eprintid: 14189 rev_number: 7 eprint_status: archive userid: 5 dir: disk0/00/01/41/89 datestamp: 2016-12-21 10:27:09 lastmod: 2021-08-27 17:28:18 status_changed: 2016-12-21 10:27:09 type: article metadata_visibility: show item_issues_count: 2 creators_name: Pflug, G. creators_name: Ruszczynski, A. creators_name: Schultz, R. creators_id: 1361 creators_id: 1475 creators_orcid: 0000-0001-8215-3550 title: On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse and Extensions ispublished: pub divisions: prog_opt abstract: Integrals of optimal values of random optimization problems depending on a finite dimensional parameter are approximated by using empirical distributions instead of the original measure. Under fairly broad conditions, it is proved that uniform convergence of empirical approximations of the right hand sides of the constraints implies uniform convergence of the optimal values in the linear and convex case. date: 1998 date_type: published publisher: INFORMS id_number: 10.1287/moor.23.1.204 creators_browse_id: 229 creators_browse_id: 1544 full_text_status: none publication: Mathematics of Operations Research volume: 23 number: 1 pagerange: 204-220 refereed: TRUE issn: 0364-765X coversheets_dirty: FALSE fp7_type: info:eu-repo/semantics/article citation: Pflug, G. ORCID: https://orcid.org/0000-0001-8215-3550 , Ruszczynski, A. , & Schultz, R. (1998). On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse and Extensions. Mathematics of Operations Research 23 (1) 204-220. 10.1287/moor.23.1.204 .