulator's and the producer's decisions, i.e., to prescribe

one strategy of the impactee. Then we would actually have a
regulator-producer game, and as soltuion concept we might take
the hierarchic solution. But which response should we use?
Our analysis of the three-person game offers us two responses:

less than
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cl(C,L,l,a) = 18] H
C.,.—-C
0 if 1 = min(L,——) and C<C '
2 B -1
OI(CILIlIa) = { CI‘C
1 if 1 # min(L,TT;—) or C>C.

If we assume the first, then the impactee is actually a dummy
ilayer. Then equilibrium point one is part of the hierarchic so-

lution. “In the case of oi however, the hierarchic solution yields

the second equilibrium point as can be verified very easily.
Thus, the three-person game can provide for ideas how to formalize

a response function.
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