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Abstract 

The evolution of a pathogen’s host range is shaped by the ecology of its hosts and by the 

physiological traits that determine host specificity. For many pathogen traits there is a 

tradeoff: a phenotype suitable for infecting one set of hosts poorly infects another. 

Introducing and analyzing a simple evo-epidemiological model, here we study how such 

a tradeoff is expected to affect evolution of the host ranges of influenza viruses. We 

examine a quantitative trait underlying host specificity, given by an influenza virus’s 

degree of adaptation to certain conformations of sialic acid receptors, and investigate how 

this receptor preference evolves in a minimal network of host species, including humans, 

that differ in life history and receptor physiology. Using adaptive dynamics theory, we 

establish thresholds in interspecific transmission rates and host population sizes that 

govern the emergence and persistence of human-adapted viruses. These ecological 

thresholds turn out to be largely independent of the strength of the evolutionary tradeoff, 

underscoring the importance of ecological conditions in determining a disease’s host 

range. 

 

Keywords: influenza; host range; adaptive dynamics; emerging infectious diseases 
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1. INTRODUCTION 2 

Several challenges complicate the task of predicting evolution. One is the presence of 

evolutionary constraints: It may not be possible to optimize two phenotypic traits 4 

simultaneously, because a high value in one trait rules out high values in the other. 

Another problem concerns attainability: Evolutionary pathways may lead through regions 6 

of low fitness or, if mutations interact epistatically, may be difficult to map to phenotypes 

in the first place. Yet another class of problems arises from the environment or ecology in 8 

which evolution occurs: The fitness of a trait may be frequency-dependent, being 

influenced by the phenotypes of other individuals. Fitness can also be affected by 10 

population size, spatial interactions, and extrinsic factors, and these relationships can be 

nonlinear and dynamic. 12 

Predicting evolution of host ranges in pathogens requires confronting several of 

these problems at once. Many pathogens show adaptations to specific host or tissue types 14 

and are unable to infect other hosts or tissues without undergoing extensive adaptation 

(Baranowski et al. 2001; Webby et al. 2004). Such adaptation often comes at the expense 16 

of the ability to infect an original host type, and thus presents an evolutionary constraint 

in the form of a tradeoff. Pathogens tend to undergo extreme changes in population size 18 

during the same period in which rapid evolution occurs. Host immunity and host 

demography furthermore often impose frequency-dependent selection. 20 

Given this complexity, it is not surprising that there is little general theory for the 

evolution of host ranges in pathogens. This is unfortunate, considering the ubiquity of 22 

zoonoses: Most pathogens of humans infect at least one other species (Woolhouse & 
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Gowtage-Sequeria 2005). Existing models address host range indirectly. For example, 24 

Parker (2003) used optimization principles to show how parasitic helminths may expand 

their host range through trophic transmission to acquire complex life cycles. Gandon 26 

(2004) developed predictions for the evolution of virulence and transmission in a 

multihost environment. Some insights might also be gained by interpreting host range as 28 

a resource-choice problem for pathogens. In Levins’s (1962) classic approach, consumers 

are predicted to specialize under strong tradeoffs and to adopt generalist strategies when 30 

tradeoffs are weak. His model, like Parker’s, assumes that the optimal strategy will 

prevail. When selection is frequency-dependent, however, optimization principles are 32 

likely to give qualitatively incorrect predictions (Dieckmann et al. 2002; Egas et al. 2004; 

Koelle et al. 2005). 34 

Our goal in this study is to develop basic predictions for the evolution of 

influenza’s host range. Host range here refers to the specificity and diversity of pathogens 36 

in the host community. We choose influenza because of its importance to the health of 

animal populations and its interesting constraints and ecology. At the same time, the 38 

methods of analysis presented here are general and might be of interest also with regard 

to many other pathogens. Our analysis focuses on how host ecology and a tradeoff in host 40 

specialization are expected to influence evolutionary outcomes in the long run. We do not 

consider the mechanistic details of evolutionary attainability here, since the genotype-to-42 

phenotype maps relevant to influenza’s host range are poorly known (Baigent & 

McCauley 2003). Like Levins’s approach, ours ignores environmental variation, such as 44 

seasonality, and assumes that viral population dynamics roughly equilibrate between 

successful invasions of pathogen strategies. These simplifications allow us to obtain 46 
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general results about the structure of host ranges in a heterogeneous host environment, 

when adaptation is restricted by a single evolutionary constraint. We find that (i) 48 

specialists are favored for a broad range of both weak and strong tradeoffs, (ii) the scope 

for specialist coexistence sensitively depends on interspecific transmission rates and host 50 

population sizes, whereas (iii) these dependencies are only weakly affected by tradeoff 

strength. 52 

 

2. BACKGROUND 54 

The host range of many viruses is constrained by cell recognition (Baranowski et al. 

2001). Influenza viruses all bind to cell-surface oligosaccharides with a terminal sialic 56 

acid. Sialic acids fall into one of two general types of conformations: the Neu5Ac(2,3)-

Gal linkage or the Neu5Ac(2,6)-Gal linkage. The intestinal and/or respiratory epithelia 58 

of waterfowl, horses, and dogs contain mainly cells with 2,3-linked sialic acids, 

whereas the upper respiratory epithelia of cats and humans are dominated by 2,6-linked 60 

sialic acid receptors (Baigent & McCauley 2003). Pigs, the alleged “mixing vessels” of 

influenza viruses (Webster et al. 1992), contain both types of receptors in their 62 

respiratory tracts (Scholtissek et al. 1998). Chickens also possess both types of receptors 

(Gambaryan et al. 2002). Experiments have shown that most viruses cannot replicate in 64 

host tissue of dissimilar receptor type, and viruses preferring one receptor type can often 

sustain some replication in any host possessing that type, even if they are adapted to 66 

another species (e.g., Ito et al. 1999; Kida et al. 1994). Thus, the chemistry of receptor 

binding creates a tradeoff between the ability of influenza viruses to invade cells of one 68 

type or the other. 
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The distribution of 2,3- and 2,6-linked receptors in the host community 70 

presents an interesting evolutionary challenge: In a population of diverse potential hosts, 

under what circumstances will viruses evolve new receptor preferences? The emergence 72 

of avian influenza subtype H5N1 in humans has been ascribed to high interspecific 

mixing in backyard farms, large population sizes in the expanding commercial poultry 74 

industry, and the presence of intermediate hosts (pigs or chickens) that serve as 

ecological and evolutionary bridges between waterfowl and humans (Bulaga et al. 2003; 76 

Liu et al. 2003; Webster 2004; Webster & Hulse 2004). How easily could 2,6-adapted 

mutant viruses invade in these different environments, and would they be able to coexist 78 

in the long run with 2,3-adapted resident viruses? 

Here we analyze how the host range of influenza changes with tradeoff strength in 80 

a simple evo-epidemiological model in which influenza viruses can adapt their receptor 

preference. We first assume that host species are epidemiologically equivalent except for 82 

their receptor types. Subsequently, we adopt more realistic assumptions and explore how 

the evolutionary dynamics of influenza viruses are modulated by two major components 84 

of influenza’s ecology, interspecific transmission rates and the relative abundances of 

different host species. 86 

 

3. METHODS 88 

(a) Epidemiological dynamics 

We consider a community with three host populations. One population, with abundance 90 

Nr, represents the waterfowl reservoir and has only 2,3-receptors. Another population, 

with abundance Nt, represents the “target” population (e.g., cats or humans) and has only 92 
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2,6-receptors. The third population, with abundance Nm, represents intermediate hosts 

such as pigs and chickens that possess both receptor types. We assume there are contacts 94 

between the reservoir and intermediate hosts (Nr and Nm) and between the intermediate 

and target hosts (Nm and Nt), but not between the reservoir and the target hosts (figure 96 

1a). 

Whether a contact between infected and susceptible host individuals results in 98 

transmission of the influenza virus depends on the host’s receptor type and the virus’s 

receptor preference p. We define p as the virus’s probability of infecting via an 2,6-100 

receptor; a perfect 2,6-specialist thus has p = P(2,6) = 1. In our model, the virus’s 

probability of infecting via an 2,3-receptor, P(2,3), is related to P(2,6) through a 102 

tradeoff with strength s (Egas et al. 2004), 

 104 

P(2,3)1/ s  P(2,6)1/ s 1 . (1) 

 

This tradeoff can be tuned to be weak (s < 1) or strong (s > 1). For later reference, we 106 

introduce three broad categories of viral phenotypes: 2,6-specialists, 2,3-specialists, 

and generalists. We consider an 2,6-specialist to have a low degree of specialization if 108 

0.5 < P(2,6) – P(2,3) < 0.8 and a high degree of specialization if P(2,6) – P(2,3) ≥ 

0.8. The criteria for 2,3-specialization are analogous. A virus is considered adapted to a 110 

receptor if it is specialized to that receptor. Generalist preferences comprise the 

remaining cases, |P(2,6) – P(2,3)| ≤ 0.5 (figure 1b). 112 

Epidemiological dynamics follow the susceptible-infected-recovered-susceptible 

(SIRS) model. The transition of a host from recovered to susceptible indirectly captures 114 
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two kinds of processes, the replenishment of susceptible hosts via births and deaths and 

the loss of immunity due to antigenic evolution by the pathogen. Our model represents 116 

these dynamics by six ordinary differential equations. The equations follow the rates 

dS/dt and dI/dt at which the abundances of susceptible and infected hosts change in each 118 

of the three host populations. Since we assume constant population sizes, the rates dR/dt 

at which the number of recovered hosts changes in each of the three host populations 120 

follow from those equations. For each host in population i = r (“reservoir”), m 

(“intermediate”), t (“target”), the rate of susceptible replenishment is given by i, the rate 122 

of infection by λi, and the rate of recovery by i. Below we explicitly show the equations 

for each state of the intermediate host, 124 
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 126 

The force of infection in the intermediate host, m, equals the sum of the per 

capita rates of acquiring infections from contacts with infected members of all host 128 

populations, m = mr + mm + mt. We initially assume that transmission rates are 

frequency-dependent (Keeling & Rohani 2007). This leads to the following form of  the 130 

transmission term, illustrated here for the rate of new infections in the intermediate host 

caused by contact with reservoir hosts, 132 
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mr Sm  max[P(2,3),P(2,6)]mr

cmr Sm

N r  cmr Nm









Ir , (3) 

 134 

where ij is the baseline rate at which an infected individual in host population j transmits 

infection to a susceptible individual in host population i. The transmission rate ij takes 136 

into account physical and behavioral differences between the host populations that affect 

the likelihood of infection given a contact. The effective transmission rate between two 138 

different populations is further modified by the appropriate receptor probability [in 

equation (3), max[P(2,3),P(2,6)]], and the fraction of contacted hosts that are 140 

susceptible [in equation (3), (
cmrSm

Nr  cmrNm

)]. To specify this susceptible fraction, we 

introduce cmr, the ratio of the probabilities per unit time of inter-population (between 142 

intermediate and reservoir hosts) and intra-population (among reservoir hosts) contact. 

The denominator, Nr + cmrNm, is thus proportional to the expected total number of hosts 144 

contacted by an infected reservoir host during a given time period, and the numerator, 

cmrSm, is proportional to the expected number of susceptible intermediate hosts contacted 146 

by an infected reservoir host during the same time period.  

 For simplicity, we initially assume cij = cji = c, before relaxing this assumption 148 

later. Under this assumption, c controls the degree of mixing between host populations. 

For c = 0, all contacts occur within the separate host populations. In this situation, if Si/Ni 150 

≈ 1, the effective transmission rate equals the baseline rate ii, and no contacts are 

potentially wasted on hosts in other populations. The case c = 1 implies free mixing 152 

between reservoir and intermediate hosts and between intermediate and target hosts. As c 
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approaches infinity, the effective transmission rate between host populations i and j 154 

equals ij (again assuming Si/Ni ≈ 1), and the effective transmission rate within host 

populations drops to zero. A more restrictive interpretation of our parameterization is that 156 

cij represents the fraction of population j in the range of population i, implying c  [0,1]; 

cij can also be interpreted as the integrated product of the spatial frequency distributions 158 

for hosts i and j. We further assume that the between-population transmission rates ij 

equal the average of the two corresponding within-population transmission rates, 160 

 

ij   ji 
ii  jj

2
. (4) 

 162 

Extending these conventions to infections arising from contacts with infected hosts from 

all three host populations, we obtain, 164 

 

mt mt tmr mr r mm m
m

r mr m mr r m mt t mt m t

max[ ( 2,3), ( 2,6)]
c Ic I I

P P
N c N c N N c N c N N

   
 

       
. (5) 

 166 

Equations for the other host populations are analogous (equations S1 and S2). As 

equation (5) illustrates, in our model infection of the intermediate host occurs via the 168 

receptor type to which the infecting virus is better adapted. By modeling all mortality 

implicitly in the rate of susceptible replenishment, our model assumes that infections are 170 

acute and do not kill hosts, and that natural mortality acts only on recovered hosts. 

 172 
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(b) Evolutionary dynamics 

To model the evolution of host range, we test the ability of a mutant virus with receptor 174 

preference p1 to invade a community of hosts infected with a resident virus of receptor 

preference p2. To constrain the problem, we assume that in each host population, the 176 

resident virus has reached its endemic equilibrium, and that the ability of the mutant to 

invade the resident is given by its instantaneous growth rate when rare in the environment 178 

determined by the resident. This growth rate, also known as the mutant’s invasion fitness 

in the resident’s environment (Metz et al. 1992), is given by the dominant eigenvalue of 180 

the Jacobian of the rare mutant’s epidemiological dynamics (electronic supplementary 

material). The endemic equilibrium and the dominant eigenvalue are calculated 182 

numerically, since both are determined by polynomial equations of orders in excess of 

four. 184 

By determining the growth rate of every possible mutant phenotype against every 

possible resident phenotype, we obtain pairwise invasibility plots (PIPs). PIPs show 186 

which phenotypes are uninvasible once attained and which phenotypes can be attained 

through the succession of small and advantageous mutational steps. The former 188 

phenotypes are called evolutionarily stable, the latter convergence stable. Our 

assumptions and approach are an application of the theory of adaptive dynamics 190 

(Dieckmann & Law 1996; Geritz et al. 1998; Metz et al. 1996). 

 192 
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4. RESULTS 

(a) Effects of tradeoff strength in a neutral host ecology 194 

We first examine how host range evolves when the host populations are 

epidemiologically equivalent in every respect but their receptors: hosts share the same 196 

population sizes and rates of contact, recovery, and susceptible replenishment, but their 

receptors vary. For simplicity, we assume c = 1, implying free mixing between reservoir 198 

and intermediate hosts and between intermediate and target hosts. 

For very weak tradeoffs (s  0.5 in figure 2a), a complicated dynamic emerges. 200 

The PIPs show two strategies that are both evolutionarily and convergence stable, but 

only locally. Which strategies are realized depends on the phenotype of the initial 202 

resident and on the mutational step size. For s = 0.5, starting from a perfect 2,3-

specialist (i.e., from a resident with p = 0), mutants that are slightly better adapted to the 204 

target host than the residents can invade up to p ≈ 0.23 (where P(2,3) ≈ 0.97). If 

mutations are always small, this resident, which shows a low degree of 2,3-206 

specialization, will persist indefinitely. However, there is evidence that in some subtypes 

of influenza viruses, single mutations can effect large changes in receptor binding. If 208 

mutations are large, mutants with sufficiently high p can still invade when tradeoffs are 

very weak. At s = 0.5, invasions by mutants with very high p leads to a resident strategy 210 

at p ≈ 0.97 (where P(2,3) ≈ 0.23, corresponding to low 2,6-specialization). This other 

attractor is also locally evolutionarily and convergence stable. 212 

As the tradeoff strengthens, the two local attractors disappear, and only the 

repellor previously separating them remains. The two perfect specialists (at p = 0 and p = 214 

1) thus become evolutionary end points. If mutational step sizes are small, only one 
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perfect specialist will arise from a given starting condition. For example, if s = 0.75, a 216 

resident starting at p = 0.5 can be progressively invaded by mutants with smaller p until 

arriving at perfect 2,3-specialization. As before, which specialist appears depends on 218 

the phenotype of the initial resident. Figure 2 also shows that if mutational step sizes are 

large, a mutant better adapted to 2,6-receptors (i.e., with P(2,6) above ≈ 0.7) can 220 

invade a perfect 2,3-specialist and evolve increasing 2,6-specialization, and vice versa. 

Assuming that large mutations can occur and that multiple specialists are able to 222 

arise, will they coexist? Reflecting the plots about their main diagonal reveals areas of 

mutual invasibility, or protected dimorphic coexistence: both the mutant and the resident 224 

have positive invasion fitness in the environment of the other type. Evaluating the 

selection gradient in the regions of coexistence shows whether this coexistence is 226 

transient or evolutionarily stable. When the tradeoff is very weak (s = 0.05, 0.25, and 

0.5), we see the basins of attraction for the equilibria described previously (figure 2b). In 228 

addition, we find a third attractor within the region of coexistence that is also locally 

evolutionarily stable. This kind of attractor is sometimes referred to as a singular 230 

coalition (Geritz et al. 1998). At s = 0.5, this attractor occurs where one resident is highly 

2,6-specialized and the other is highly 2,3-specialized. For stronger tradeoffs (s = 0.75 232 

and above), this attractor is absent, and perfect specialists can coexist as evolutionary end 

points. 234 

In summary, if large mutations are possible, a neutral ecology almost always 

gives rise to pairs of specialists that are able to coexist in the long run; generalists only 236 

appear when the tradeoff is extremely weak (s = 0.05). These results appear robust for 

reasonable variations in ecological parameters (figures S1 and S2). Our analysis up to this 238 
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point reveals additional features of the evolution of host range in this system. First, PIPs 

are not anti-symmetric, that is, they are not invariant under reflection about the main 240 

diagonal and the subsequent exchange of signs. This demonstrates that selection for 

receptor preference is frequency-dependent (Meszéna et al. 2001). Second, evolutionary 242 

branching, the endogenous generation of two different phenotypes from a single 

phenotype through frequency-dependent disruptive selection (Metz et al. 1992; Geritz et 244 

al. 1998), cannot occur in this system for a wide range of plausible ecological parameters 

(electronic supplementary material). Third, once tradeoff strength increases to the point 246 

that perfect specialists are evolutionary end points, further increases in tradeoff strength 

have virtually no effect on the invasion potential of strong 2,6-specialists. 248 

 

(b) Effects of host ecology 250 

We now explore how a range of relevant ecological features affect our results. First, we 

allow hosts to vary in their rates of contact, recovery, and loss of infectiousness. Second, 252 

we investigate a modified version of our model that might better capture the dynamics of 

fecal-oral and aerosol transmission between and within the reservoir and intermediate 254 

hosts. Third, we examine the effects of two possible long-term intervention strategies, 

changing the sizes of intermediate and target hosts and the degree of mixing between 256 

different host populations. 

 258 

(i) Differences in host demography and epidemiology 

Natural host populations differ not only in their receptors but also in their demographic 260 

and epidemiologic rates. We therefore investigate two main features of host populations, 
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the rate  at which susceptible hosts are replenished and the pathogen’s basic 262 

reproduction ratio R0 in each host population. 

The rate  in equations (2a) and (2c) approximates the net effects of birth, death, 264 

immigration, emigration, and loss of immunity. We choose relatively high values of  

(1/3 and 1/6 months-1, respectively) for reservoir and intermediate hosts, implying that a 266 

recovered individual will, on average, be replaced every three or six months by a 

susceptible host. In the intermediate hosts, such replacement mainly occurs through 268 

culling or sale. In the reservoir hosts, it occurs mainly through loss of immunity and 

migration. We initially assume that  is approximately fourfold smaller (1/2 y-1) in the 270 

target hosts. This choice reflects influenza’s relatively fast antigenic evolution in humans, 

the longer lifespan of the target population, and a high rate of immigration and 272 

emigration events.  

Better estimates are available for the epidemiologic rates of transmission and 274 

recovery in influenza’s different host populations (table S1). A standard measure of a 

pathogen’s fitness in a population is its basic reproduction ratio R0, which measures the 276 

expected total number of secondary infections caused by a primary infection in an 

otherwise fully susceptible host population. For a perfect specialist in a population of 278 

intermediate hosts with c = 1, the total number of secondary cases in its own population 

is 0,m mR   = mm/m. Our parameters yield R0 values that are highest for reservoir hosts 280 

( 0,r rR   = 4 for a perfect 2,3-specialist), lowest for target hosts ( 0,t tR   = 1.5 for a perfect 

2,6-specialist), and intermediate for intermediate hosts ( 0,m mR   = 1.75 for either perfect 282 
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specialist). These choices of R0 and  allow the highest disease prevalence to be reached 

in reservoir hosts and the highest levels of immunity in target hosts. 284 

Changing the demography and epidemiology of the different host populations 

predictably breaks the symmetry in evolutionary outcomes. In general, if mixing is 286 

complete (c = 1) and the tradeoff is not especially weak (s larger than ≈ 0.25), perfect 

2,3-specialists tend to dominate: they are the evolutionary end point from the majority 288 

of starting conditions, assuming small mutational step sizes (figures S3-S5). Even if large 

mutations are possible, 2,6-specialists often cannot invade perfect 2,3-specialists, or 290 

such invasion is feasible only for perfect or nearly perfect 2,6-specialists. This 

restriction on 2,6-specialist invasion is much more sensitive to differences in R0 among 292 

host populations than to the rates  of susceptible replenishment (figures S3, S4).  

 294 

(ii) Density-dependent transmission 

In wild waterfowl, influenza viruses appear to be transmitted predominantly by the fecal-296 

oral route via contamination of shared water sources. Water is presumably also the route 

by which they infect domesticated animals, including pigs and chickens. Pigs and 298 

chickens generally crowd at high densities and permit aerosol transmission (electronic 

supplementary material). To test the robustness of our conclusions, we now assume that 300 

transmission rates under waterborne and aerosol transmission in reservoir and 

intermediate hosts scale more closely with the abundances than with the frequencies of 302 

infected hosts, resulting in density-dependent transmission (Keeling & Rohani 2007). In 

contrast, aerosol transmission involving the target hosts is better represented by 304 
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frequency-dependent transmission, as transmission rates between target and intermediate 

hosts quickly saturate with respect to population size. 306 

A modified version of our model thus assumes density-dependent transmission 

within and between reservoir and intermediate hosts, and frequency-dependent 308 

transmission within target hosts and between target and intermediate hosts. We also 

distinguish the amount of mixing between reservoir and intermediate hosts (c1) from that 310 

between intermediate and target hosts (c2). Analogous to equation (2d), the force of 

infection for the intermediate host is then 312 

 

mt 2 t
m mr 1 r mm m

2 m t

max[ ( 2,3), ( 2,6)]
c I

P P c I I
c N N

    
 

    
 . (6) 

 314 

The shift from frequency-dependent to density-dependent transmission requires a 

change in the value and dimensions of ij for i,j  {m,r}. We choose ij so that the initial 316 

growth rates in each host are identical to the frequency-dependent case with Nr = Nm = 

100 individuals. We assume that transmission is limited by the abundance of viruses in, 318 

and contact opportunities of, infecting hosts, and thus let the transmission rates equal 

those of the infecting host population: rm = mm and mr = rr. For simplicity, we also 320 

assume that the transmission rate between intermediate and target hosts equals that within 

the target population: tt = tm = mt. A complete description of this model version is 322 

provided by equations (S3) to (S5) (electronic supplementary material). We now explore 

the consequences of this varied form of transmission in the context of possible 324 

intervention strategies. 
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 326 

(iii) Sizes of intermediate and target host populations 

The abundances of the intermediate and target hosts have nonlinear effects on the ability 328 

of 2,6-specialists to invade perfect 2,3-specialists. In general, increasing the size of the 

intermediate host population diminishes the ability of 2,6-specialists to invade when 330 

perfect 2,3-specialists are endemic. In contrast, increasing the size of the target host 

population improves the ability of 2,6-adapted viruses to invade. These patterns hold for 332 

our frequency-dependent and density-dependent models, and also for neutral and non-

neutral host ecologies (figures S6-S9). 334 

There are notable quantitative differences in the evolutionary outcomes resulting 

from the two different transmission modes. Unsurprisingly, frequency-dependent 336 

transmission attenuates the effects of increasing abundances. In otherwise neutral host 

ecologies, even when the population of intermediate hosts is twice as large as the 338 

population of target hosts, invasion by 2,6-adapted viruses with a low degree of 

specialization is still possible when perfect 2,3-specialists are resident (figure S6a). 340 

Similarly, invasion by 2,6-specialists is still possible when the population of target hosts 

is roughly a fifth as large as those of the other hosts (figure S8). In an otherwise neutral 342 

host ecology, density-dependent transmission between reservoir and intermediate hosts 

also permits 2,6-invasion when intermediate host abundance is quite high (figure S6b). 344 

In contrast, differences in R0 and  among host populations greatly restrict the population 

sizes allowing 2,6-invasion (figures S7 and S9). For intermediate tradeoff strengths 346 

(e.g., s = 0.75 and s = 1), 2,6-specialists cannot invade and coexist if the size of target 

host population is lower than those of the other host populations, or if the size of 348 
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intermediate host population exceeds those of the other host populations. Remarkably, 

the sizes of target and intermediate host populations that form the threshold for the 350 

invasion of 2,6-specialists do not change substantially as tradeoff strength varies from s 

= 0.25 to s = 1.5. 352 

 

(iv) Contacts among host populations 354 

It is interesting to ask whether an intervention that reduces c1 (the degree of mixing 

between reservoir and intermediate hosts) has a greater effect on host-range evolution 356 

than one that reduces c2 (the degree of mixing between the intermediate and target hosts). 

We find that the ability of 2,6-specialists to invade and coexist with 2,3-specialists 358 

increases as transmission rates among host populations decline. This result holds when 

parameters c1 and c2 are considered under density-dependent transmission in either 360 

neutral or non-neutral host ecologies (figures S11 and S12). It also holds under 

frequency-dependent transmission when c1 and c2 are varied together (figure S10). 362 

Nonetheless, a neutral host ecology permits invasion of viruses with a low degree of 

2,6-specialization even when contacts between hosts from different populations are 364 

roughly as likely as those between hosts in the same population. Under more realistic 

host ecologies, opportunities are much more restricted (figures S11b and S12b). For all 366 

but the weakest tradeoffs, an increase in c1 will quickly limit the invasion potential of 

2,6-adapted viruses. A greater increase in c2 is necessary to cause the same effect. 368 
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5. DISCUSSION 370 

We have shown how the evolution of host range, predicated on a single tradeoff, can be 

shaped by frequency-dependent selection, tradeoff strength, transmission mode, and host 372 

ecology. As expected, very weak tradeoffs favor generalist strategies. Unexpectedly, 

however, weak tradeoffs can promote the evolution and coexistence of viral phenotypes 374 

specialized on alternative receptor types, assuming large mutations are possible. In that 

case, both host ecology and tradeoff strength nonlinearly affect the ability of 2,6-376 

adapted mutants to invade when 2,3-specialists are resident. The invasion of 2,6-

adapted viruses is facilitated by low inter-population transmission rates, low abundances 378 

of intermediate hosts, and high abundances of target hosts (figure 3). Interestingly, these 

conditions are relatively insensitive to tradeoff strength. Except at extremely weak 380 

tradeoffs, epidemiological coexistence implies evolutionary coexistence; if perfect 

specialists cannot coexist evolutionarily, extremely well-adapted specialists can. 382 

Tradeoff strength varies among influenza viruses. Viable intermediate phenotypes 

with dual receptor functionality have been reported for some subtypes but not for others. 384 

Matrosovich et al. (2001) identified a lineage of H9N2 from wild aquatic birds and 

poultry that retained relatively high binding affinity for both avian 2,3- and porcine 386 

2,6-receptors. Likewise, some avian-adapted H2N2 viruses from 1957 show a weak 

tradeoff in binding to 2,3- and 2,6-receptors, which might have allowed them to gain a 388 

foothold in the human or pig population and then undergo further adaptations to 2,6-

receptor types (Liu et al. 2009). In contrast, strains of H1N1 and H3N2 from humans and 390 

pigs often show only weak affinity for 2,3-sialosides, and exhibit a complete change in 

receptor preference resulting from only a few amino-acid substitutions (Matrosovich et 392 
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al. 2000). Our model predicts that weak tradeoffs should allow invasion of less well 

adapted types (e.g., H2N2), and also that subtypes with higher tradeoff strengths would 394 

more readily give rise to the long-term coexistence of specialists. The second pattern 

echoes the observation that the subtypes often found circulating in pigs and humans 396 

(H1N1 and H3N2) show affinity either to 2,3- or 2,6-receptors, but not to both 

simultaneously. 398 

Our results lend strong support to the idea that certain host ecologies facilitate 

expansions of a disease’s host range. We find that, fortunately, coexistence of specialists 400 

is much more difficult in influenza’s natural ecology than in a neutral one. Low inter-

population transmission rates, small intermediate host populations, and large target host 402 

populations all increase the fraction of hosts that are susceptible to 2,6-mutants by 

limiting exposure to 2,3-viruses in the intermediate host. Low transmission rates 404 

between the intermediate and target hosts (low c2) reduce the fraction of target hosts’ 

contacts with intermediate hosts, some fraction of which resist infection due to previous 406 

exposure to 2,3-adapted viruses. This reduction thus opposes a potential “dilution 

effect” of wasting contacts on incompetent (here, immune) hosts (Schmidt & Ostfeld 408 

2001). While the effect of increasing the population of target hosts is unsurprising, a less 

intuitive result is that large populations of intermediate hosts, by supporting increased 410 

exchange of 2,3-adapted viruses with the reservoir, reduce the fraction of hosts 

potentially susceptible to 2,6-adapted viruses. Of course, large populations of 412 

intermediate hosts in nature could pose an increased risk for the emergence of 2,6-

adapted viruses if host abundance correlates positively with the pathogen’s genetic 414 

diversity. This result nonetheless underscores the major roles of immunity in the 
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intermediate host population and of the rates of contact between target and intermediate 416 

hosts. 

Investigations of the system’s nonequilibrium dynamics could be useful. 418 

Influenza outbreaks are seasonal in most animals, and transmission rates are likely to be 

seasonal. If the amplitude of epidemic oscillations is sufficiently high, equilibria of viral 420 

evolution can be different from those predicted here (White et al. 2006). Adaptation is 

also fundamentally probabilistic. Although we established a threshold for invasion based 422 

on positive growth of a mutant when rare, negative growth rates in nature may 

stochastically generate chains of mutations and transmission that are long enough to 424 

allow significant adaptation and ultimately positive growth (Andre & Day 2005; Antia et 

al. 2003). In other words, it may be possible for 2,6-adapted viruses to gain a foothold 426 

outside the areas of positive growth in the analyses presented here. 

Increasing detail on receptor specificity in different viruses will help address 428 

questions of evolutionary attainability. The tradeoff between 2,3- and 2,6-preference 

provides a rough approximation of patterns in relative binding ability (Gambaryan et al. 430 

2005). Receptor binding ability is only one small, though critical, determinant of a 

disease’s host range (Baigent & McCauley 2003). It might be feasible to model additional 432 

adaptations indirectly as a change in tradeoff strength, which we might expect to diminish 

over time as compensatory mutations arise at the receptor-binding site and in other genes. 434 

This work shows that the evolution of host range may be as sensitive to ecological 

considerations as it is to the physiological details of adaptation. The long-term diversity 436 

of influenza viruses, for all realistic tradeoffs, is highly sensitive to transmission rates and 

population sizes. Naturally or artificially acquired immunity in intermediate hosts and the 438 
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dilution of contacts among competent hosts are key to reducing the long-term ability of 

2,6-adapted viruses to persist.440 
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Figure captions 
 

Figure 1. (a) Transmission structure of host community, highlighting receptor 

conformations in three host populations: reservoir hosts (waterfowl; r), intermediate hosts 

(pigs and chickens; m), and target hosts (humans; t). Population sizes in each class are 

denoted by Ni with i = r, m, t. (b) Tradeoff for receptor preference. The strength of the 

tradeoff is given by s, with s < 1 characterizing a weak tradeoff and s > 1 a strong 

tradeoff. Moving away from the origin, the curves correspond to s = 1.5, 1, 0.75, 0.5, 

0.25, and 0.05. Colors indicate the degree of specialization on the nearby receptor: red 

(high specialization), orange (low specialization), and blue (negligible specialization: 

generalists). 

 

Figure 2. Evolutionary outcomes in a neutral host ecology. (a) Pairwise invasibility plots 

for different tradeoff strengths s for Nt =Nm = Nr, c = 1, rr = mm = tt = 1/3 days-1, r = 

m = t = 1/6 days-1, and r = m = t = 1/180 days-1. Black (white) areas indicate where 

the mutant has a positive (negative) growth rate in the endemic environment determined 

by the resident. Gray areas indicate regions in which the resident phenotype is not viable. 

(b) Trait evolution plots for the pairwise invasibility plots in (a). Gray areas indicate 

phenotype pairs that are mutually invasible and that therefore can coexist and coevolve. 

Black lines are evolutionary isoclines at which the selection pressure on one phenotype 

vanishes. Circles correspond to evolutionary attractors if filled and to evolutionary 

repellors if open. Arrows show the directions, at the quadrant level, of positive selection 

pressures (for better readability, such arrows are shown here only for the largest bounded 

regions). 
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Figure 3. Conditions that permit the coexistence of perfect specialists, assuming 

frequency-dependent transmission, realistic ecological parameters of host populations 

(table S1), and a linear tradeoff (s =1). Parameter combinations that permit specialist 

coexistence are in gray. Coexistence is evolutionarily stable for higher tradeoffs (s = 0.75 

and above), but not for weaker tradeoffs; however, even at weaker tradeoffs, extremely 

well adapted viruses are able to coexist (see text, fig. 2). (a) Effects of the relative 

population size Nm/Nr = Nm/Nt of intermediate hosts and of the degree c1 of mixing 

between reservoir and intermediate hosts. (b) Effects of the relative population size Nt/Nr 

= Nt/Nm of target hosts and of the degree c2 of mixing between intermediate and target 

hosts. 
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I. Equations for intermediate and target hosts for model with frequency-dependent 
transmission 
 
SIRS equations for the population of intermediate hosts are given in the main text (eqs. 

2a-c). The corresponding SIRS equations for the population of reservoir hosts are 
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Analogously, SIRS equations for the population of target hosts are 
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II. The Jacobian of the model with frequency-dependent transmission 

The Jacobian matrix of a rare mutant’s epidemiological dynamics is given by 

 

* *
rr r rm r

1 r 1
r m r m t

** *
mt mmr m mm m

1 1 1 1 m 1 1
r m r m t m t

1

( 2,3) ( 2,3) 0

max[ ( 2,3), ( 2,6)] max[ ( 2,3), ( 2,6)] max[ ( 2,3), ( 2,6)]

0 ( 2,6

S cS
P P

N cN cN N cN

cScS S
J P P P P P P

N cN cN N cN cN N

P

   

       



  
        

    
             

* *
mm t mt t

1 t
r m t m t

) ( 2,6)
cS S

P
cN N cN cN N

  

 
 
 
 
 
 
 

    
          

  

 

P1 refers to the phenotype of the rare mutant virus. The elements Jij are the instantaneous 

per capita rates of mutant infections spreading from infected hosts in population j to 

susceptible hosts in population i. Host abundances at the endemic equilibrium of the 

resident virus are denoted by an asterisk. 

 

III. Default parameters  

We choose parameters in keeping with general observations on the relative growth rates 

of different influenza subtypes in different hosts (Webster et al. 1992) (Table S1): 

 The rates of loss of immunity, i, are qualitative estimates based on several 

observations. Rates are highest in waterfowl, since they appear to have little long-

term immunity to influenza. The intermediate hosts, as domesticated animals, also 

have relatively high turnover. Turnover rates in the target population are low due 

to longer host lifespans and long-lasting immunity (whose loss of immunity is 

here a proxy for antigenic evolution). However, we assume they are offset by 

relatively high host mobility (migration). 



 The assumption of frequent, regular contact (suitable for transmission) between 

intermediate hosts and target hosts such as humans, in both rural and more 

industrial settings, is supported by serological surveys of pigs (Brown et al. 1995; 

Olsen et al. 2000; Yu et al. 2007) and by observations on asymptomatic pig-farm 

workers (Campitelli et al. 1997; Halvorson et al. 1983; Karunakaran et al. 1983; 

Myers et al. 2006; Olsen et al. 2002; Sivanandan et al. 1991) and poultry workers 

(Koopmans et al. 2004). 

 

Motivation for density-dependent transmission between the reservoir and intermediate 

host populations comes from Brown et al. (2000), Ly et al. (2007), and Alexander (2000). 

 



Table S1. Default parameter values used in non-neutral models. Note that “individuals” 
in the denominator of rr and mm in the model with density-dependent transmission is a 
pseudo-unit. 
 
Symbol Description Value References 

r Rate of recovery in reservoir hosts 1/(12 days) Hulse-Post et al. (2005) 

m 
Rate of recovery in intermediate hosts 1/(7 days) Hinshaw et al. (1981), 

Brown (2000); Van der 
Goot et al. (2003) 

t 
Rate of recovery in target hosts 1/(6 days) Leekha et al. (2007); 

Carrat et al. (2008) 

r 
Rate of susceptible replenishment in 
reservoir hosts 

1/(90 days) Kida et al. (1980); Hulse-
Post et al. (2005) 

m 
Rate of susceptible replenishment in 
intermediate hosts 

1/(180 days)  

t 
Rate of susceptible replenishment in 
target hosts 

1/(730 days)  

c (c1, c2) 

Expected probability that a member of 
one host population can contact another 
host population (for reservoir and 
intermediate hosts, for intermediate and 
target hosts) 

1.0 (except where 
explicitly varied) 

 

tt Transmission rate among target hosts 1/(4 days) Saenz et al. (2006) 
Model with frequency-dependent transmission 

rr Transmission rate among reservoir hosts 1/(3 days)   

mm 
Transmission rate among intermediate 
hosts 

1/(4 days) Saenz et al. (2006) 

Model with density-dependent transmission 

rr 
Transmission rate among reservoir hosts 1/(300 days  

individuals)  
 

mm 
Transmission rate among intermediate 
hosts 

1/(400 days  
individuals) 

Saenz et al. (2006) 
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IV. Equations for model with density-dependent transmission 

 

All parameters and variables are as defined in the main text.  

Reservoir, r  

dSr
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Target host, t 
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V. Figures 

 

Figure S1. Pairwise invasibility (a) and trait evolution (b) plots for hosts that are 

identical except for their receptor preferences. Parameters are identical to figure 2, except 

r = m = t = 1/4.5 days-1 (and thus intraspecific R0 for the appropriate specialist in each 

species is 1.5). Gray areas in (a) indicate regions where the resident is inviable, whereas 

in (b) they denote regions of coexistence. In the trait evolution plots, black lines are 

isoclines and black circles correspond to evolutionary attractors if filled and repellors if 

open. Arrows show the direction at the quadrant level of selection pressure. For clarity, 

they are sometimes shown extending outside the plot, though phenotypes are bounded by 

the axes. 

 

Figure S2. Pairwise invasibility (a) and trait evolution (b) plots for hosts that are 

identical except for their receptor preferences. Parameters are identical to figure 2, except 

r = m = t = 1/12 days-1 (and thus R0 for the appropriate specialist in each species is 4). 

Gray areas in (b) denote regions of coexistence. In the trait evolution plots, black lines 

are isoclines and black circles correspond to evolutionary attractors if filled and repellors 

if open. Arrows show the direction at the quadrant level of selection pressure. For clarity, 

they are sometimes shown extending outside the plot, though phenotypes are bounded by 

the axes. 
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Figure S3. Pairwise invasibility (a, c) and trait evolution (b, d) plots for host populations 

differing in their rates of susceptible replenishment  but not R0. In all plots, r = 1/90 

days-1 and m = 1/180 days-1. The intraspecific R0 for all hosts is 2 (rr = mm = tt = 1/3 

days-1, r = m = t = 1/6 days-1). Hosts have equal population sizes, populations mix 

freely (c = 1), and transmission rates are frequency-dependent. In (a) and (b), t = 1/730 

days-1. In (c) and (d), t = 1/7300 days-1. Gray areas in (a) indicate regions where the 

resident is inviable, whereas in (b) they denote regions of coexistence. In the trait 

evolution plots, black lines are evolutionary isoclines and black circles correspond to 

evolutionary attractors if filled and repellors if open. Arrows show the direction at the 

quadrant level of selection pressure. For clarity, they are sometimes shown extending 

outside the plot, though phenotypes are bounded by the axes. 

 

Figure S4. Pairwise invasibility (a) and trait evolution (b) plots for host populations 

differing in their R0 but not their rate of susceptible replenishment. Here, intraspecific R0 

is 4 in the reservoir (rr = 1/3 days-1, r = 1/12 days-1), 1.75 in the intermediate host (mm 

= 1/4 days-1, m = 1/7 days-1), and 1.5 in the target host (tt = 1/4 days-1, t = 1/6 days-1), 

as in table S1. Hosts have identical population sizes and rates of susceptible 

replenishment (r = m = t = 1/180 days-1), populations mix freely (c = 1), and 

transmission rates are frequency-dependent. Gray areas in (a) indicate regions where the 

resident is inviable, whereas in (b) they denote regions of coexistence. In the trait 

evolution plots, black lines are evolutionary isoclines and black circles correspond to 

evolutionary attractors if filled and repellors if open. Arrows show the direction at the 

quadrant level of selection pressure. 
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Figure S5. Pairwise invasibility (a, c) and trait evolution (b, d) plots allowing both 

intraspecific R0 and rates of susceptible replenishment to vary among hosts. Parameters 

are the same as those used for figure S4, except where noted, and rates of susceptible 

replenishment are the same ones used for figure S3 and listed in table S1. For (c) and (d), 

intraspecific R0 in the reservoir (R0 = 2; r = 1/6 days-1) is lower than in (a) and (b), 

though in both cases it is still higher than in the intermediate (R0 = 1.75) and target hosts 

(R0 = 1.5). Gray areas in (a) indicate regions where the resident is inviable, whereas in (b) 

they denote regions of coexistence. In the trait evolution plots, black lines are 

evolutionary isoclines and black circles correspond to evolutionary attractors if filled and 

repellors if open. Arrows show the direction at the quadrant level of selection pressure. 

 

Figure S6. Coexistence plots showing the effects of changing intermediate host 

abundance in a neutral ecology, assuming (a) frequency-dependent and (b) density-

dependent transmission. Ecological parameters are the same as those used in figure 2 (for 

all hosts, R0 = 2 and  = 1/180 days-1). Pairwise invasibility and trait evolution plots 

corresponding to where Nm = Nt = Nr with frequency-dependent transmission are shown 

in figure 2. Plus signs indicate areas of coexistence, which correspond to the gray regions 

of trait evolution plots. 

 

Figure S7. Coexistence plots showing the effects of changing intermediate host 

abundance in a non-neutral ecology, assuming (a) frequency-dependent and (b) density-

dependent transmission. Ecological parameters are the same as those used in table S1. 



 10

Pairwise invasibility and trait evolution plots corresponding to where Nm = Nt = Nr with 

frequency-dependent transmission are shown in figure S5(a, b). Plus signs indicate areas 

of coexistence, which correspond to the gray regions of trait evolution plots. 

 

Figure S8. Coexistence plots showing the effects of changing target host abundance in a 

neutral ecology, assuming frequency-dependent transmission. Ecological parameters are 

the same as those used in figure 2 (for all hosts, R0 = 2 and  = 1/180 days-1). Pairwise 

invasibility and trait evolution plots corresponding to where Nt = Nm = Nr with frequency-

dependent transmisison are shown in figure 2. Plus signs indicate areas of coexistence, 

which correspond to the gray regions of trait evolution plots. 

 

Figure S9. Effects of changing target host abundance in a non-neutral ecology, assuming 

frequency-dependent transmission. Ecological parameters are the same as those used in 

table S1. Pairwise invasibility and trait evolution plots corresponding to where Nt = Nm = 

Nr with frequency-dependent transmission are shown in figure S5(a,b). Plus signs 

indicate areas of coexistence, which correspond to the gray regions of trait evolution 

plots.  

 

Figure S10. Coexistence plots showing effects of changing the degree of mixing between 

populations (c = c1 = c2) when all transmission rates are frequency-dependent. 

Coexistence plots are shown for (a) neutral and (b) non-neutral ecologies. Pairwise 

invasibility and trait evolution plots corresponding to the case where c = 1 are shown in 

figure 2 and figure S5(a, b), respectively, assuming frequency-dependent transmission. 
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Plus signs indicate areas of coexistence, which correspond to the gray regions of trait 

evolution plots. 

 

Figure S11. Coexistence plots showing effects of changing only the scaling on rates of 

interspecific transmission between the reservoir and intermediate host populations (c1) in 

(a) neutral and (b) non-neutral ecologies, assuming density-dependent transmission 

between the reservoir and intermediate host populations. Plus signs indicate areas of 

coexistence, which correspond to the gray regions of trait evolution plots. 

 

Figure S12. Coexistence plots showing effects of changing only the degree of mixing 

between the intermediate and target populations (c2) in (a) neutral and (b) non-neutral 

ecologies, assuming density-dependent transmission between the reservoir and 

intermediate host populations. Plus signs indicate areas of coexistence, which correspond 

to the gray regions of trait evolution plots. 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S3 (continued) 
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Figure S4 
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Figure S5 
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Figure S5 (continued) 
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Figure S6 
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Figure S7 
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Figure S8 
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Figure S9 
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Figure S10 
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Figure S11 
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Figure S12 
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