RT Journal Article SR 00 A1 Rinaldi, S. A1 Della Rossa, F. T1 Modelli Matematici di Storie D'Amore JF Quaderni di Matematica YR 2017 FD 2017 AB In questo articolo sono descritti i principali risultati finora ottenuti nel contesto della modellistica delle relazioni d’amore. I modelli sono di tipo descrittivo e stu- diano l’evoluzione dei sentimenti di due individui a partire da uno stato iniziale di indifferenza fino al raggiungimento di un regime sentimentale stazionario, periodi- co, o addirittura aperiodico. I modelli pi`u semplici sono costituiti da due equazioni differenziali (una per lei e una per lui) contenenti le informazioni essenziali sul mo- do con cui ogni individuo reagisce all’amore e al fascino dell’altro. Analizzando i modelli si possono ricavare, senza bisogno di alcun dato, le propriet`a fondamentali delle storie d’amore tra individui di varie categorie: sicuri o insicuri, non polarizzati o polarizzati (tra cui, platonici o sinergici), ... Cos`ı facendo si capisce, ad esempio, perch´e in coppie di individui sicuri ci sia una marcata tendenza ad aumentare il proprio fascino nella fase del corteggiamento, o perch´e piccole scoperte riguardanti il partner possano avere conseguenze (positive o negative) sorprendentemente grandi (catastrofi). Coppie di individui insicuri hanno invece una decisa propensione ad interrompere la relazione dopo un certo tempo. Infine, si scopre che regimi sentimentali altalenanti sono possibili a causa della copresenza di insicurezza e sinergismo e che le crisi ricorrenti possono lentamente sparire o attenuandosi o rarefacendosi nel tempo. In conclusione, per mezzo di questi modelli, propriet`a come quelle appena descritte, note agli psicanalisti che le hanno scoperte esercitando la loro professione, sono finalmente capite e spiegate: un risultato di indubbio valore. Tutti i fenomeni sopra citati riguardano coppie estremamente semplici, in cui l’evoluzione della storia d’amore `e dominata dalle interazioni tra i partner. Ma nella realt`a le relazioni interpersonali sono molto pi`u complesse perch´e risentono anche dell’ambiente sociale in cui la coppia vive. Successi e insuccessi nella pro- fessione, problemi di salute, lunghi e ripetuti periodi di assenza forzata, esistenza di importanti passioni, come quelle tipiche degli artisti, sono tutti fattori che in- terferiscono, anche notevolmente, con l’evoluzione dei sentimenti. Per modellizzare coppie cos`ı complesse, `e necessario far uso di modelli con tre o pi`u equazioni diffe- renziali, che possono essere analizzati solo per via numerica. Tali modelli possono spiegare anche regimi sentimentali caotici e, quindi, imprevedibili. Finora ci`o `e stato fatto solo per un numero limitato di casi, in particolare per relazioni tenden- zialmente instabili come quelle triangolari. Tuttavia, i risultati ottenuti sono cos`ı incoraggianti da far pensare che l’intero settore scientifico debba, in tempi brevi, espandersi significativamente. Il lettore che desideri approfondire quanto esposto in questo articolo potr`a fare riferimento al libro ”Modeling Love Dynamics”, pubblicato nel 2016 daWorld Scien- tific (autori: Sergio Rinaldi, Fabio Della Rossa, Fabio Dercole, Alessandra Gragnani e Pietro Landi). A chi sia invece interessato a una sintesi dell’argomento e a un breve commento sul senso e sul valore di questi studi si consigliano le seguenti rasse- gne critiche: “The equations of love”, di Marten Scheffer (http://blogs.nature. com/aviewfromthebridge/2016/05/20/the-equations-of-love), “A review of the book Modeling Love Dynamics”, di Gustav Feichtinger (http://www.oegor. at/files/news/news24.pdf) e “Perch`e Rossella O’Hara ha fallito? Se l’amore `e matematico”, di Anna Meldolesi (https://goo.gl/OjpKtD). PB Seconda Università degli Studi di Napoli LK https://pure.iiasa.ac.at/id/eprint/14369/