@incollection{iiasa14134, volume = {285}, series = {Lecture Notes in Economics and Mathematical Systems}, note = {Volume 1 Proceedings of the Seventh International Conference on Multiple Criteria Decision Making, Held at Kyoto, Japan, August 18-22, 1986}, booktitle = {Toward Interactive and Intelligent Decision Support Systems}, editor = {Y. Sawaragi and K. Inoue and H. Nakayama}, title = {Inverse Problems in Multiobjective Dynamic Optimization}, address = {Germany}, publisher = {Springer Berlin Heidelberg}, year = {1987}, doi = {10.1007/978-3-642-46607-6\_40}, pages = {374--382}, url = {https://pure.iiasa.ac.at/id/eprint/14134/}, isbn = {978-3-642-46607-6}, issn = {0075-8442}, abstract = {One of the "practical" problems of control theory motivated primarily by environmental studies consists, loosely speaking, in the following. x.=f(t,x,{\ensuremath{\omega}}),{\ensuremath{\tau}}?t?{\ensuremath{\theta}} with "input variables" x ({\ensuremath{\tau}}) = x 0; {\ensuremath{\omega}}(?) = {\ensuremath{\omega}}({\ensuremath{\theta}} + {\ensuremath{\sigma}}), {\ensuremath{\tau}} - {\ensuremath{\theta}} {$\leq$} {\ensuremath{\sigma}} {$\leq$} 0. These are restricted by inequalities hj(x0)?{\ensuremath{\mu}}j,j=1,...,p gs({\ensuremath{\omega}}(?))?{\ensuremath{\beta}}s,s=1,...,q . Also given are the constraints on system trajectories - the "outputs" x(?) = x({\ensuremath{\theta}} + {\ensuremath{\sigma}}), {\ensuremath{\tau}} - {\ensuremath{\theta}} {$\leq$} {\ensuremath{\sigma}} {$\leq$} 0, i.e. {\ensuremath{\phi}}i(x(?))?{\ensuremath{\upsilon}}i,i=1,...,k}, author = {Kurzhanski, A. B.} }