eprintid: 14127 rev_number: 7 eprint_status: archive userid: 5 dir: disk0/00/01/41/27 datestamp: 2016-12-12 15:33:37 lastmod: 2021-08-27 17:41:43 status_changed: 2016-12-12 15:33:37 type: book_section metadata_visibility: show item_issues_count: 1 creators_name: Demidova, V. A. creators_name: Demyanov, V.F. creators_id: AL1612 title: A directional implicit function theorem for quasidifferentiable functions ispublished: pub divisions: prog_sds abstract: The implicit and inverse function theorems provide an essential component of classical differential calculus, and for this reason many attempts have been made to extend these theorems to nonsmooth analysis (see, for example, the work of F. Clarke, H. Halkin, J.-B. Hiriart-Urruty, A.D. Ioffe, B.H. Pourciau, J. Warga). In this paper, we consider the case of quasidifferentiable functions. It is shown that to obtain nontrivial results it is necessary to study a directional implicit function problem (it turns out that in some directions there are several functions, while in others there are none). date: 1986 date_type: published publisher: Springer Berlin Heidelberg id_number: doi:10.1007/BFb0121140 creators_browse_id: 2579 creators_browse_id: 2579 full_text_status: none series: Mathematical Programming Studies volume: 29 place_of_pub: Germany pagerange: 95-107 refereed: TRUE isbn: 978-3-642-00929-7 issn: 0303-3929 book_title: Quasidifferential Calculus editors_name: Demyanov, V. F. editors_name: Dixon, L.C.W. editors_id: AL1612 coversheets_dirty: FALSE fp7_type: info:eu-repo/semantics/bookPart citation: Demidova, V. A. & Demyanov, V.F. (1986). A directional implicit function theorem for quasidifferentiable functions. In: Quasidifferential Calculus. Eds. Demyanov, V. F. & Dixon, L.C.W., pp. 95-107 Germany: Springer Berlin Heidelberg. ISBN 978-3-642-00929-7 10.1007/BFb0121140 .