Cost-efficient reduction of population exposure caused by primary PM_{2.5} emissions in Finland (#66)

N. Karvosenoja(1), K. Kupiainen(1), V.-V. Paunu(1), M. Savolahti(1), A. Tohka(1), L. Kangas(2), J. Kukkonen(2), J. T. Tuomisto(3)

- (1) Finnish Environment Institute (SYKE)
- (2) Finnish Meteorological Institute (FMI)
- (3) National Institute for Health and Welfare (THL)

Contents

Introduction

•Fine particulate matter (PM_{2.5}) in Finland

Methodology

•Finnish Regional Emission Scenario (FRES) model

Results

- •Primary PM_{2.5} emissions in Finland 1984-2020
- •Primary PM_{2.5} reduction potential and cost-efficiency in 2020 for:
 - Reduction of emissions
 - •Reduction of population exposure

Conclusions

Fine particulate matter (PM_{2.5}) in Finland

Finland:

- Land area 340 000 km², population 5.4 million, low population density
- Low annual average concentrations of PM_{2.5}

Components of PM concentrations in Europe vs Finland

Modeling resolutions and components of PM concentrations:

■50km: Regional background (Urban background)

■10km: Regional/Urban background

■1km: Urban background / Local sources

In Finland vs Central Europe:

lower regional/urban background

Contribution to average winter/autumn concentrations 20% in Helsinki (Saarikoski et al. *Water Air Soil Pollut* 2008 191:265-277)

Major source for PM_{10} , significant also in $PM_{2.5}$ in spring/winter time (Vallius et al. *Sci Total Environ* 2005; Pakkanen et al. *Atm Environ* 2001)

strong local sources (e.g. domestic wood combústion, traffic spring/winter suspension)

Methodology

Finnish Regional Emission Scenario (FRES) model

part of the Finnish Integrated Assessment Modeling (IAM) framework

Finnish Regional Emission Scenario (FRES) model

www.environment.fi/syke/pm-modeling

- Anthropogenic emissions 1990, 2000, 2005, 2010, 2020, 2030, 2050 (several projections)
- Comprehensive and congruent calculation for primary PM and gases
 - •primary PM (TSP, PM_{10 2.5 1 0.1}, chemical composition, incl. BC/OC/sulfates)
 - •SO₂, NO_x, NH₃, NMVOCs
 - •GHGs
- Abatement technologies and costs
- Aggregation: 154 sectors,15 fuels (GAINS compatible)
- Large point sources (>200), small point sources (> 200), area emissions (1 × 1km²)
- Several emission heights
- Dispersion with s-r matrices $(10 \times 10 \text{km}^2 \text{ and } 1 \times 1 \text{km}^2)$
- LRT from EMEP
- Databases of population and critical loads

Emissions – 1 km / 1 hour resolution

Karvosenoja 2008

Dispersion/impacts – Various tools

1. Long-range transport impacts with EMEP 50 km resolution

Finnish high-stack PM emissions with 10 km resolution

Finnish near-ground PM emissions with 1 km resolution

1. EMEP source-receptor matrices (SRM) 50 x 50 km

12 15

Results

Primary PM_{2.5} emissions in Finland 1984 - 2020

PPM2.5 emission 1984-2020 (kilotons/a)

PPM_{2.5} emission 2020 (kilotons/a)

Primary PM_{2.5} emissions in Finland 1984 - 2020

PPM2.5 emission 1984-2020 (kilotons/a)

PPM_{2.5} emission and reduction potential 2020 (kilotons/a)

PPM_{2.5} emission, reduction potential and cost-efficiency

Modeled PM_{2.5} concentrations in 2020 – Power plants and industry

- Largest emissions from industrial processes not located near major cities
- High-stack-emissions efficient mixing minor impact on concentrations
- Highest impacts on annual concentrations below 1 μg/m³ from industrial process plants, not in high population density areas

Modeled PM_{2.5} concentrations in 2020 - Traffic sources

- Emissions to great extent in urban areas and along highways near high population densities
- Low-altitudeemissions – high impact on concentrations
- Impact on annual concentrations 1 to 6 µg/m³ in many locations

75

SYKE

PPM_{2.5} emission, pop. exposure and red. potential 2020

- Strongly different emission exposure relationships for different emission sources categories (high-stack / near-ground, urban / non-urban)
- ■Traffic non-exhaust and residential wood stoves biggest sources of population exposure to primary PM_{2.5} in Finland in 2020
- Reduction potential of population exposure largest for traffic sources

PPM_{2.5} emission and reduction potential 2020 (kilotons/a)

Population exposure caused by PPM2.5 and red. pot. 2020 (µg/m³)

PPM_{2.5} pop. exposure, reduction pot. and cost-efficiency

13.9.201

Conclusions

In the future (2020) for primary PM_{2.5}

- ■Biggest cost-efficient emission reduction potential in power plants and industry
- ■However, only modest reductions of population exposure can be achieved with the emission abatement in power plants and industry
- ■Population exposure reduction potential high on accelerated renewal of traffic vehicle fleet
- ■Traffic non-exhaust and residential wood stoves the biggest sources to cause population exposure
 - Modest and uncertain emission reduction potential
 - Future challenge to develop efficient technologies for PM_{2.5} reduction

Foto: M. Räisänen

Thank You

