?url_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adc&rft.relation=https%3A%2F%2Fpure.iiasa.ac.at%2Fid%2Feprint%2F13925%2F&rft.title=Optimality+Conditions+for+Discrete-Time+Optimal+Control+on+Infinite+Horizon&rft.creator=Aseev%2C+S.M.&rft.creator=Krastanov%2C+M.I.&rft.creator=Veliov%2C+V.M.&rft.description=The+paper+presents+first+order+necessary+optimality+conditions+of+Pontrygin's+type+for+a+general+class+of+discrete-time+optimal+control+problems+on+infinite+horizon.+The+main+novelty+is+that+the+adjoint+function%2C+for+which+the+(local)+maximum+condition+in+the+Pontryagin+principle+holds%2C+is+explicitly+defined+for+any+given+optimal+state-control+process.+This+is+done+based+on+ideas+from+previous+papers+of+the+first+and+the+last+authors+concerning+continuous-time+problems.+In+addition%2C+the+obtained+(local)+maximum+principle+is+in+a+normal+form%2C+and+the+optimality+has+the+general+meaning+of+weakly+overtaking+optimality+(hence+unbounded+processes+are+allowed)%2C+which+is+important+for+many+economic+applications.+Two+examples+are+given%2C+which+demonstrate+the+applicability+of+the+obtained+results+in+cases+where+the+known+necessary+optimality+conditions+fail+to+identify+the+optimal+solutions.&rft.publisher=Reseach+Unit+ORCOS%2C+Vienna+University+of+Technology&rft.date=2016-11&rft.type=Other&rft.type=NonPeerReviewed&rft.format=text&rft.language=en&rft.identifier=https%3A%2F%2Fpure.iiasa.ac.at%2Fid%2Feprint%2F13925%2F1%2F2016-09%25281%2529.pdf&rft.identifier=++Aseev%2C+S.M.+%3Chttps%3A%2F%2Fpure.iiasa.ac.at%2Fview%2Fiiasa%2F19.html%3E%2C+Krastanov%2C+M.I.%2C+%26+Veliov%2C+V.M.+%3Chttps%3A%2F%2Fpure.iiasa.ac.at%2Fview%2Fiiasa%2F2479.html%3E++(2016).++Optimality+Conditions+for+Discrete-Time+Optimal+Control+on+Infinite+Horizon.++++Reseach+Unit+ORCOS%2C+Vienna+University+of+Technology+%2C+Vienna%2C+Austria.+++++&rft.relation=http%3A%2F%2Forcos.tuwien.ac.at%2Ffileadmin%2Ft%2Forcos%2FResearch_Reports%2F2016-09.pdf